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Abstract

A common goal in psychometrics, sociology,
and econometrics is to uncover causal rela-
tions among latent variables representing hy-
pothetical constructs that cannot be measured
directly, such as attitude, intelligence, and
motivation. Through measurement models,
these constructs are typically linked to mea-
surable indicators, e.g., responses to question-
naire items. This paper addresses the prob-
lem of causal structure learning among such la-
tent variables and other observed variables. We
propose the ‘Copula Factor PC’ algorithm as a
novel two-step approach. It first draws samples
of the underlying correlation matrix in a Gaus-
sian copula factor model via a Gibbs sampler
on rank-based data. These are then translated
into an average correlation matrix and an ef-
fective sample size, which are taken as input to
the standard PC algorithm for causal discovery
in the second step. We prove the consistency of
our ‘Copula Factor PC’ algorithm, and demon-
strate that it outperforms the PC-MIMBuild al-
gorithm and a greedy step-wise approach. We
illustrate our method on a real-world data set
about children with Attention Deficit Hyperac-
tivity Disorder.

1 INTRODUCTION

Social scientists, psychologists, and many other scien-
tists are usually interested in learning causal relations be-
tween latent variables that cannot be measured directly,
e.g., attitude, intelligence, and motivation (see [15, 24],
and Chapter 10 of [27] for more details). In order to
get a grip on these latent concepts, one commonly-used
strategy is to construct a measurement model for such a

latent variable, in the sense that domain experts design
a set of measurable “items” or survey “questions” that
are considered to be indicators of the latent variable. For
instance, in the study of Attention Deficit Hyperactivity
Disorder (ADHD), 18 questions are designed to measure
three latent variables: inattention, hyperactivity, and im-
pulsivity [29]. In some other cases where it is difficult to
design a measurement model due to the absence of do-
main knowledge or for other reasons, there are some off-
the-shelf algorithms, e.g., BPC [24] and FOFC [15], for
learning the measurement models from indicator data.
In this paper, we focus on inferring the causal structure
among latent variables, assuming that the measurement
models are given. We also allow interactions between
these latent variables and other (explicit) variables, e.g.,
subject characteristics like gender and age. Another is-
sue we consider is that there are diverse types of variables
in most real-world data: the questionnaire data in a sur-
vey is typically ordinal, whereas other variables might be
binary, or continuous.

In this paper, we use a Gaussian copula factor model
(the formal definition is given in Section 3) to describe
such situations, in which a factor can be connected to ei-
ther one or more observed variables (indicators). Factors
with multiple indicators are used to model latent vari-
ables corresponding to psychological traits, such as atti-
tude and intelligence. The copula model provides a good
way of analyzing diverse types of variables, where the
associations between variables are parameterized sepa-
rately from their marginal distributions [13].

We propose the ‘Copula Factor PC’ algorithm for esti-
mating the causal structure among factors of a Gaussian
copula factor model, which is based on a two-step ap-
proach. The first step draws samples of the underlying
correlation matrix, where the Gibbs sampler by [13] for
Gaussian copula models is extended to Gaussian copula
factor models by replacing the Wishart prior with the G-
Wishart prior and adding a new strategy to sample latent
factors. These samples are then translated into an aver-



age correlation matrix, and an effective sample size that
is used to account for information loss incurred by dis-
crete variables [9]. The second step takes the estimated
correlation matrix and effective sample size as input to
the standard PC algorithm [27] for causal discovery.

The rest of this paper is organized as follows. Section 2
reviews necessary knowledge and related work. Sec-
tion 3 gives the definition of a Gaussian copula factor
model. Section 4 describes our ‘Copula Factor PC’ al-
gorithm, and introduces two alternative approaches: the
PC-MIMBuild algorithm [24] and a greedy step-wise ap-
proach. Section 5 compares the ‘Copula Factor PC’ algo-
rithm with the two alternative approaches on simulated
data, and Section 6 gives an illustration on real-world
data of ADHD patients. Section 7 concludes this paper
and gives some discussion.

2 BACKGROUND

Causal discovery A graphical model is a graph G =
(V ,E), where the vertices V = {X1, . . . , Xd} cor-
respond to random variables and the edges E repre-
sent dependence structure among the variables. A graph
is directed if it just contains directed edges and undi-
rected if all edges are undirected. A graph that contains
both directed and undirected edges is called a partially
directed graph. Graphs without directed cycles (e.g.,
Xi → Xj → Xi) are acyclic. We refer to a graph as
a Directed Acyclic Graph (DAG) if it is both directed
and acyclic. If there is a directed edge Xi → Xj , Xi

is called a parent of Xj . A distribution over a random
vector X with Xi ∈ V is said to be Markov w.r.t. a
DAG G = (V ,E), if X satisfies the Causal Markov
Condition: each variable in the DAG G is independent of
its non-descendants given its parents, which is also im-
plied by the so-called d-separation [20]. A distribution
is faithful w.r.t. a DAG G if there are no conditional in-
dependencies in the distribution that are not encoded by
the Causal Markov Condition. If a distribution is both
Markov and faithful w.r.t. a DAG G, the DAG is called a
perfect map of the distribution.

Several DAGs may, via d-separation, correspond to the
same set of conditional independencies. The set of such
DAGs is called a Markov equivalence class, which can
be represented by a completed partially directed acyclic
graph (CPDAG). Arcs in a CPDAG suggest a cause-
effect relationship between pairs of variables since the
same arc appears in all members of the CPDAG. An
undirected edge Xi−Xj in a CPDAG implies that some
of its members contain an arc Xi → Xj while oth-
ers contain an arc Xj → Xi. Causal discovery aims
to learn the Markov equivalence class of the underlying
DAG from observations.

The PC algorithm The PC algorithm [27], a reference
algorithm for causal discovery, consists of two stages:
adjacency search and orientation. The adjacency search
starts with a fully connected undirected graph, and then
recursively removes the edges according to conditional
independence decisions, yielding the skeleton and sepa-
ration sets. In the orientation stage, we first orient the
unshielded triples according to the separation sets, and
then orient as many of the remaining undirected edges as
possible by applying the orientation rules repeatedly.

A key part of the procedure is to test for conditional in-
dependencies. When a random vector X ∼ N (0, C),
the PC algorithm considers the so-called partial corre-
lation, denoted by ρuv|S , which can be obtained by the
correlation matrix C [1]. Given observations of X and
significance level α, classical decision theory yields

Xu ⊥⊥ Xv|XS ⇔ (1)√
n− |S| − 3

∣∣∣∣12 log

(
1 + ρ̂uv|S

1− ρ̂uv|S

)∣∣∣∣ ≤ Φ−1(1− α/2),

where u 6= v, S ⊆ {1, . . . , d}\{u, v} and Φ is the cu-
mulative distribution function of the standard Gaussian.
Hence, the PC algorithm requires the correlation matrix
C (to compute partial correlations ρuv|S) and the sample
size n as input. Uniform consistency of the PC algo-
rithm for Gaussian data is shown under some relatively
mild assumptions on the sparsity of the true underlying
structure [14] .

Harris & Drton [11] use rank correlations, typically
Spearman’s ρ and Kendall’s τ , to replace the Pearson
correlation, which extends the PC algorithm to the so-
called nonparanormal models. The resulting ‘Rank PC’
algorithm performs as well as the PC algorithm using
Pearson correlations on Gaussian data, yet much bet-
ter on nonparanormal data. The PC algorithms using
both Pearson and rank correlations require all univari-
ate marginal distributions to be continuous. Cui et al. [9]
extend the PC algorithm to mixed discrete and contin-
uous data assumed to be drawn from a Gaussian copula
model, where each observed variable is assumed to be in-
duced by a latent Gaussian variable and the dependence
between observed variables is determined by the correla-
tion matrix of the latent variables. The resulting ‘Copula
PC’ algorithm works well for mixed data, but requires
each latent variable to have only a single indicator. Silva
et at. [24] propose the PC-MIMBuild algorithm, which
allows a latent variable to have multiple indicators, but
it is limited to continuous observations and assumes that
each latent variable has at least two indicators.

In this paper, we aim to generalize the PC algorithm to
handle latent variables having one or more indicators and
observations being either discrete or continuous.



3 GAUSSIAN COPULA FACTOR
MODEL

Definition 1 (Gaussian Copula Factor Model).
Consider a latent random (factor) vector
η = (η1, . . . , ηk)T , a response random vector
Z = (Z1, . . . , Zp)

T and an observed random vec-
tor Y = (Y1, . . . , Yp)

T , satisfying

η ∼ N (0, C), (2)
Z = Λη + ε, (3)

Yj = F−1
j

(
Φ
[
Zj/σ(Zj)

])
,∀j = 1, . . . , p, (4)

with Λ = (λij) a p × k matrix of factor loadings
(k ≤ p), ε ∼ N (0, D) Gaussian noise with D =
diag (σ2

1 , . . . , σ
2
p), σ(Zj) the standard deviation of Zj ,

and Fj−1(t) = inf{x : Fj(x) ≥ t} the pseudo-inverse
of a cumulative distribution function Fj . This model is
called a Gaussian Copula Factor Model with correlation
matrix C, factor loadings Λ, and univariate margins Fj .
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Figure 1: Gaussian copula factor model.

The model is also defined in [18], but the authors restrict
the factors to be independent of each other while we al-
low for their interactions. An example of the model is
shown in Figure 1. Our model is a combination of a
Gaussian factor model (from η to Z) and a Gaussian
copula model (from Z to Y ). In the special case of a
factor having a single response (thus a single observed
variable), e.g., η1 → Z1 → Y1, it reduces to a Gaussian
copula model where we set λ11 = 1 and ε1 = 0, thus
Y1 = F−1

1 (Φ[η1]).

In the typical design for questionnaires, one tries to get a
grip on a latent concept through a particular set of well-
designed questions [16, 4], which implies that a factor
(latent concept) in our model is connected to multiple in-
dicators (questions) while an indicator is only used to
measure a single factor, as shown in Figure 1. This
kind of measurement model is called a pure measurement
model (Definition 2 of [23]). Throughout this paper, we
assume that all measurement models are given and pure,
which makes that there is only a single non-zero entry in

each row of the factor loadings matrix Λ. This inductive
bias about the sparsity pattern of Λ is fully motivated by
the typical design of a measurement model.

In what follows, we transform the Gaussian copula fac-
tor model into an equivalent model, which we will use
for inference in the next section. We consider an inte-
grated random vector X = (ZT ,ηT )T , which is still
multivariate Gaussian, and obtain its covariance matrix

Σ =

[
ΛCΛT +D ΛC

CΛT C

]
, (5)

and precision matrix

Ω = Σ−1 =

[
D−1 −D−1Λ

−ΛTD−1 C−1 + ΛTD−1Λ

]
. (6)

Since D is diagonal and Λ only has one non-zero entry
per row, Ω contains many intrinsic zeros. The sparsity
pattern of such Ω = (ωij) can be represented by an undi-
rected graph G = (V ,E), where (i, j) 6∈ E whenever
ωij = 0 by construction. Then, a Gaussian copula factor
model can be transformed into an equivalent model con-
trolled by a single precision matrix Ω, which in turn is
constrained by G, i.e., P (X|C,Λ, D) = P (X|ΩG).
Definition 2 (G-Wishart Distribution [22]). Given an
undirected graph G = (V ,E), a zero-constrained ran-
dom matrix Ω has a G-Wishart distribution, if its density
is

p(Ω|G) =
|Ω|(ν−2)/2

IG(ν,Ψ)
exp

[
− 1

2
tr(ΨΩ)

]
1Ω∈M+(G),

with M+(G) the space of symmetric positive definite
matrices with off-diagonal elements ωij = 0 whenever
(i, j) 6∈ E, ν the number of degrees of freedom, Ψ a
scale matrix, IG(ν,Ψ) the normalizing constant, and 1
the indicator function.

The G-Wishart distribution is the conjugate prior of pre-
cision matrices Ω that are constrained by a graph G [22].
That is, given the G-Wishart prior, i.e., P (Ω|G) =
WG(ν0,Ψ0) and data X = (x1, . . . ,xn)T drawn from
N (0,Ω−1), the posterior for Ω is anotherG-Wishart dis-
tribution:

P (Ω|G,X) =WG(ν0 + n,Ψ0 +XTX).

When the graph G is fully connected, the G-Wishart dis-
tribution reduces to a Wishart distribution [17]. Plac-
ing a G-Wishart prior on Ω is equivalent to placing an
inverse-Wishart on C, a product of multivariate normals
on Λ, and an inverse-gamma on the diagonal elements
of D. With a diagonal scale matrix Ψ0 and the num-
ber of degrees of freedom ν0 equal to the number of fac-
tors plus one, the implied marginal densities between any
pair of factors are uniformly distributed in the interval
[−1, 1] [3].



4 METHODS

In this section, we propose a Bayesian inference method
for Gaussian copula factor models, based on which we
derive our ‘Copula Factor PC’ algorithm. Then, we in-
troduce two alternative approaches.

4.1 INFERENCE FOR GAUSSIAN COPULA
FACTOR MODEL

For a Gaussian copula model, Hoff [13] proposed a
likelihood that only concerns the ranks among observa-
tions, which is derived as follows. Since the transfor-
mation Yj = F−1

j

(
Φ
[
Zj
])

is non-decreasing, observ-
ing yj = (y1,j , . . . , yn,j)

T implies a partial ordering on
zj = (z1,j , . . . , zn,j)

T , namely, zj must lie in the space
restricted by yj :

D(yj) = {zj ∈ Rn : yi,j < yk,j ⇒ zi,j < zk,j} .

Therefore, observing Y suggests that Z must be in

D(Y ) = {Z ∈ Rn×p : zj ∈ D(yj),∀j = 1, . . . , p} .

Taking the occurrence of this event as the data, one can
compute the following likelihood

P (Z ∈ D(Y )|S, F1, . . . , Fp) =

∫
D(Y )

p(Z|S)dZ

= P (Z ∈ D(Y )|S),

where S is the correlation matrix over Z.

Following the same argumentation, the likelihood in our
Gaussian copula factor model reads

P (Z ∈ D(Y )|η,Ω, F1, . . . , Fp) = P (Z ∈ D(Y )|η,Ω),

which is independent of the margins Fj .

For the Gaussian copula factor model, inference for the
precision matrix Ω of the vector X = (ZT ,ηT )T can
now proceed via construction of a Markov chain hav-
ing its stationary distribution equal to P (Z,η,Ω|Z ∈
D(Y ), G), where we ignore the values for η and Z in
our samples. The prior graph G is uniquely determined
by the sparsity pattern of the loading matrix Λ = (λij)
and the residual matrix D (see Equation 6), which in
turn is uniquely decided by the pure measurement mod-
els. The Markov chain can be constructed by iterating
the following three steps:

1. Sample Z: Z ∼ P (Z|η,Z ∈ D(Y ),Ω);
Since each coordinate Zj directly depends on only
one factor, i.e., ηq such that λjq 6= 0, we can
sample each of them independently through Zj ∼
P (Zj |ηq, zj ∈ D(yj),Ω).

Algorithm 1 Gibbs sampler for Gaussian copula factor
model
Require: Measurement models (decide sparsity of Λ

and thus G), and indicator data Y .
1: Step 1: sample Z ∼ P (Z|η,Z ∈ D(Y ),Ω).
2: for j ∈ {1, . . . , p} do
3: q = factor index of Zj
4: a = Σ[j,q+p]/Σ[q+p,q+p]

5: σ2
j = Σ[j,j] − aΣ[q+p,j]

6: for y ∈ unique{y1,j , . . . , yn,j} do
7: zl = max{zi,j : yi,j < y}
8: zu = min{zi,j : y < yi,j}
9: for i such that yi,j = y do

10: µi,j = η[i,q] × a
11: ui,j ∼ U

(
Φ
[ zl−µi,j

σj

]
,Φ
[ zu−µi,j

σj

])
12: zi,j = µi,j + σj × Φ−1(ui,j)
13: end for
14: end for
15: end for
16: Step 2: sample η ∼ P (η|Z,Ω).
17: A = Σ[η,Z]Σ

−1
[Z,Z]

18: B = Σ[η,η] −AΣ[Z,η]

19: for i ∈ {1, . . . , n} do
20: µi = (Z[i,:]A

T )T

21: η[i,:] ∼ N (µi, B)
22: end for
23: η[:,j] = η[:,j]×sign(Cov[η[:,j],Z[:,f(j)]]), ∀j, where

f(j) is the index of the first indicator of ηj .
24: Step 3: sample Ω ∼ P (Ω|Z,η, G).
25: X = (Z,η)
26: Ω ∼ WG(ν0 + n,Ψ0 +XTX)
27: Σ = Ω−1

28: Σij = Σij/
√

ΣiiΣjj ,∀i, j

2. Sample η: η ∼ P (η|Z,Ω);

3. Sample Ω: Ω ∼ P (Ω|Z,η, G).

A Gibbs sampler that implements the Markov chain is
summarized in Algorithm 1.

Identifiability of C: Without additional con-
straints, the correlation matrix C over factors is
non-identifiable [2]. More precisely, given a de-
composable covariance matrix S = ΛCΛT + D,
we can always replace Λ with ΛU and C with
U−1CU−T to obtain an equivalent decomposition
S = (ΛU)(U−1CU−T )(UTΛT ) + D, where U is a
k × k invertible matrix. Since Λ only has one non-zero
entry per row in our model, U can only be diagonal to
ensure that ΛU has the same sparsity pattern as Λ (see
Lemma 3 in Supplement). Thus, from the same S, we
get a class of solutions for C, i.e., U−1CU−1, where



U can be any invertible diagonal matrix. However,
we find that all members in this class encode the same
set of conditional independencies (see Lemma 4 in
Supplement), and therefore imply the same causal
structure [27]. Hence, any solution in this class is
appropriate for finding the underlying causal structure
among latent variables.

In order to get a unique solution for C, we impose two
sufficient identifying conditions: 1) restrictC to be a cor-
relation matrix; 2) force the first non-zero entry in each
column of Λ to be positive (see Lemma 5 in Supple-
ment). Condition 1 is implemented via line 28 in Al-
gorithm 1. As for the second condition, we force the co-
variance between a factor and its first indicator to be pos-
itive (line 23), which is equivalent to Condition 2. One
could also choose one’s favorite constraints for identify-
ing C, as long as the unique solution belongs to the class
U−1CU−1.

4.2 COPULA FACTOR PC ALGORITHM

By iterating the steps in Algorithm 1 and extracting the
submatrix over η, we can draw samples of C, denoted
by {C(1), . . . , C(m)}. The mean over all the samples is
a natural estimate of the underlying correlation matrix
Ĉ, i.e., Ĉ = 1

m

∑m
i=1 C

(i). As for the effective sample
size n̂, we build upon the idea in [9], that is, taking the
posterior distribution’s degrees of freedom ν as an ap-
proximation to n̂. Theorem 1 (the proof is provided in
the Supplement) suggests a procedure to estimate the de-
grees of freedom of a G-Wishart distribution.

Theorem 1. Consider a random matrix Ω following a
G-Wishart distribution with graph G = (V ,E) as well
as parameters ν and Ψ, i.e., Ω ∼ WG(ν,Ψ). Let Σ =

Ω−1 and Σ̃ be the normalized matrix of Σ, i.e., Σ̃ij =
Σij/

√
ΣiiΣjj . Then, for large ν, we have

Var [Σ̃ij ] ≈
(1− (E [Σ̃ij ])

2)2

ν
, (7)

for off-diagonal elements Σ̃ij whenever (i, j) ∈ E.

From the theorem, we have that all off-diagonal elements
of the latent correlation matrix satisfy Equation (7), be-
cause the prior subgraph over latent factors is fully con-
nected. Therefore, we estimate n̂ as follows

n̂ =
1

k(k − 1)

∑
i 6=j

νij , where νij =
(1− (E [Cij ])

2)2

Var [Cij ]
.

The ‘Copula Factor PC’ (CFPC) algorithm arises when
taking the estimated correlation matrix Ĉ and the effec-
tive sample size n̂ (to replace the n in Equation 1) as the

input to the standard PC algorithm.1 The CFPC algo-
rithm is consistent, as shown in Theorem 2 (see proof in
the Supplement).

Theorem 2 (Consistency of the CFPC algorithm).
Let Yn = (y1, . . . ,yn)T be independent observations
drawn from a Gaussian copula factor model. If 1) the
measurement model per factor is known and pure; and
2) the distribution over factors is faithful to a DAG G,
then

lim
n→∞

P
(
M̂n(G) =M(G)

)
= 1 ,

where M̂n(G) is the output of the CFPC algorithm and
M(G) is the Markov equivalent class of the true under-
lying DAG G.

4.3 ALTERNATIVE APPROACHES

The PC-MIMBuild algorithm The original PC-
MIMBuild algorithm only works for continuous data.
Here, we extend it to mixed cases by learning the cor-
relation matrix of response variables via the Gibbs sam-
pler by [13] and taking it as input to the original PC-
MIMBuild. We further generalize the PC-MIMBuild al-
gorithm to handle latent factors with just a single indi-
cator, by replacing the conditional independence testing
method designed only for factors with at least two indi-
cators (Theorem 19 in [24]) with a test based on partial
correlation. See Supplement B for more details.

A greedy step-wise approach This approach first ex-
tracts the measurement model of a factor with multiple
indicators, e.g., the subpart of Figure 1 consisting of the
variables {η3, Z3, Z4, Z5, Y3, Y4, Y5}. Then, it uses off-
the-shelf techniques [10] to fit such a model and obtain
pseudo-data of the factor (factor scores). Using pseudo-
data for factors with multiple indicators together with
real data for factors with a single indicator, the ‘Copula
PC’ algorithm is next applied for causal discovery. We
refer to this approach as the greedy step-wise PC algo-
rithm, whose pseudo-code is written out step by step in
the Supplement C. One disadvantage of this approach is
that it can overestimate the effective sample size when
treating the pseudo-data at the same footing as real data.
This might incur many false positives, as we will indeed
observe in the experiment section.

5 SIMULATION STUDY

In this section, we compare our ‘Copula Factor PC’
algorithm (CFPC) with the PC-MIMBuild algorithm
(MBPC) and the greedy step-wise PC algorithm (GSPC)

1The R code is publicly available in https://github.
com/cuiruifei/CopulaFactorModel.



on simulated data. Kalisch & Buhlmann [14] provide
a procedure to generate random DAGs and simulate nor-
mally distributed samples that are faithful to them. It first
generates a k×k adjacency matrix A representing a ran-
dom DAG: 1) generate a k × k zero matrix, 2) randomly
set entries in the lower-triangle area to be one with proba-
bility s (measuring the sparseness), 3) change the ones to
be random weights in the interval [0.1, 1]. Given the ad-
jacency matrixA, values of a random vector η are drawn
recursively via

ηi =
∑
k<i

Aikηk + εi ,

with each εi ∼ N (0, 1). Following this procedure, we
simulate the factors of a Gaussian copula factor model,
i.e., the η in Equation (2). Then, the edge weights from
factors to response variables (non-zero elements of Λ
in Equation 3) are uniformly drawn from the interval
[0.1, 1]. We next generate response variables using Equa-
tion (3) together with standard Gaussian noise. After dis-
cretizing some response variables, we obtain data follow-
ing a Gaussian copula factor distribution.

Three metrics are used to evaluate the algorithms: the
true and false positive rate (TPR and FPR) for assess-
ing the skeleton, and the structural Hamming distance
(SHD), counting the number of edge insertions, dele-
tions, and flips to transfer the estimated CPDAG into the
correct CPDAG [28], for assessing the CPDAG. A higher
TPR, a lower FPR, and a smaller SHD imply better per-
formance. We set the significance level in the PC algo-
rithm to α = 0.01 (experiments with other values done
suggest the same conclusion) and the sparseness param-
eter in generating DAGs to s = 2/(k − 1), such that the
average neighbors of each node is 2 [14]. For the Gibbs
sampler, the first 500 samples (burn-in) are discarded and
the next 500 samples are stored. We test the algorithms
for different numbers of factors k ∈ {4, 10}, and sample
sizes n ∈ {500, 1000, 2000}.

Evaluation on Gaussian data We first consider the
case where the observed data are Gaussian and all fac-
tors have multiple indicators, since this matches the as-
sumptions of the original PC-MIMBuild algorithm. The
number of indicators per factor is randomly chosen from
3 to 10, to mimic typical real-world datasets [25, 29].

Figure 2 shows the results, providing the mean of TPR,
FPR, and SHD over 100 repeated experiments with er-
rorbars representing 95% confidence intervals. First, we
see that CFPC performs clearly better than MBPC w.r.t.
TPR despite an indistinguishable performance w.r.t. FPR
(CFPC is slightly better than MBPC for k = 4 while the
other way around for k = 10). Therefore, w.r.t. the over-
all metric SHD, CFPC significantly outperforms MBPC.

Our analysis is that MBPC tests for conditional inde-
pendencies between all pairs of indicators and claims
a dependence between factors even if just one of the
pairs fails the test. This multiple testing approach, al-
though elegant in theory, is difficult to make robust for
largely varying numbers of indicators and sizes of the
conditioning set. Second, while CFPC and GSPC re-
port similar TPR scores, CFPC shows a clear advantage
over GSPC w.r.t. FPR (thus a better SHD than GSPC),
which becomes more prominent for a larger sample size.
This is because the correlations between factors are es-
timated indirectly through their indicators, which makes
the correlations less reliable than those estimated directly
through the observed data. The effective sample size
used in CFPC naturally incorporates the reduced reliabil-
ity, whereas GSPC that still uses the original sample size
rejects the null hypothesis of conditional independence
more easily, resulting in more false positives.

Evaluation on mixed data We now focus on mixed
data, in which two cases are considered: 1) all factors
have multiple indicators; 2) half of the factors have mul-
tiple indicators and half only have a single indicator.
When a factor has multiple indicators, the number of in-
dicators per factor is randomly chosen from 3 to 10, and
all such indicators are discretized into ordinal variables
where the number of levels per variable is randomly cho-
sen from 2 to 5. For factors with a single indicator, we
discretize half into ordinal variables (from 2 to 5 levels)
and keep the other half continuous.

Figures 3 and 4 summarize the experimental results, pro-
viding the mean of TPR, FPR, and SHD over 100 re-
peated experiments with 95% confidence intervals. From
Figure 3a, we first see that GSPC is slightly better than
CFPC w.r.t. TPR while GSPC and CFPC show a clear
advantage over MBPC. Second, MBPC is rather sensi-
tive to sample sizes in cases with only multiple indica-
tors, where a small sample size incurs a poor perfor-
mance. Figure 3b shows that CFPC is significantly better
than GSPC w.r.t. FPR, which becomes more prominent
in cases with only multiple indicators and larger sample
sizes. This is because the effective sample size in CFPC
better than GSPC represents the uncertainty in the partial
correlation estimates and then incurs less false positives.
CFPC also shows clear advantages over MBPC w.r.t.
FPR when the number of factors is 4 (k = 4), whereas
MBPC works slightly better than CFPC when k = 10.
As for the overall metric SHD shown in Figure 4, CFPC
and GSPC perform clearly better than MBPC in almost
all situations because of the bad performance of MBPC
w.r.t. TPR. Meanwhile, we can see that CFPC generates
a more accurate CPDAG than GSPC, in particular for
larger sample sizes. This is because our proposed infer-
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Figure 2: TPR, FPR, and SHD of CFPC, GSPC, and MBPC over different sample sizes when the data are fully Gaus-
sian and all factors have multiple indicators, showing the mean over 100 experiments together with 95% confidence
intervals. The two rows represent the results when the number of latent factors is 4 and 10 respectively.

ence procedure more accurately estimates the correlation
matrix (not shown here) and, through the effective sam-
ple size, better represents the uncertainty in the correla-
tion estimates than the greedy step-wise method. In a
nutshell, our ‘Copula Factor PC’ algorithm, outperforms
its two competitors in almost all situations.

6 REAL-WORLD APPLICATION

In this section, we give an illustration on a real-world
dataset collected by [30] that includes 236 children with
Attention Deficit Hyperactivity Disorder (ADHD) and
406 controls. We focus on 4 (explicit) variables that are
related to ADHD symptoms: gender (Gen), Age, ver-
bal IQ (VIQ), performance IQ (PIQ), as well as 18 ques-
tions that are designed to measure three latent concepts:
inattention (Inatt), hyperactivity (Hyper), and impulsiv-
ity (Impul). The first 9 questions (Q1-Q9) are designed
to measure ‘Inatt’, while the next 5 questions (Q10-Q14)
and the last 4 questions (Q15-Q18) are used to measure
‘Hyper’ and ‘Impul’ respectively [29]. All the questions
are ordinal with four levels: never (0), sometimes (1),
frequently (2), and always (3).

Our task is to infer the causal structure among the 4 vari-
ables and 3 latent concepts from observations of the 4
variables and 18 questions. We run our ‘Copula Factor
PC’ algorithm (using the order-independent version of
the PC algorithm [7]) on this dataset and enforce the prior
knowledge that no variables cause gender. The resulting

graph is shown in Figure 5, in which double arrows ‘⇒’
represent the mapping from the three latent concepts to
their corresponding questions (known) and other edges
are those learned by our algorithm.

First, in the inferred model, we find that ‘Gen’ has a di-
rect causal influence on ‘Inatt’. The finding is in the ex-
pected direction, namely males are at an increased risk
of inattention, hyperactivity, and impulsivity problems.
Meta-analyses in population-based samples suggested
that males are 24 times more likely to meet full criteria
for ADHD than females [31] and in clinically referred
ADHD samples, the gender ratio was about 5:1 [19].

Second, the causal model implies that there is a sig-
nificant causal path from inattention to hyperactivity
(and subsequently to impulsivity), but not the other
way around. It suggests that factors that cause inat-
tention affect hyperactivity/impulsivity downstream of
that, whereas those factors that lead to high hyperac-
tivity/impulsivity do not necessarily lead to higher inat-
tention. This causal path was previously observed in
this sample and was also confirmed in two independent
ADHD samples [26].

Third, the causal direction of the associations between
verbal IQ and inattention as well as impulsivity is not
clear from our model. Both interpretations seem reason-
able. Previous studies suggest that ADHD is associated
with lower (verbal) IQ, and particularly attention prob-
lems have been found to be strong predictors for lower
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Figure 3: (a) TPR of CFPC, GSPC, and MBPC for the case where all factors have multiple indicators (left column) and
the case where half of the factors have multiple indicators while the other half have a single indicator (right column),
showing the mean over 100 experiments together with 95% confidence intervals. The two rows represent the results
when the number of latent factors is 4 and 10 respectively. (b) FPR for the same experiments as in (a).
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Figure 4: SHD of CFPC, GSPC, and MBPC, showing the
mean over 100 experiments together with 95% confidence
intervals, for the same experiments as in Figure 3.
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Figure 5: The resulting causal graph obtained by the
‘Copula Factor PC’ algorithm on the ADHD dataset, in
which double arrows ‘⇒’ represent the mapping from la-
tent concepts to their corresponding questions (known)
and other edges are those learned by our algorithm.

IQ and poorer academic performance [12].

To conclude, using the Copula Factor PC algorithm in
an ADHD sample allows us to infer causal relations
between the different ADHD traits and generic factors

(age, gender, and IQ). This enhances knowledge of the
causal structure of ADHD (e.g., by answering the ques-
tion whether inattention is causing hyperactivity, or vice
versa), which may have significant clinical implications,
as it may inform therapeutic interventions.



7 CONCLUSION AND DISCUSSION

In this paper, we focused on learning causal relations
between latent variables with pre-designed or pre-fitted
measurement models. Our typical use case is that of
psychological constructs that are linked to responses on
questionnaire items. To the best of our knowledge, we
are the first to propose a provably convergent algorithm
that is able to recover the underlying causal structure be-
tween such factors and other observed variables, which
can be both discrete and continuous.

In the experiments, our ‘Copula Factor PC’ algorithm
clearly outperformed both the PC-MIMBuild algorithm
and the greedy step-wise approach. PC-MIMBuild tests
for conditional independencies between all pairs of indi-
cators and concludes that the latent factors are dependent
even if just one of the pairs fails the independence test. In
our experience, this multiple testing approach, although
elegant in theory, is difficult to make robust for largely
varying numbers of indicators and sizes of the condition-
ing set. The ‘Copula Factor PC’ algorithm more natu-
rally appears to find the right balance between true posi-
tives and false positives under varying conditions. It im-
proves upon the greedy step-wise approach by estimating
the full correlation matrix instead of individual sub-parts,
which increases the power of the conditional indepen-
dence tests.

Our approach extends earlier work, particularly [9]
and [11], with various novel and essential ingredients
needed to handle latent variables. Compared to [9], we
replaced the Wishart prior with a G-Wishart distribu-
tion over factors and indicator variables, whose struc-
ture directly follows from the measurement model. The
corresponding marginal prior on the factors is then still
a Wishart distribution, which can be chosen such that
the pairwise correlations are uniformly distributed. As
in [11], but unlike [9], we can prove that our procedure is
consistent. In the Supplement we show that, although the
correlation matrix over factors itself is non-identifiable,
all characteristics that relate to the identification of the
correct causal structure can be consistently recovered.

While we considered the PC algorithm for inferring the
underlying causal structure, one could plug in other stan-
dard algorithms like FCI [27], GES [5], or the recent im-
provements [6, 8, 32]. We further focused on so-called
pure measurement models [24, 15], which is the major
simplifying assumption of our procedure. We would ar-
gue that this is often satisfied, since it is the way in which
questionnaires are typically designed by domain experts
and that allows for a specific interpretation of the factors
(e.g., a predefined set of items relates to the concept “hy-
peractivity”, another non-overlapping set of items to the

concept “inattention”). If the measurement models are
not given, they can be learned using off-the-shelf algo-
rithms, such as BPC [24] and FOFC [15], which output
pure measurement models.
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