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Abstract

We present Probabilistic Collaborative Repre-
sentation Learning (PCRL), a new generative
model of user preferences and item contexts.
The latter builds on the assumption that rela-
tionships among items within contexts (e.g.,
browsing session, shopping cart, etc.) may un-
derlie various aspects that guide the choices
people make. Intuitively, PCRL seeks repre-
sentations of items reflecting various regulari-
ties between them that might be useful at ex-
plaining user preferences. Formally, it relies
on Bayesian Poisson Factorization to model
user-item interactions, and uses a multilayered
latent variable architecture to learn represen-
tations of items from their contexts. PCRL
seamlessly integrates both tasks within a joint
framework. However, inference and learn-
ing under the proposed model are challenging
due to several sources of intractability. Rely-
ing on the recent advances in approximate in-
ference/learning, we derive an efficient varia-
tional algorithm to estimate our model from
observations. We further conduct experiments
on several real-world datasets to showcase the
benefits of the proposed model.

1 INTRODUCTION

With pervasive digitization of marketplaces and services,
we now make most of our consumption choices on-
line. Relieved from the inventory limitation of a phys-
ical storefront, online providers are able to offer a mind-
boggling array of choices numbering in the thousands to
millions. To help users in navigating this sea of choices,
modern applications rely heavily on recommender sys-
tems to deliver a personalized ranking or selection of
items to each user according to her preferences.

There are various approaches to recommender systems,
including memory-based and model-based approaches
(Sarwar et al., 2001). At the heart of the more prevalent
model-based approach is learning a latent representation
for every user and every item. Such a latent represen-
tation places a user or an item in the “feature” space of
preferences, such that when two related items share sim-
ilar representations or “features”, a user who prefers one
likely also prefers the other. Further recommendation
predictions are based on these latent representations.

Much of the previous work seek to learn these repre-
sentations from historical behavioral data, such as rat-
ings, clicks, purchases, etc. (usually organized into a
user-item interaction or preference matrix). For instance,
the widespread Matrix Factorization (MF) (Mnih and
Salakhutdinov, 2008; Hu et al., 2008; Koren et al., 2009)
derives user and item latent representations in the form of
low dimensional vectors by decomposing the preference
matrix. The bilinear combination of user and item’s la-
tent factors can be used to predict unknown preferences.

The limitation of learning these representations from his-
torical behaviors is the sparsity of such data. The long-
tail effect (Park and Tuzhilin, 2008) means that most
items have been adopted by few users. Moreover, given
the rapid expansion of catalogues, there are continually
new items with scant record of historical consumption.
One consequence of this sparsity is that closely related
items may not be mapped to the same direction in the la-
tent space, as they might not have been rated by the same
users. As such, historical consumption data alone may
not suffice for learning effective item representations.

In some real-world scenarios, there may be known some
auxiliary information on how items are likely related to
one another. For example, a user interested in a particular
shirt may also be interested in a matching pair of jeans.
Moreover, such relatedness among items may not have
to be explicitly stated, and could be implicitly inferred
from such indicative events as whether items are placed



within the same shopping carts, are browsed within the
same session, etc. Such item-item relationships consti-
tute valuable information that would otherwise not easily
be derivable from similarities in product attributes alone.
We thus seek to enrich the learned item representation to
also incorporate such item-item relationships, to supple-
ment the sparse user-item interactions.

Representation learning (Bengio et al., 2013) is of in-
terest to learn features or representations from different
data, such as images, text, etc. Recent techniques rely
on deep neural networks to learn compositional repre-
sentations. While inspired by this promising approach,
our work is set apart in that we are interested not only on
extracting objective features of items, but more impor-
tantly also those that could help describe user preferences
effectively. Therefore, instead of relying on representa-
tion learning solely or separately, given the efficacy of
probabilistic models for collaborative filtering, we pro-
pose to conjoin the representation learning from item-
item contextual relationships, and collaborative filtering
from user-item interactions, within a unified model.

In this paper, we develop Probabilistic Collaborative
Representation Learning (PCRL), which seeks to learn
item representations both contextually based on their re-
latedness with other items, as well as collaboratively
based on their interactions/adoptions by users. For the
former, PCRL uses a multilayered (hierarchical) latent
variable structure, with a Poisson likelihood and Gamma
distributed layers, to model the item’s context (e.g., shop-
ping cart, session). For the latter, PCRL relies on Poisson
Factorization (PF) for decomposing users’ interactions
with items. As shown in (Gopalan et al., 2015), PF real-
istically models user preferences, fits well to sparse data
thanks to the Poisson’s mathematical form, and it sub-
stantially outperforms previous state-of-the-art Gaussian
likelihoods-based MF models (Mnih and Salakhutdinov,
2008; Shan and Banerjee, 2010; Koren et al., 2009) for
item recommendation.

PCRL joins both sources of data through a shared item
latent space within a probabilistic generative model. In-
tuitively, the collaborative PF component can guide the
contextual representation learning process to focus on
extracting features that are relevant for predicting the
preference information. The contextual representation
learning component in turn will encourage the PF part to
rely on items’ contexts to explain user preferences, which
would supplement the lack of user-item interactions.

Exact inference under the PCRL model is very challeng-
ing due to various sources of intractability. To overcome
this difficulty we rely on recent innovations in approx-
imate inference/learning and derive an efficient varia-
tional algorithm to estimate PCRL from observed user

preferences and item contexts. Empirical results on sev-
eral real-world datasets reflect the benefits of PCRL in
terms of both personalized recommendation and item
representation learning.

2 RELATED WORK

The sparsity of preference data has driven many to extend
Matrix Factorization (MF) models (Mnih and Salakhut-
dinov, 2008; Hu et al., 2008; Koren et al., 2009) beyond
user-item interactions, and leverage auxiliary informa-
tion, such as social networks (Ma et al., 2008; Zhou et al.,
2012; Rao et al., 2015), product taxonomy (Koenigstein
et al., 2011), item content (Wang and Blei, 2011), etc.
However, these are mostly still within the framework of
MF. For instance, Collective Matrix Factorization (Singh
and Gordon, 2008), which co-factorized multiple data
matrices, is a popular approach in the recommendation
literature to jointly model several sources of information.

Yet other approaches, similarly to ours, use graphi-
cal models to join different modalities. =~ Wang and
Blei (2011) developed Collaborative Topic Regression
(CTR), which composes a topic model, Latent Dirichlet
Allocation (LDA), with probabilistic matrix factorization
to model texts (articles) and user (reader) preferences.
Along the same line, Wang et al. (2015); Li and She
(2017) proposed alternatives to CTR where probabilistic
auto-encoder, is substituted for LDA for modeling text.

We focus on incorporating item relatedness, a modal-
ity mostly neglected by previous personalized recom-
mendation models. Notable exceptions include CoFactor
(Liang et al., 2016) and Matrix Co-Factorization (MCF)
(Park et al., 2017), which used the principle of collective
MF based on Gaussian likelihoods. In contrast, we build
on Bayesian Poisson Factorization (PF), and we further
investigate another architecture for leveraging the item’s
contexts with new modeling perspectives. In experi-
ments, we compare to the more recent MCF that learns
from item network as a baseline. CoFactor learns not
from an external auxiliary source, but rather from item-
item relations induced from the user-item interactions.

Since (Gopalan et al., 2015), there is a growing body of
work on applying PF (Canny, 2004; Cemgil, 2009) to
recommender systems. Gopalan et al. (2014a) developed
non-parametric PF. Chaney et al. (2015) incorporated so-
cial interactions. Charlin et al. (2015) accounted for user
and item evolution over time. Notably, Gopalan et al.
(2014b) proposed Collaborative Topic Poisson Factor-
ization (CTPF) to model both article contents and reader
preferences. In contrast to CTPF that uses PF to model
both the user preferences and auxiliary item information
(text), we adopt PF for the user-item interactions only,



and we use a multilayered latent variable structure to
learn item representations from auxiliary data (item con-
texts). The benefits of our modeling architecture would
be reflected in the experiments with CTPF as a baseline.

3 PROBABILISTIC COLLABORATIVE
REPRESENTATION LEARNING

The observed data that we would learn from are user
preferences and item contexts respectively. The former
are organized into a user-item preference matrix of size
U x I, denoted X = (x,;), where x,; is the integer rat-
ing! that user u gave to item i, or zero if no preference
was expressed. The contextual interactions among items
are encoded in an item-context matrix C = (¢;;), of size
I x J, where ¢;; = 1if item j belongs to the context?
of i, and ¢;; = 0 otherwise. The i*" row of this matrix
is represented by a vector ¢; = (ci1,...,ciy) |, where T
denotes the transpose. We will refer to the set of items j
such that ¢;; > 0 as the context of item 3.

We now describe Probabilistic Collaborative Represen-
tation Learning or PCRL, a new probabilistic latent vari-
able model for jointly modeling user preferences and
item contexts. The intuition is to learn item representa-
tions reflecting various contextual relationships between
them that are useful for explaining user preferences. Fig-
ure 1 depicts PCRL in plate notation.

Contextual Representation Learning. To model rep-
resentations due to the item contexts (refer to the left
portion of Figure 1) we use a multilayer structure sim-
ilar to Deep Exponential Families (Ranganath et al.,
2015). More precisely, PCRL assumes L layers of hid-
den variables per item: Z; = {z;1,...,2; 1}, such that
Z;p € sz. For a reason that will be clear shortly, we
denote z; ;1 = B;. Along with these variables, PCRL
has L + 1 layers of latent weights shared across items,
W = {Wy,...,W_}, where W, is a matrix of size
Koiq X Ky, with Ky = J, and its k™ column is denoted
by wy . Effectively, each hidden layer models repre-
sentations for items based on their contexts. Intuitively,
a higher layer encodes a higher level of representational
abstraction; 3; is the most abstract representation.

The components z; ¢ j; at each hidden layer are Gamma
distributed. Note that this choice is not a limitation of
our modeling framework. Depending on specific require-
ments, other types of z; ¢, are possible, e.g., Gaussian,
and these might differ across layers.

'Other user-item interactions indicative of preferences are
also possible, e.g., number of clicks.

’The definition of “context” is scenario-dependent, e.g., an-
other item j is found in the same shopping cart as item 3.
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Figure 1: The proposed model PCRL in plate representation, &£
and A = (A°, \") stand for Gaussian and Gamma parameters.

To capture various correlations across layers, including
negative ones, we let the weights W, be real valued
with Gaussian priors. These latent variables interact
with each other to explain the contextual relationships
among items. While several interaction schemes are pos-
sible, we mimic neural networks (multilayer perceptron
or MLP), and let the mean of the local variable at the
current layer to be driven by the current weights and the
previous layer as follows:

E(2i, | We, 2i041) = ae(2; 1.1 W) (1)

where ay(z) is a function that maps z into the right mean
space. Following the nomenclature in the neural network
literature, we call it the activation function.

Conditional on the lowest layer, z; 1, the components of
the item-context vector c; are independent Poisson vari-
ables, i.e., ¢; ~ p(ci|z;1, W) =[], p(eij|zi,1, W), and

plci;|Z,W,8) = Poisson(zzlwovj) 2)

where wy ; denotes the j*" column of the matrix W

Collaborative Poisson Factorization. To model user
preferences (refer to the right portion of Figure 1), PCRL
relies on Poisson factorization, i.e.,

4|0, 8 ~ Poisson(0, 3;), (3)

where 6, € R and 3] € RE are latent variables
referred to as the vectors of user preferences and item
attributes respectively. Similar to the original Bayesian
Poisson factorization, we let the user preferences 6,
and item attributes (3;; be Gamma random variables—
throughout the paper, we use the shape and rate parame-
terization of the Gamma distribution.

Unified Generative Model. The intuition behind this
multilayer architecture and sharing 3 between the col-
laborative and contextual parts, is to let the latent vari-
ables Z and WV, at the intermediate layers, absorb various
item-context patterns encoded in C, while encouraging
the item latent attributes 3 to capture only those patterns



which are useful for explaining user preferences. The
corresponding generative process is as follows:

1. Draw user preferences: 6, ~ Gamma(\§, Ap).
2. For each item ¢

(a) Draw its attributes: i, ~ Gamma(\3, \j)
(b) For each layer ¢, for k € {1,..., K/}:
i. Draw wyj, ~ N (pe, 071k, )

.. AS
ii. Draw z; ¢, ~ Gamma(\J 2 )

2 ar(afi Wer)
(c) Forje{l,...,J},
i. Draw wo ; ~ N (po, 081k,)
ii. Draw c¢;; ~ Poisson(ag(z;,wo,;))

3. For each user-item pair (u,t) sample a preference:
x4 ~ Poisson(8, 3;),

where I stands for the identity matrix of size K. In
practice, we use the standard multivariate isotropic Gaus-
sian as the prior over each variable wy . Further, for ef-
ficiency purposes, we will make the latent variables z; ¢
for £ € {1,..., L} deterministic by taking \J to infinity.

In principle PCRL should place high probability on item
factors 3 reflecting various item relationship patterns
that are useful at explaining user preferences.

Connections to Existing Models. In unifying item con-
texts and user-item preferences, PCRL effectively gener-
alizes and subsumes other more restricted formulations.

For one, as evident from the construction of PCRL, if
we remove the context-specific components, Z, YV and
C, then PCRL collapses to the original Bayesian Poisson
factorization (Cemgil, 2009; Gopalan et al., 2015) that
would learn from user-item preferences alone.

For another, if we drop the collaborative filtering com-
ponents, namely X and 6, then we would recover an in-
stance of Deep Exponential Families (DEFs) (Ranganath
et al., 2015) for unsupervised feature learning. However
it should be noted that our composition of Gamma dis-
tributed layers and Gaussian weights has not been in-
vestigated previously in (Ranganath et al., 2015). The
PCRL’s representation learning component is also re-
lated to the Poisson Gamma Belief Network (PGBN)
(Zhou et al., 2016). The key differences are: PGBN uses
Dirichlet weights, it factorizes and chains the Gamma
shape instead of the rate parameters.

If we further take the shape parameter A3 to infinity, than
PCRL is reduced to a Bayesian deep “decoder” neural
network, with a stochastic Gamma top layer 3. Fur-
thermore, starting from PCRL we can derive a Bayesian
Gamma-Poisson variant of the variational auto-encoder

(Kingma and Welling, 2014). To our knowledge, such
neural networks with Gamma stochastic layers have not
been studied in prior literature.

4 INFERENCE & LEARNING

So far we describe PCRL as a generative model. In
practice, we are given X and C, and we are inter-
ested in reversing the above generative process to in-
fer the posterior distribution of the latent variables, i.e.,
(0,8, W|X, C) that would be the most likely to gen-
erate the observations. This allows us to explore data in
different ways as well as predict unknown ratings for rec-
ommendations. Note that by taking A? to infinity the in-
termediate latent variables Z become deterministic; this
is why they are not considered in the above posterior.

As in many Bayesian models, the above posterior is
intractable. We therefore resort to approximate infer-
ence. In particular, we rely on Variational Inference (VI)
(Bishop, 2006; Blei et al., 2017), which is widely used in
statistical learning to fit complex Bayesian models.

4.1 THE VARIATIONAL FAMILY

The key to variational inference is to introduce a tractable
family of distributions ¢, governed by a set of variational
parameters v. The objective is then to find the closest,
typically in terms of the Kullback-Leibler (KL) diver-
gence, member of this family to the true posterior.

We can ease inference in the collaborative part of PCRL
by introducing an additional layer of auxiliary latent vari-
ables, leaving the original model intact when marginal-
ized out. As in (Cemgil, 2009), we add K variables
Suik ~ Poisson(6,B:k) for each observed rating .,
such that ,; = > & Suik- The marginal distribution of
Z4; 18 preserved thanks to the additive property of Pois-
son random variables (Kingman, 1993). As the s,,;’s are
not random when z,,; is zero, we need to consider these
variables for the non-zero elements in X only.

One main source of intractability in our model is the cou-
pling between the different latent variables. To overcome
this difficulty, we adopt a mean-field variational family
(Jordan et al., 1999), q(-|v) = ¢(0, 8, s, W|v), which
factorizes with respect to the latent variables:

q(-|,C) = TI, a0 X0 TT a(Bil X))
[T, 0(Suilbui) TTe—o a(Wel€e) (4)

where v = {)\,£,$}. Note that the variational distri-
butions in the above equation are fully factorized, e.g.,
q(0,X%) = TI, q(0ur|A%,). Each variational distri-
bution is in the same family as the model distribution.



That is, the factors over the Gamma variables, 8 and 3,
are also Gamma distributions variational parameters A,
e.g, A% = (A% X7, For the item attributes, we fur-
ther amortize computations by using an inference net-
work. More precisely, we let AP = (A2 A7) =
f.(ci), where £, (c;) is a deep “encoder” neural net-
work (MLP), parameterized by w, whose input is c;,
AP = (AN and NPT = (T AT,
Note that, the variational parameters over the item fac-
tors g(3) become w.

The factors over s,; are Multinomial distributions with
free parameters ¢. This follows from the fact that the
conditional distribution of a set of Poisson variables
given their sum is a Multinomial (Cemgil, 2009).

The variational factor over W, takes this form:
o o M ~
aq(Wel€) = TIL a(werléf), where & =
{ak, (65)%1k,,, } indexes a multivariate Gaussian with

a diagonal covariance structure.

Fitting the variational parameters v by minimizing the
KL divergence between ¢ and the true posterior is akin
to maximizing the Evidence Lower BOund (ELBO), i.e.,

L =E,llogp(X,C,W,3,0,s) —log(q(-|v))] (5

Next we derive an algorithm to maximize (5).

4.2 COORDINATE ASCENT LEARNING

We now derive a variational algorithm to estimate PCRL
form data. The principle is to alternate the update of each
variational parameter while holding the others fixed.

Updates for X\’ and qNb Thanks to the auxiliary vari-
ables s, A’ and ¢ have the following closed-form up-
dates,

~ ~ 3B;s

NG
ATk

G o< exp ($(O7) — log A +w(y) ~log A7) (1)

where t(-) denotes the diagamma function. These up-
dates are identical to those of Bayesian PF (Cemgil,
2009; Gopalan et al., 2015). For more details, please re-
fer to the supplementary material (A.1).

Parameter update for ¢(3) and ¢()V). The remaining
variational parameters do not admit closed-form updates.
We therefore rely on stochastic steepest gradient ascent
to optimize the ELBO according to these parameters.

Keeping only terms which are function of WV or 3, the
ELBO can be rewritten, for each item ¢, as follows

L; = Ey[logp(s|6, B:)] + Eq[log p(c: W, Bi)]
— KL(q(B:)|p(Bi)) — KL(gOW)||[p(W)) + const (8)

with £ = >, £;. While the first expectation and KL
terms in (8) are available analytically, the second ex-
pectation over log p(c;|W, 3;) is intractable for general
PCRL with respect to both VW and 3;. We cannot al-
ways push the expectations inward non-linear activa-
tion functions a,. This makes the direct evaluation of
the gradient of £; problematic. To overcome this dif-
ficulty we build a Monte Carlo estimator of the gradi-
ent of I, [log p(c;|W, B;)]. To this end, we rely on the
recent Rejection Sampling Variational Inference (RSVI)
method (Naesseth et al., 2017), which generalizes the
reparameterization trick (Kingma and Welling, 2014;
Rezende et al., 2014).

RSVI requires continuous latent variables, and its ap-
plicability depends on whether we can sample from the
variational distribution ¢(3; w) using the following repa-
rameterization: (i) draw € ~ 7(e;w), (i) 8 = G(e,w),
where G is a deterministic function (mapping) that must
be differentiable with respect to w, and the distribution
7(€; w), defined by a rejection sampling algorithm, takes
the following form,

q(G(e,w);w)
r(G(e,w);w)’

where r and ¢ are respectively the proposal and original
distributions of € used in rejection sampling. In this pro-
cedure, some samples from ¢ are not valid (and therefore
rejected), here we are interested in the distribution of the
accepted samples 7 (€; w). For more details, please refer
to the supplementary material (A.2.1) where we provide
a brief review of the reparametrized acceptance-rejection
algorithm in our notations.

m(e;w) = t(e) ©)

Assuming that we have a reparameterized acceptance-
rejection sampling procedure to simulate from ¢(8;x; w),
the next step is to rewrite E,(g, .., [log p(c;|W, B;)] as an
expectation with respect to m(€;; w) as follows

Eq(ﬁi;w) [1ng(ci ‘Wa BL)]
= Eﬂ(ei;w)[logp(ci‘wvg(eivw))] (10)

where, €, = {€a1,...,€k}, and 7 fully factorizes
over the components of €;. The form of G(e;,w)
will be given shortly. Based on (10) the gradient of

Eq(8:50)[log p(ci| W, Bi)] is

vqu(ﬁi;w) [log p(ci ‘Wa /Bl)]

= Er(e; ) [log p(ci|W, G(€i,w)) Vo, log m(ei; w)]

+]Efr(ei;w)[vw 10gp(c,;|W,g(ei,w))} 1D
where we have pushed the gradient into the integral, used
the log derivative-trick or REINFORCE (Glynn, 1990;
Williams, 1992), and expressed integrals as expectations.

All the derivations details of equations (11) and (10) are
given in the supplementary material (A.2.2).



We can now form an unbiased Monte Carlo estimate of
the above gradient as follows:

VBB, llog p(ci W, Bi)]
M

~ 1 . m Q(Q(G?LM);W)
-~ M mZ:llOgP(Cz|W7ﬁi )Vw log W

| M
+ 97 2 Velogp(eW, B]") (12)

where 8" = {8, A}, and 3} =
€ ~ (e, w). In pract1ce we set M = 1.

G(e},w), with

Following Naesseth et al. (2017), for the Gamma ran-
dom variables, we use the reparameterization proposed
by Marsaglia and Tsang (2000). For a Gamma(\?,, A7),
such that A > 1, we use:

! (/\S 1) 14—

)\T 3 VIS —3
with € ~ #(e¢) = N (0,1). When the shape parameter
is less than 1, A}, < 1, we use the shape augmentation
technique (Marsaglia and Tsang, 2000). That is, if 3 ~
Gamma(\* 4 1,A"), and 8 = u>* 3 with u ~ U0, 1],
then 5 ~ Gamma(A®, \").

Gle,w) = (13)

Approximating the gradient of the ELBO with respect
to é is simpler since the Gaussian satisfies the require-
ments of the original reparameterization trick (Kingma
and Welling, 2014; Rezende et al., 2014). Roughly, the
second expectation in (11) vanishes since the marginal
distribution of the samples ¢ is independent of the vari-
ational parameters é . Hence, the Monte Carlo estimator
of V¢Eqw)[log p(ci|W, B;)] takes this form:

ngq(w;g) [log p(c:|W, Bi)]
M
~ o7 D Velogp(eiW™. B)  (14)
m=1
where W™ = {W7', ... WP}, wi = T(n™, €) =
fk+ak on™, and ™ ~ N(0, 1), the notation ® refers
to the Hadamard product.

Putting it all together, our Monte Carlo estimator for the
gradient of the ELBO, is given by:

Vel = IV, (Eqllogp(s|6, B;)]

—KL(q(8:)||p(8:)))

M
I m m
+3 Z V,glogp(c; W™, Bi")

Z log p(c;|IW™, BV, log g, w)iw)

— VeKL(gW)|[p(V))

With the estimator (15) in place, we perform stochas-
tic gradient ascent over the parameters w and £. We
use backpropagation to evaluate the gradients over the
weights of the inference network w. In particular, we use
RMSProp to scale the gradients before applying them.
In practice, we take several stochastic gradient steps to
nearly optimize the ELBO with respect to w andﬁ~ , be-
fore to perform coordinate ascent step to update A? and
¢ More precisely, after each epoch of stochastic gradi-
ent ascent we update A? and ¢.

4.3 MISSING RATINGS ESTIMATION

Once PCRL is fit to the obsevations, we can estimate the
unknown ratings for each user v and item ¢ as follows

Zyi = Eq(a;r/@i) = Eq(eu)TEq(ﬁi)a

Note that this expectation in intractable with respect to
the true posterior. These predicted values are then used
to rank unrated items for each user so as to provide her
with a recommendation list.

(16)

4.4 DESIRABLE PROPERTIES

The variational PCRL enjoys several desirable proper-
ties. In terms of efficiency, the operations involving user-
item and item-context interactions need to be carried out
only for the non-zero entries in X and C. It can be shown
that the computational time complexity of the variational
PCRL algorithm (its batch version) is linear in the num-
ber of non-zeros entries in X and C.

The main intuition behind PCRL is to learn item rep-
resentations encoding various contextual regularities
among items that are good at explaining the user be-
haviour. Interestingly, this intuition is reflected theoret-
ically, as seen in the proposition below. Note that this
result arises naturally from our formulation.

Proposition 1 Let q(3;;w) be the variational distribu-
tion over the item factor in PCRL. Then, for fixed Y,
¢ and €, maximizing the ELBO (5) with respect to w is
equivalent to maximizing the following criterion:

> Eqllog p(ei|W, Bi)] — KL(q(Bi; w)1d(B:))-

where §(3;) denotes the optimal mean-field varitional
distribution over the item attributes in Bayesian Pois-
son factorization. That is, ¢(B;) = [l (j(ﬂzk) and

(j(ﬁlk) Gamma(/\s + Z xuz¢uzka )‘3 + Zu X )

The proof is given below. The KL term in the above
proposition can be viewed as a regularizer which encour-
ages PCRL’s variational factor over the items, ¢(3;; w) to
look like its optimal mean-field counterpart in Bayesian

a7




Poisson factorization (3;). Recall that §(/3;) is indepen-
dent of the item context C, and puts high probability on
configurations of 3; that explain user preferences. This
makes it clear how the collaborative PF component in
PCRL guides or encourages the representation learning
part to focus on extracting contextual features that might
be useful for explaining user preferences. From this per-
spective, PCRL can be interpreted as regularizing a deep
generative model with Bayesian Poisson Factorization.

Proof. If we fix all the variational parameters except w,
then maximizing the ELBO with respect to the latter is
equivalent to maximizing

L; = Eq[logp(s]0, B;) + log p(B;)]
+ Eq[log p(ci|W, Bi) — log q(Bs; w)] 4 const.  (18)

In particular, we have
log p(Bix) o< (A — 1) log(Bix) — A3 Bk, and,

log p(Suik|Ouk, Bik) X Suik 10g(Bir) — OurBik-
Therefore we get

Eq(0,9log p(s18, B:) + log p(B:)] = —(\5 + 32 2

+ (A + X2, Tuibuik — 1) log Bix, + const, (19)

uk

where we recognize the log (up to the normalizing con-
stant) of the following Gamma(/\% + D0 TuiDuik A+

Do ’;ﬁ’“) distribution. Adding the normalizing constant
uk

(which is independent of w) and plugin (19) into (18),

completes the proof.Hl

S EXPERIMENTS

In this section, we study the impact of item context, and
our modeling assumptions, on personalized item recom-
mendation as well as item representation learning.

Datasets. We use five datasets from Amazon.com?,

provided by McAuley et al. (2015b,a). They include both
user-item interactions and the “Also Viewed” lists that
we treat as item contexts. We preprocess all datasets so
that each user (resp. item) has at least ten (resp. two)
ratings, and the sets of row and column items in C are
identical. Table 1 reports the resulting statistics.

Comparative Models. We benchmark PCRL* against
strong comparable generative factorization models.

e MCF: Matrix Co-Factorization (Park et al., 2017) in-
corporates item-item relationships into Gaussian MF.

3http://jmcauley.ucsd.edu/data/amazon/
*source code available at: https://cornac.preferred.ai/

k) Bige

Characteristics

Datasets

#Users #Items #Ratings nzx (%) #nzc nzco (%)
Office 3,703 6,523 53,282 0.22 108,466 0.25
Grocery 8,938 22,800 148,735 0.07 480,300 0.09
Automotive 7,280 15,635 63,477 0.05 365,634 0.15
Sports 19,049 24,095 211,582 0.04 531,148 0.09
Pet Supplies 16,462 20,049 164,017 0.05 631,102 0.16

Table 1: Statistics of the Datasets.

e PF: Bayesian Poisson Factorization (Gopalan et al.,
2015) arises as a special case of our model without
the context-specific components. Comparison to PF
allows us to assess the impact of item contexts.

e CTPF: Collaborative Topic Poisson Factorization
(Gopalan et al., 2014b) was developed for content-
based recommendation, but can serve as baseline by
substituting item-word matrix with item-context C.

e CoCTPF: Content-only CTPF (Gopalan et al., 2014b)
is a variant of CTPF without the document topic off-
sets; please refer to (Gopalan et al., 2014b) for details.
Comparison to CoCTPF allows us to assess the impact
of our modeling choice of multilayered representation
learning, as opposed to PF, for item context.

e RL+PF: Representation Learning + PF is a two-stage
pipelined approach, which models item context inde-
pendently from user preferences. First, it infers ¢(/3)
from C using PCRL’s representation learning-spesifc
part. Second, it performs PF on X to infer ¢(#) while
holding the item factors fixed. Comparison to RL+PF
allows us to assess the benefit of our unified modeling.

Experimental Setup. For each dataset, we randomly se-
lect 80% of the ratings as training data and the remaining
20% as test data. Random selection is carried out three
times independently on each dataset. The reported result
is the average performance over the three samples.

Following previous works (Gopalan et al., 2014a, 2015),
we set the number of latent dimensions for user pref-
erences # and item attributes 8 to 100. In all ex-
periments, we use a two-layer PCRL (z1,3) with di-
mensions (100,300) in the item representation learn-
ing component. The activation functions at the layers
(c,z1) are set to (sigmoid, relu). Similarly, we use
a two-layer inference network (encoder) with dimen-
sions (300, 100 + 100)—recall that this network outputs
Gamma variational parameters, a total of 100 (shape)
+ 100 (rate) parameters—and activation functions (relu,
sofplus). When necessary we add a small offset to ensure
strict positivity, e.g., the rate of the Poisson, the shape
and rate of the Gamma, all must be positive. To encour-
age sparse latent representations, we set Gamma prior
parameters (A°, A") to (0.3, 0.3)—resulting in exponen-



Table 2: Average recommendation accuracy.

Table 3: Comparison of Poisson log-likelihood.

tially shaped Gamma distributions with mean equal to 1.
For an illustration, please refer to Figure 2 in (Cemgil,
2009). We follow the same strategy, grid search, as in
(Park et al., 2017) to set the different hyperparameters of
MCF. In order for the comparisons to be fair, we use the
same random parameters to initialize all PF-based mod-
els, where it is possible.

Item Recommendation. Here we look into the quality
of item recommendation, and discuss item representation
later. We assess the recommendation accuracy on a set
of held-out items—the test set. We retain four widely
used measures for top-M recommendation, namely the
Normalized Discount Cumulative Gain (nDCG), Mean
Reciprocal Rank (MRR), Precision@M (P@AM) and
Recall@ M (R@M), where M is the number of items
in the recommendation list (Bobadilla et al., 2013). Intu-
itively, nDCG and MRR measures the ranking quality of
a model, while Precision@ M and Recall@ M assess the
quality of a user’s top-M recommendation list. These
measures vary from 0.0 to 1.0 (higher is better).

Table 2 depicts the average performances’ of the compet-
ing models in terms of different metrics, over all datasets.
For the sake of completeness we also report, in Table 3,
the average log-likelihood values for the Poisson models,
i.e., logp(X|60, 3), where we set 0 and 3 to their mean
values under the corresponding variational distribution.

SMost of the standard deviation values are of order le-3/1e-
4, we do not report them to fit Table 2 into one column.

Metric MCF PF CTPF CoCTPF RL+PF | PCRL Models | Office Prod. | Grocery | Automotive Sports Pet Supplies
| nDCG | 0.1525 0.1663 0.1718 0.1806  0.1551 | 0.1974 PF 210522 | -680546 | -355671 | -1187849 | -838712
T | MRR |00239 00414 00467 00558 0.0237 | 0.0708 CTPF | -208633 |-681832 | -354239 |-1180927 | -838910
S | Pre@20 | 0.0041 0.009 00111 00129  0.0048 | 0.0156 CoCTPF | -207840 | -656676 | -336319 | -1138744 | -786326
& | Rec@20 | 0.0293 0.0541 0.0615 0.0768  0.0325 | 0.0873 RL+PF | -227454 | -761403 | -341730 | -1178502 | -887624
S| Pre50 | 00033 00077 00075 0.0095 0.0039 | 0.0116 PCRL | -199066 | -649054 | -322889 |-1061088 | -760935
Rec50 | 00569 0.0970 0.1021 0.1392  0.0654 | 0.1627
nDCG | 0.1286 0.1568 0.1553 0.1717 _ 0.1295 | 0.1801
> | MRR | 00145 00452 00429 00529  0.0098 | 0.0652
8 Pre20 | 0.0024 0.0095 0.0095 0.0116  0.0017 | 0.0134 The main points from these results are as follows
& | Rec20 00191 00571 00591 00739 00109 | 0.0751 p :
Pre50 | 0.0019 0.0070 0.0072 0.0086  0.0015 | 0.0098 I . ! lized dati
Rees0 | 00353 01021 01090 01213 00234 | 0.1339 tem context is useful for personalized recommendation.
[ 1DCG [ 01186 0.123 01124 0.1417 0.1225 | 0.1453 The proposed PCRL substantially outperforms the other
£ | MRR 00121 00100 00103 00337 00111 | 0.0350 competing models in virtually all cases. In particular, the
S| Pre20 | 00022 00015 00016 00058 00017 | 0.0063 L .
S| Rec20 | 00228 00132 00143 00566 00147 | 00536 major difference between the original PF and our pro-
< | Pre50 | 00016 00010 00012 00038 00016 | 0.0043 posed PCRL as well as CTPF or CoTPF is that the latter
Rec50 | 00393 0.0233 00262 0.0920 0.0325 | 0.0913 dels i e it text. Wi theref ‘
nDCG | 0.1122 0.1179 0.1189 _ 0.1398 _ 0.1190 | 0.1524 models mcorporate item context. we can theretore at-
. | MRR |00071 00122 00119 00297 0.0073 | 0.0375 tribute the performance improvements reached by those
2| Pre20 | 00011 00018 00022 00054 0.0014 | 0.0070 : :
& | Rec20 | 0.0096 00143 00170 00431 00113 | 0.0507 over PF to the modeling of the item context.
Pre50 | 0.0009 0.0013 0.0017 00038  0.0013 | 0.0051 . . . .
Recs0 | 00192 00273 00318 00759 00298 | 0.0942 Poisson Factorization performs better than its Gaussian
~ | nDCG [0.1201 0.1288 0.1317 0.1585 _ 0.1210 | 0.1626 counterpart. Effectively CoCTPF is the closest Poisson
£ ] MRR | 00136 00207 00237 00441 00094 | 0.0461 alternative to the Gaussian MCF. The former outperforms
8| Pre20 |0.0022 00029 0.0034 00079 0.0019 | 0.0088 ) i
& | Rec20 | 00237 00271 00314 00752 0.0167 | 0.0776 the latter in all cases. Even when augmented with contex-
&£ | Pres0 | 00016 00021 00028 00055 0.0016 | 0.0063 tual item information, the Poisson remains a better alter-
Rec50 | 00397 0.0481 00561 0.1301  0.0359 | 0.1455

native than the Gaussian for modeling user preferences,
which is in line with the findings of previous work on PF.

The hierarchical (multilayered) structure in PCRL is use-

ful. The model PCRL can be viewed as an alternative
to CoCTPF, where a multilayered generative model is
substituted for PF to model item contexts. From Tables
2 and 3, we note that PCRL substantially outperforms
CoCTPF on almost all datasets and across all metrics,
except in terms of recall on Automotive. Since the main
difference between the two approaches lies in how they
model item context, these results suggest that our multi-
layered architecture does a better job than PF in extract-
ing latent features from item’s contexts.

Joint modeling or learning is beneficial. A key point
to PCRL is to model user preferences and item contexts
jointly. As Tables 2 and 3 show, PCRL outperforms the
two-stage pipelined model RL+PF. Quite surprisingly,
the latter performs even worse than PF on almost all
datasets. This demonstrates the importance of joint mod-
eling, and suggests that the PCRL’s collaborative compo-
nent plays an important role in guiding item representa-
tion learning towards extracting contextual features that
are relevant for explaining user preferences. Whereas
modeling the item context independently yields item rep-
resentations that capture other item aspects, which are
not necessarily as good for predicting user preferences.

To gain further insight into the results, especially the lat-
ter two points above, we conduct another series of exper-
iments where we compare the quality of the item repre-
sentations produced by the different models.
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Figure 3: Average Recall@50 over different datasets.

Item Representations. Evaluating the quality of item
representations is a challenging task. Here, we propose
to make such an evaluation in terms of clustering. We
seek to assess how well the representations produced by
each model are good at organizing items into meaning-
ful clusters. As evaluation measure, we use Normalized
Mutual Information (NMI) (Strehl and Ghosh, 2002). In-
tuitively, NMI quantifies how much the estimated clus-
tering is informative about the true clustering. As the
“true” clustering, we retain the ten most frequent item
categories (classes) in each datasest; these categories per
dataset are listed in the supplementary material (B). We
do not consider Grocery in this experiment, since its cat-
egory labels are not available.

To form clusters based on learned item representations,
we use the spherical k-means (Skmeans) (Dhillon and
Modha, 2001). We perform fifty runs of (Skmeans),
with different initial random points, and report the aver-
age NMI of the ten best runs—in terms of the Skmeans’
criterion—as the final results. The fifty random starting
points used by Skmeans are the same across all models.

Figure 2 reports the clustering results. For reference, Fig-
ure 3 reproduces the Recall@50 (the results are consis-
tent across all metrics) on the item recommendation task.

PF that relies solely on user-item interactions obtains the
worst clustering results. Such sparse information is not
rich enough to allow PF infer relationships among items.
The other models that use contextual information per-
form better. In particular, we note that PCRL produces
representations that are better suited to organize items
into categories than the CoCTPF models. This provides
additional empirical support for the importance of our
hierarchical architecture to model items’ contexts.

Interestingly, RL+PF performs relatively well on cluster-
ing (Figure 2) even as it performs rather poorly on rec-
ommendation (Figure 3). One possible explanation of

this phenomenon is that RL+PF focuses on item simi-
larity. While this is beneficial for clustering, this might
not always be useful for recommendation. Hypotheti-
cally, two similar items may be alternatives. Instead of
recommending alternatives to an item that a user has pur-
chased, it may be useful to recommend complementary
items (which may not belong to the same category).

6 DISCUSSION

PCRL composes Bayesian Poisson factorization with a
multilayered latent variable model to join both sources of
data: user preferences and item contexts. Empirical re-
sults provide strong support for the benefits of our mod-
eling framework and reflect the underlying assumption
in PCRL, namely: the collaborative component guides
the item representation learning towards extracting con-
textual features that are useful for the recommendation
task, whereas the representation learning encourages the
collaborative part to rely on item’s contexts to explain
recommendations, alleviating data sparsity.

While our focus here has been on item context, PCRL
could potentially be extended to learn item representa-
tions from other modalities, e.g., text, images, etc. An-
other interesting direction of future work, is to investi-
gate deeper variants of PCRL which would improve the
feature learning.

We make PCRL’s implementation publicly available as
part of the CORNAC® recommendation library.
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