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Abstract

Robust Reinforcement Learning aims to derive

an optimal behavior that accounts for model un-

certainty in dynamical systems. However, pre-

vious studies have shown that by considering

the worst case scenario, robust policies can be

overly conservative. Our soft-robust framework

is an attempt to overcome this issue. In this

paper, we present a novel Soft-Robust Actor-

Critic algorithm (SR-AC). It learns an optimal

policy with respect to a distribution over an

uncertainty set and stays robust to model uncer-

tainty but avoids the conservativeness of robust

strategies. We show the convergence of SR-AC

and test the efficiency of our approach on dif-

ferent domains by comparing it against regular

learning methods and their robust formulations.

1 INTRODUCTION

Markov Decision Processes (MDPs) are commonly used

to model sequential decision making in stochastic envi-

ronments. A strategy that maximizes the accumulated

expected reward is then considered as optimal and can be

learned from sampling. However, besides the uncertainty

that results from stochasticity of the environment, model

parameters are often estimated from noisy data or can

change during testing [Mannor et al., 2007; Roy et al.,

2017]. This second type of uncertainty can significantly

degrade the performance of the optimal strategy from the

model’s prediction.

Robust MDPs were proposed to address this problem

[Iyengar, 2005; Nilim and El Ghaoui, 2005; Tamar et al.,

2014]. In this framework, a transition model is assumed to

belong to a known uncertainty set and an optimal strategy

is learned under the worst parameter realizations. Al-

though the robust approach is computationally efficient

when the uncertainty set is state-wise independent, com-

pact and convex, it can lead to overly conservative results

[Mannor et al., 2012, 2016; Xu and Mannor, 2012; Yu

and Xu, 2016].

For example, consider a business scenario where an

agent’s goal is to make as much money as possible. It can

either create a startup which may make a fortune but may

also result in bankruptcy. Alternatively, it can choose to

live off school teaching and have almost no risk but low

reward. By choosing the teaching strategy, the agent may

be overly conservative and not account for opportunities

to invest in his own promising projects. Our claim is

that one could relax this conservativeness and construct

a softer behavior that interpolates between being aggres-

sive and robust. Ideally, the soft-robust agent should stay

agnostic to outside financing uncertainty but still be able

to take advantage of the startup experience.

This type of dilemma can be found in various domains.

In the financial market, investors seek a good trade-off

between low risk and high returns regarding portfolio

management [Mitchell and Smetters, 2013]. In strategic

management, product firms must choose the amount of re-

sources they put into innovation. A conservative strategy

would then consist of innovating only under necessary

conditions [Miller and Friesen, 1982].

In this paper, we focus on learning a soft-robust policy

(defined below) by incorporating soft-robustness into an

online actor-critic algorithm and show its convergence

properties. Existing works mitigate conservativeness of

robust MDP either by introducing coupled uncertainties

[Mannor et al., 2012, 2016] or by assuming prior informa-

tion on the uncertainty set [Xu and Mannor, 2012; Yu and

Xu, 2016]. They use dynamic programming techniques to

estimate a robust policy. However, these methods present

some limiting restrictions such as non-scalability and of-

fline estimation. Besides being computationally more effi-

cient than batch learning [Wiering and van Otterlo, 2012],

the use of an online algorithm is of significant interest in



robust MDPs because it can detect non-adversarial state-

actions pairs along a trajectory and result in less conserva-

tive results, something which cannot be performed when

solving the planning problem [Lim et al., 2016]. Other

works have attempted to incorporate robustness into an on-

line algorithm for policy optimization [Mankowitz et al.,

2018; Tamar et al., 2015]. Although these approaches can

deal with large domains, a sampling procedure is required

for each critic estimate in Tamar et al. [2015], which dif-

fers from the strictly-speaking actor-critic. In Mankowitz

et al. [2018], the authors introduce a robust version of

actor-critic policy-gradient but its convergence results are

only shown for the actor updates. Moreover, these works

target the robust solution which may be too conservative.

We review all existing methods in Section 7 and compare

them to our approach.

To the best of our knowledge, our proposed work is the

first attempt to incorporate a soft form of robustness into

an online algorithm that has convergence guarantees be-

sides being computationally scalable. We deal with the

curse of dimensionality by using function approximation

that parameterizes the expected value within a space of

much smaller dimension than the state space. By fixing

a distribution over the uncertainty set, the induced soft-

robust actor-critic learns a locally optimal policy in an

online manner. Under mild assumptions on the set of

distributions and uncertainty set, we show that our novel

Soft-Robust Actor-Critic (SR-AC) algorithm converges.

We test the performance of soft-robustness on different

domains, including a large state space with continuous

actions. As far as we know, no other work has previously

incorporated robustness into continuous action spaces.

Our specific contributions are: (1) A soft-robust deriva-

tion of the objective function for policy-gradient; (2) An

SR-AC algorithm that uses stochastic approximation to

learn a variant of distributionally robust policy in an on-

line manner; (3) Convergence proofs of SR-AC; (4) An

experiment of our framework to different domains that

shows the efficiency of soft-robust behaviors in a continu-

ous action space as well. All proofs can be found in the

Appendix.

2 BACKGROUND

In this section, we introduce the background material

related to our soft-robust approach.

Robust MDP A robust MDP is a tuple 〈X ,A, r,P〉
where X is a finite state-space, A is a finite set of ac-

tions, r : X ×A → R is the immediate reward function

which is deterministic and bounded and P is a set of

transition matrices. We assume that P is structured as

a cartesian product
⊗

x∈X
Px, which is known as the

rectangularity assumption [Nilim and El Ghaoui, 2005].

Given a state x ∈ X , the uncertainty set Px is a family

of transition models px ∈ Px we represent as vectors

in which the transition probabilities of each action are

arranged in the same block. For x, y ∈ X and a ∈ A,

denote by p(x, a, y) the probability of getting from state

x to state y given action a.

At timestep t, the agent is in state xt and chooses an

action at according to a stochastic policy π : X → M(A)
that maps each state to a probability distribution over the

action space, M(A) denoting the set of distributions over

A. It then gets a reward rt+1 and is brought to state xt+1

with probability p(xt, at, xt+1).

Policy-Gradient Policy-gradient methods are commonly

used to learn an agent policy. A policy π is parametrized

by θ and estimated by optimizing an objective function

using stochastic gradient descent. A typical objective to

be considered is the average reward function

Jp(π) = lim
T→+∞

E
p[
1

T

T−1∑

t=0

rt+1 | π]

=
∑

x∈X

dπp (x)
∑

a∈A

π(x, a)r(x, a)

where rt is the reward at time t, p an aperiodic and irre-

ducible transition model under which the agent operates

and dπp is the stationary distribution of the Markov process

induced by p under policy π. The gradient objective has

previously been shown to be

∇θJp(π) =
∑

x∈X

dπp (x)
∑

a∈A

∇θπ(x, a)Q
π
p (x, a)

where Qπ
p (x, a) is the expected differential reward as-

sociated with state-action pair (x, a). This gradient is

then used to update the policy parameters according to:

θt+1 = θt + βt∇θJp(π), with βt a positive step-size

[Sutton et al., 2000].

Actor-Critic Algorithm Theoretical analysis and empir-

ical experiments have shown that regular policy-gradient

methods present a major issue namely high variance in the

gradient estimates that results in slow convergence and

inefficient sampling [Grondman et al., 2012]. First pro-

posed by Barto et al. [1983], actor-critic methods attempt

to reduce the variance by using a critic that estimates the

value function. They borrow elements from both value

function and policy-based methods. The value function

estimate plays the role of a critic that helps evaluating the

performance of the policy. As in policy-based methods,

the actor then uses this signal to update policy parameters

in the direction of a gradient estimate of a performance

measure. Under appropriate conditions, the resulting algo-

rithm is tractable and converges to a locally optimal policy

[Bhatnagar et al., 2009; Konda and Tsitsiklis, 2000].



Deep Q-networks Deep Q-Networks (DQNs) have

proven their capability of solving complex learning tasks

such as Atari video games [Mnih et al., 2013]. The Q-

learning of Watkins and Dayan [1992] typically learns

a greedy or ǫ-greedy policy by updating the Q-function

based on a TD-error. In Deep Q-learning [Mnih et al.,

2013, 2015], a non-linear function such as a neural net-

work is used as an approximator of the Q-function. It

is referred to as a Q-network. The agent is then trained

by optimizing the induced TD loss function thanks to

stochastic gradient descent. Like actor-critic, DQN is an

online algorithm that aims at finding an optimal policy.

The main difference with actor-critic is that it is off-policy:

it learns a greedy strategy while following an arbitrary

behavior [Mnih et al., 2013].

Deep Deterministic Policy-Gradient Since DQN acts

greedily at each iteration, it can only handle small action

spaces. The Deep Deterministic Policy-Gradient (DDPG)

is an off-policy algorithm that can learn behaviors in con-

tinuous action spaces [Lillicrap et al., 2016]. It is based

on an actor-critic architecture that follows the same base-

line as in DQN. The critic estimates the current Q-value

of the actor using a TD-error while the actor is updated

according to the critic. This update is based on the chain

rule principle which establishes equivalence between the

stochastic and the deterministic policy gradient [Silver

et al., 2014].

3 SOFT-ROBUSTNESS

3.1 SOFT-ROBUST FRAMEWORK

Unlike robust MDPs that maximize the worst-case per-

formance, we fix a prior on how transition models are

distributed over the uncertainty set. A distribution over P
is denoted by ω and is structured as a cartesian product⊗

x∈X
ωx. We find the same structure in Xu and Mannor

[2012]; Yu and Xu [2016]. Intuitively, ω can be thought

as the way the adversary distributes over different transi-

tion models. The product structure then means that this

adversarial distribution only depends on the current state

of the agent without taking into account its whole trajec-

tory. This defines a probability distribution ωx over Px

independently for each state.

We further assume that ω is non-diffuse. This implies that

the uncertainty set is non-trivial with respect to ω in a

sense that the distribution does not affect zero mass to all

of the models.

3.2 SOFT-ROBUST OBJECTIVE

Throughout this paper, we make the following assump-

tion:

Assumption 3.1. Under any policy π, the Markov chains

resulting from any of the MDPs with transition laws p ∈
P are irreducible and aperiodic.

Define dπp as the stationary distribution of the Markov

chain that results from following policy π under transition

model p ∈ P .

Definition 3.1. We call soft-robust objective or

soft-robust average reward the function J̄(π) :=
Ep∼ω [Jp(π)].

The distribution ω introduces a softer form of robustness

in the objective function because it averages over the

uncertainty set instead of considering the worst-case sce-

nario. It also gives flexibility over the level of robustness

one would like to keep. A robust strategy would then

consist of putting more mass on pessimistic transition

models. Likewise, a distribution that puts all of its mass

on one target model would lead to an aggressive behavior

and result in model misspecification.

The soft-robust differential reward is given by

Q̄π(x, a) := Ep∼ω

[
Qπ

p (x, a)
]

where

Qπ
p (x, a) := E

p

[+∞∑

t=0

rt+1 − Jp(π)|x0 = x, a0 = a, π

]
.

Similarly, we introduce the quantity

V̄ π(x) :=
∑

a∈A

π(x, a)Q̄π(x, a) = Ep∼ω

[
V π
p (x)

]

with V π
p (x) :=

∑
a∈A

π(x, a)Qπ
p (x, a). We will inter-

changeably term it as soft-robust expected differential

reward or soft-robust value function.

3.3 SOFT-ROBUST STATIONARY

DISTRIBUTION

The above performance objective J̄(π) cannot as yet be

written as an expectation of the reward over a station-

ary distribution because of the added measure ω on tran-

sition models. Define the average transition model as

p̄ := Ep∼ω[p]. It corresponds to the transition probability

that results from distributing all transition models accord-

ing to ω. In analogy to the transition probability that

minimizes the reward for each given state and action in

the robust transition function [Mankowitz et al., 2018],

our average model rather selects the expected distribution

over all the uncertainty set for each state and action. Un-

der Assumption 3.1, we can show that the transition p̄ as

defined is irreducible and aperiodic, which ensures the

existence of a unique stationary law we will denote by

d̄π .



Proposition 3.1 (Stationary distribution in the average

transition model). Under Assumption 3.1, the average

transition matrix p̄ := Ep∼ω[p] is irreducible and aperi-

odic. In particular, it admits a unique stationary distribu-

tion.

As in regular MDPs, the soft-robust average reward sat-

isfies a Poisson equation, as it was first stated in the dis-

counted reward case in Lemma 3.1 of Xu and Mannor

[2012]. The following proposition reformulates this result

for the average reward.

Proposition 3.2 (Soft-Robust Poisson equation).

J̄(π) + V̄ π(x)

=
∑

a∈A

π(x, a)

(
r(x, a) +

∑

x′∈X

p̄(x, a, x′)V̄ π(x′)

)

This Poisson equation enables us to establish an equiv-

alence between the expectation of the stationary distri-

butions over the uncertainty set and the stationary distri-

bution of the average transition model, naming d̄π(x) =
Ep∼ω[d

π
p (x)] with x ∈ X . Indeed, we have the following:

Corollary 3.1. Recall d̄π the stationary distribution for

the average transition model p̄. Then

J̄(π) =
∑

x∈X

d̄π(x)
∑

a∈A

π(x, a)r(x, a).

The goal is to learn a policy that maximizes the soft-robust

average reward J̄ . We use a policy-gradient method for

that purpose.

4 SOFT-ROBUST POLICY-GRADIENT

In policy-gradient methods, we consider a class of

parametrized stochastic policies πθ : X → M(A) with

θ ∈ R
d1 and estimate the gradient of the objective func-

tion J̄ with respect to policy parameters in order to update

the policy in the direction of the estimated gradient of J̄ .

The optimal set of parameters thus obtained is denoted by

θ∗ := argmax
θ
J̄(πθ).

When clear in the context, we will omit the subscript θ in

πθ for notation ease. We further make the following as-

sumption, which is standard in policy-gradient litterature:

Assumption 4.1. For any (x, a) ∈ X ×A, the mapping

θ 7→ πθ(x, a) is continuously differentiable with respect

to θ.

Using the same method as in Sutton et al. [2000], we

can derive the gradient of the soft-robust average reward

thanks to the previous results.

Theorem 4.1 (Soft-Robust Policy-Gradient). For any

MDP satisfying previous assumptions, we have

∇θJ̄(π) =
∑

x∈X

d̄π(x)
∑

a∈A

∇θπ(x, a)Q̄
π(x, a).

In order to manage with large state spaces, we also

introduce a linear approximation of Q̄π we define as

fw(x, a) := wTψxa. Sutton et al. [2000] showed that

if the features ψxa satisfy a compatibility condition and

the approximation is locally optimal, then we can use it

in place of Q̄π and still point roughly in the direction of

the true gradient.

In the case of soft-robust average reward, this defines

a soft-robust gradient update that possesses the ability

to incorporate function approximation, as stated in the

following result. The main difference with that of Sutton

et al. [2000] is that we combine the dynamics of the

system with distributed transitions over the uncertainty

set.

Theorem 4.2 (Soft-Robust Policy-Gradient with Function

Approximation). Let fw : X × A → R be a linear

approximator of the soft-robust differential reward Q̄π . If

fw minimizes the mean squared error

Eπ(w) :=
∑

x∈X

d̄π(x)
∑

a∈A

π(x, a)

[
Q̄π(x, a)−fw(x, a)

]2

and is compatible in a sense that ∇wfw(x, a) =
∇θ log π(x, a), then

∇θJ̄(π) =
∑

x∈X

d̄π(x)
∑

a∈A

∇θπ(x, a)fw(x, a)

We can further improve our gradient estimate by reducing

its variance. One direct method to do so is to subtract a

baseline b(x) from the previous gradient update. It is easy

to show that this will not affect the gradient derivation. In

particular, Bhatnagar et al. [2009] proved that the value

function minimizes the variance. It is therefore a proper

baseline to choose. We can thus write the following:

∇θJ̄(π) =
∑

x∈X

d̄π(x)
∑

a∈A

∇θπ(x, a)

(
Q̄π(x, a)− V̄ π(x)

)

=
∑

x∈X

d̄π(x)
∑

a∈A

π(x, a)ψxaĀ
π(x, a),

(1)

where Āπ(x, a) is the soft-robust advantage function de-

fined by Āπ(x, a) := Q̄π(x, a)− V̄ π(x).



5 SOFT-ROBUST ACTOR-CRITIC

ALGORITHM

In this section, we present our SR-AC algorithm which

is defined as Algorithm 1. This novel approach incor-

porates a variation of distributional robustness into an

online algorithm that effectively learns an optimal policy

in a scalable manner. Under mild assumptions, the re-

sulting two-timescale stochastic approximation algorithm

converges to a locally optimal policy.

5.1 SR-AC ALGORITHM

An uncertainty set and a nominal model without uncer-

tainty are provided as inputs. In practice, the nominal

model and the uncertainty set can respectively be an es-

timate of the transition model resulting from data sam-

pling and its corresponding confidence interval. A dis-

tribution ω over the uncertainty set is also provided. It

corresponds to our prior information on the uncertainty

set. The step-size sequences (αt, βt, ξt; t ≥ 0) consist of

small non-negative numbers properly chosen by the user

(see Appendix for more details).

At each iteration, samples are generated using the nom-

inal model and the current policy. These are utilized to

update the soft-robust average reward (Line 5) and the

critic (Line 7) based on an estimate of a soft-robust TD-

error we detail further. In our setting, the soft-robust value

function plays the role of the critic according to which

the actor parameters are updated. We then exploit the

critic to improve our policy by updating the policy pa-

rameters in the direction of a gradient estimate for the

soft-robust objective (Line 8). This process is repeated

until convergence.

5.2 CONVERGENCE ANALYSIS

We establish convergence of SR-AC to a local maximum

of the soft-robust objective function by following an ODE

approach [Kushner and Yin, 1997].

Consider V̂ and Ĵ as unbiased estimates of V̄ and J̄ re-

spectively. Calculating δt (Line 6 in Algorithm 1) requires

an estimate of the soft-robust average-reward that can be

obtained by averaging over samples given immediate re-

ward r and distribution ω (Line 5). In order to get an

estimate of the soft-robust differential value V̂ , we use

linear function approximation. Considering ϕ as a d2-

dimensional feature extractor over the state space X , we

may then approximate V̄ π(x) as vTϕx, where v is a d2-

dimensional parameter vector that we tune using linear

TD. This results in the following soft-robust TD-error:

δt := rt+1 − Ĵt+1 +
∑

x′∈X

p̄(xt, at, x
′)vTt ϕx′ − vTt ϕxt

,

Algorithm 1 SR-AC

1: Input: P - An uncertainty set; p̂ ∈ P - A nominal

model; ω - A distribution over P; fx - A feature

extractor for the SR value function;

2: Initialize: θ = θ0 - An arbitrary policy parameter;

v = v0 - An arbitrary set of value function param-

eters; α0, β0, ξ0 - Initial learning-rates; x0 - Initial

state

3: repeat

4: Act under at ∼ πθt(xt, at)
Observe next state xt+1 and reward rt+1

5: SR Average Reward Update:

Ĵt+1 = (1− ξt)Ĵt + ξtrt+1

6: SR TD-Error:

δt = rt+1− Ĵt+1+
∑

x′∈X
p̄(xt, at, x

′)V̂x′ − V̂xt

7: Critic Update: vt+1 = vt + αtδtϕxt

8: Actor Update: θt+1 = θt + βtδtψxtat

9: until convergence

10: Return: SR policy parameters θ and SR value-

function parameters v

where vt corresponds to the current estimate of the soft-

robust value function parameter.

As in regular MDPs, when doing linear TD learning, the

function approximation of the value function introduces

a bias in the gradient estimate [Bhatnagar et al., 2009].

Denoting it as eπ, we have E[∇̂θJ(π) | θ] = ∇θJ̄(π) +
eπ (see Appendix). This bias term then needs to be small

enough in order to ensure convergence.

Convergence of Algorithm 1 can be established by apply-

ing Theorem 2 from Bhatnagar et al. [2009] which ex-

ploits Borkar’s work on two-timescale algorithms [1997].

The convergence result is presented as Theorem 5.1.

Theorem 5.1. Under all the previous assumptions, given

ǫ > 0, there exists δ > 0 such that for a parameter vector

θt, t ≥ 0 obtained using the algorithm, if supπt
‖eπt‖ < δ,

then the SR-AC algorithm converges almost surely to an

ǫ-neighborhood of a local maximum of J̄ .

6 NUMERICAL EXPERIMENTS

We demonstrate the performance of soft-robustness on

various domains of finite as well as continuous state and

action spaces. We used the existing structure of OpenAI

Gym environments to run our experiments [Brockman

et al., 2016].

6.1 DOMAINS

Single-step MDP We consider a simplified formulation

of the startup vs teaching dilemma described in Section 1.



s0

F1

S1

F2

S2

F3

S3

a1, R = -105

a1, R = 105

a2,R = 0

a2,R = 2000

a3,R = −100

a3,R = 5000

Figure 1: Illustration of the MDP with initial state s0.

States F1, F2, F3 correspond to failing scenarios for each

action. The succeeding states are represented by states

S1, S2, S3.

The problem is modeled as a 7-state MDP in which one

action corresponds to one strategy. An illustration of this

construction is given in Figure 1. At the starting state s0,

the agent chooses one of three actions. Action a1 [corre-

sponds to the startup adventure] may lead it to a very high

reward in case of success but can be catastrophic in case

of failure. Action a2 [corresponds to the teaching carrier]

leads it to low positive reward in case of success with no

possibility of negative reward. Action a3 [corresponds

to an intermediate strategy] can lead to an intermediate

positive reward with a slight risk of negative reward. De-

pending on the action it chose and if it succeeded or not,

the agent is brought to one of the six right-hand states and

receives the corresponding reward. It is brought back to

s0 at the end of each episode. We assume the probability

of success to be the same for all three actions.

Cart-Pole In the Cart-Pole system, the agent’s goal con-

sists of balancing a pole atop a cart in a vertical position.

It is modeled as a continuous MDP in which each state

consists of a 4-tuple 〈x, ẋ, θ, θ̇〉 which represents the cart

position, the cart speed, the pole angle with respect to the

vertical and its angular speed respectively. The agent can

make two possible actions: apply a constant force either

to the right or to the left of the pole. It gets a positive

reward of 1 if the pole has not fallen down and if it stayed

in the boundary sides of the screen. If it terminates, the

agent receives a reward of 0. Since each episode lasts for

200 timesteps, the maximal reward an agent can get is

200 over one episode.

Pendulum In the inverted pendulum problem, a pendu-

lum starts in a random position and the goal is to swing

it up so that it stabilizes upright. The state domain con-

sists in a 2-tuple 〈θ, θ̇〉 which represents the pendulum

angle with respect to the vertical and its angular velocity.

At each timestep, the agent’s possible actions belong to

a continuous interval [−a, a] which represents the force

level being applied. Since there is no specified termina-

tion, we establish a maximal number of 200 steps for each

episode.

6.2 UNCERTAINTY SETS

For each experiment, we generate an uncertainty set P
before training. In the single-step MDP, we sample from

5 different probabilities of success using a uniform dis-

tribution over [0, 1]. In Cart-Pole, we sample 5 different

lengths from a normal distribution centered at the nominal

length of the pole which we fix at 0.3. We proceed simi-

larly for Pendulum by generating 10 different masses of

pendulum around a nominal mass of 2. Each correspond-

ing model thus generates a different transition function.

We then sample the average model by fixing ω as a real-

ization of a Dirichlet distribution. A soft-robust update for

the actor is applied by taking the optimal action according

to this average transition function.

6.3 LEARNING ALGORITHMS

We trained the agent on the nominal model in each exper-

iment. The soft-robust agent was learned using SR-AC in

the single-step MDP. In Cart-Pole, we run a soft-robust

version of a DQN algorithm. The soft-robust agent in

Pendulum was trained using a soft-robust DDPG.

Soft-Robust AC We analyze the performance of SR-AC

by training a soft-robust agent on the single-step MDP.

We run a regular AC algorithm to derive an aggressive

policy and learn a robust behavior by using a robust for-

mulation of AC which consists in replacing the TD-error

with a robust TD-error, as implemented in Mankowitz

et al. [2018]. The derived soft-robust agent is then com-

pared with the resulting aggressive and robust strategies

respectively.

Soft-Robust DQN Robustness has already been incorpo-

rated in DQN [Di-Castro Shashua and Mannor, 2017].

The Q-network addressed there performs an online esti-

mation of the Q-function by minimizing at each timestep



t the following robust TD-error:

δrobdqn,t : = r(xt, at)−Q(xt, at)

+ γ inf
p∈P

∑

x′∈X

p(xt, at, x
′)max

a′∈A
Q(x′, a′),

where γ is a discount factor.

In our experiments, we incorporate a soft-robust TD-error

inside a DQN that trains a soft-robust agent according to

the induced loss function. The soft-robust TD-error for

DQN is given by:

δsrobdqn,t : = r(xt, at)−Q(xt, at)

+ γ
∑

x′∈X

p̄(xt, at, x
′)max

a′∈A
Q(x′, a′)

We use the Cart-Pole domain to compare the resulting

policy with the aggressive and robust strategies that were

obtained from a regular and a robust DQN respectively.

Soft-Robust DDPG Define µt as the estimated determin-

istic policy at step t. We incorporate robustness in DDPG

by updating the critic network according to the following

robust TD-error:

δrobddpg,t : = r(xt, at)−Q(xt, at)

+ γ inf
p∈P

∑

x′∈X

p(xt, at, x
′)Q(x′, µ(xt)),

Similarly, we incorporate soft-robustness in DDPG by

using the soft-robust TD-error:

δsrobddpg,t : = r(xt, at)−Q(xt, at)

+ γ
∑

x′∈X

p̄(xt, at, x
′)Q(x′, µt(xt))

We compare the resulting soft-robust DDPG with its reg-

ular and robust formulations in the Pendulum domain.

6.4 IMPLEMENTATION

For each experiment, we train the agent on the nominal

model but incorporate soft-robustness during learning.

A soft-robust policy is learned thanks to SR-AC in the

single-step MDP. We use a linear function approxima-

tion with 5 features to estimate the value function. For

Cart-Pole, we run a DQN using a neural network of 3

fully-connected hidden layers with 128 weights per layer

and ReLu activations. In Pendulum, a DDPG algorithm

learns a policy based on two target networks: the actor

and the critic network. Both have 2 fully-connected hid-

den layers with 400 and 300 units respectively. We use

a tanh activation for the actor and a Relu activation for

the critic output. We chose the ADAM optimizer to min-

imize all the induced loss functions. We used constant

learning rates which worked well in practice. Each agent

was trained over 3000 episodes for the single-step MDP

and Cartpole and tested over 600 episodes per parameter

setting. For Pendulum, the agents were trained over 5000
episodes evaluated over 800 episodes per parameter set-

ting. Other hyper-parameter values can be found in the

Appendix.

6.5 RESULTS

Single-step MDP Figure 2 shows the evolution of the

performance for all three agents during training. It be-

comes more stable along training time, which confirms

convergence of SR-AC. We see that the aggressive agent

performs best due to the highest reward it can reach on

the nominal model. The soft-robust agent gets rewards

in between the aggressive and the robust agent which

performs the worst due to its pessimistic learning method.

Figure 2: Comparison of robust, soft-robust and aggres-

sive agents during training. One training epoch corre-

sponds to 300 episodes.

The evaluation of each strategy is represented in Figure 3.

As the probability of success gets low, the performance

of the aggressive agent drops down below the robust and

the soft-robust agents, although it performs best when

the probability of success gets close to 1. The robust

agent stays stable independently of the parameters but

underperforms soft-robust agent which presents the best

balance between high reward and low risk. We noticed

that depending on the weighting distribution initially set,

soft-robustness tends to being more or less aggressive

(see Appendix). Incorporating a distribution over the

uncertainty set thus gives significant flexibility on the

level of aggressiveness to be assigned to the soft-robust

agent.

Cart-Pole In Figure 4, we show the performance of all

three strategies over different values of pole length during



Figure 3: Average reward for AC, robust AC and SR-AC

methods

testing. Similarly to our previous example, the non-robust

agent performs well around the nominal model but its

reward degrades on more extreme values of pole length.

The robust agent keeps a stable reward under model un-

certainty which is consistent with the results obtained

in Di-Castro Shashua and Mannor [2017]; Mankowitz

et al. [2018]. However, it is outperformed by the soft-

robust agent around the nominal model. Furthermore,

the soft-robust strategy shows an equilibrium between

aggressiveness and robustness thus leading to better per-

formance than the non-robust agent on larger pole lengths.

We trained a soft-robust agent on other weighting distri-

butions and noted that depending on its structure, soft-

robustness interpolates between aggressive and robust

behaviors (see Appendix).

Figure 4: Average reward performance for DQN, robust

DQN and soft-robust DQN

Pendulum Figure 5 shows the performance of all three

Figure 5: Max-200 episodes average performance for

DDPG, robust DDPG and soft-robust DDPG

agents when evaluating them on different masses. Since

the performance among different episodes is highly vari-

able, we considered the best 200-episodes average reward

as a performance measure. As seen in the figure, the

robust strategy solves the task in a sub-optimal fashion,

but is less affected by model misspecification due to its

conservative strategy. The aggressive non-robust agent

is more sensitive to model misspecification compared to

the other methods as can be seen by its sudden dip in

performance, below even that of the robust agent. The

soft-robust solution strikes a nice balance between being

less sensitive to model misspecification than the aggres-

sive agent, and producing better performance compared

to the robust solution.

7 RELATED WORK

This paper is related to several domains in RL such as

robust and distributionally robust MDPs, actor-critic meth-

ods and online learning via stochastic approximation algo-

rithms. Our work solves the problem of conservativeness

encountered in robust MDPs by incorporating a varia-

tional form of distributional robustness. The SR-AC algo-

rithm combines scalability to large scale state-spaces and

online estimation of the optimal policy in an actor-critic

algorithm. Table 1 compares our proposed algorithm with

previous approaches.

Many solutions have been addressed to mitigate conserva-

tiveness of robust MDP. Mannor et al. [2012, 2016] relax

the state-wise independence property of the uncertainty

set and assume it to be coupled in a way such that the plan-

ning problem stays tracktable. Another approach tends to

assume a priori information on the parameter set. These



Table 1: Comparison of previous approaches with SR-AC

Reference Scalable Actor-

Critic

Softly-

Robust

SR-AC (this paper) ✓ ✓ ✓

Mankowitz et al.

[2018]

✓ ✗ ✗

Lim et al. [2016] ✗ ✗ ✗

Yu and Xu [2016] ✗ ✗ ✓

Mannor et al. [2012,

2016]

✗ ✗ ✗

Tamar et al. [2015] ✓ ✗ ✗

Xu and Mannor

[2012]

✗ ✗ ✓

Bhatnagar et al.

[2009]

✓ ✓ ✗

methods include distributionally robust MDPs [Xu and

Mannor, 2012; Yu and Xu, 2016] in which the optimal

strategy maximizes the expected reward under the most

adversarial distribution over the uncertainty set. For finite

and known MDPs, under some structural assumptions on

the considered set of distributions, this max-min prob-

lem reduces to classical robust MDPs and can be solved

efficiently by dynamic programming [Puterman, 2009].

However, besides becoming untracktable under large-

sized MDPs, these methods use an offline learning ap-

proach which cannot adapt its level of protection against

model uncertainty and may lead to overly conservative

results. The work of Lim et al. [2016] solutions this

issue and addresses an online algorithm that learns the

transitions that are purely stochastic and those that are

adversarial. Although it ensures less conservative results

as well as low regret, this method sticks to the robust

objective while strongly relying on the finite structure of

the state-space. To alleviate the curse of dimensionality,

we incorporate function approximation of the objective

value and define it as a linear functional of features.

First introduced in Barto et al. [1983] and later addressed

by Bhatnagar et al. [2009], actor-critic algorithms are on-

line learning methods that aim at finding an optimal policy.

We used the formulation of Bhatnagar et al. [2009] as a

baseline for the algorithm we proposed. The key differ-

ence between their work and ours is that we incorporate

soft-robustness. This relates in a sense to the Bayesian

Actor-Critic setup in which the critic returns a complete

posterior distribution of value functions using Bayes’ rule

[Ghavamzadeh and Engel, 2007; Ghavamzadeh et al.,

2015, 2016]. Our study keeps a frequentist approach,

meaning that our algorithm updates return point estimates

of the average value-function which prevents from track-

tability issues besides enabling the distribution to be more

flexible. Another major distinction is that the Bayesian

approach incorporates a prior distribution on one model

parameters whereas our method considers a prior on dif-

ferent transition models over an uncertainty set.

In Mankowitz et al. [2018]; Tamar et al. [2015], the au-

thors incorporate robustness into policy-gradient methods.

A sampling procedure is required for each critic estimate

in Tamar et al. [2015], which differs from the strictly-

speaking actor-critic. A robust version of actor-critic

policy-gradient is introduced in Mankowitz et al. [2018]

but its convergence guarantees are only shown for robust

policy-gradient ascent. Both of these methods target the

robust strategy whereas we seek a soft-robust policy that

is less conservative while protecting itself against model

uncertainty.

8 DISCUSSION

We have presented the SR-AC framework that is able to

learn policies which keep a balance between aggressive

and robust behaviors. SR-AC requires a stationary distri-

bution under the average transition model and compatibil-

ity conditions for deriving a soft-robust policy-gradient.

We have shown that this ensures convergence of SR-AC.

This is the first work that has attempted to incorporate a

soft form of robustness into an online actor-critic method.

Our approach has been shown to be computationally scal-

able to large domains because of its low computational

price. In our experiments, we have also shown that the

soft-robust agent interpolates between aggressive and ro-

bust strategies without being overly conservative which

leads it to outperform robust policies under model uncer-

tainty even when the action space is continuous. Sub-

sequent experiments should test the efficiency of soft-

robustness on more complex domains.

The chosen weighting over the uncertainty set can be

thought as the way the adversary distributes over different

transition laws. In our current setting, this adversarial

distribution stays constant without accounting for the re-

wards obtained by the agent. Future work should address

the problem of learning the sequential game induced by

an evolving adversarial distribution to derive an optimal

soft-robust policy. Other extensions of our work may also

consider non-linear objective functions such as higher or-

der moments with respect to the adversarial distribution.
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