
SUPPLEMENTARY MATERIAL

6 PROOFS REGARDING THE ACCURACY OF DBMSTCLU

6.1 PROOF OF THEOREM 3.2

This theorem relies on the following lemma:

Lemma 6.1. Let us consider a graph G = (V,E,w) with K clusters C∗1 , . . . , C
∗
K and T an MST of G. If for all

i ∈ [K], C∗i is weakly homogeneous, then argmax
e∈T

w(e) ⊂ CutG(T ) i.e. the heaviest edges in T are in CutG(T ).

Proof. Let us consider C∗i a cluster of G. As C∗i is weakly homogeneous, ∀j ∈ [K] s.t. e(ij) ∈ CutG(T ),
max
e∈T|C∗

i

w(e) < w(e(ij)). Hence, argmax
e∈E(T )

w(e) ⊂ CutG(T ).

Theorem. 3.2 Let us consider a graph G = (V,E,w) withK homogeneous clustersC∗1 , . . . , C
∗
K and T an MST of G.

Let now assume that at step k < K−1, DBMSTCLU built k+1 subtrees C1, . . . , Ck+1 by cutting e1, e2, . . . , ek ∈ E.

Then, Cutk := CutG(T ) \ {e1, e2, . . . , ek} 6= ∅ =⇒ DBCVIk+1 ≥ DBCV Ik, i.e. if there are still edges in
Cutk, the algorithm will continue to perform some cut.

Proof. Let note DBCVI at step k, DBCV Ik =
∑k+1
i=1

|Ci|
N VC(Ci). Let assume that Cutk 6= ∅. Therefore, there is

e∗ ∈ Cutk and i ∈ {1, . . . , k + 1} s.t. e∗ ∈ E(Ci). Since e∗ ∈ CutG(T ), using Lem. 6.1, one can always take
e∗ ∈ argmax

e∈E(Ci)
w(e). Then, if we denote C1

i , C2
i the two subtrees of Ci induced by the cut of e∗ (see Fig. 1 for an

illustration) and DBCV Ik+1(e∗) the associated DBCVI value,

∆ = DBCV Ik+1(e∗)−DBCV Ik

=
|C1
i |
N

(
SEP(C1

i )−DISP(C1
i )

max(SEP(C1
i ),DISP(C1

i ))

)
︸ ︷︷ ︸

VC(C1
i )

+
|C2
i |
N

(
SEP(C2

i )−DISP(C2
i )

max(SEP(C2
i ),DISP(C2

i ))

)
︸ ︷︷ ︸

VC(C2
i )

−|Ci|
N

(
SEP(Ci)−DISP(Ci)

max(SEP(Ci),DISP(Ci))

)
︸ ︷︷ ︸

VC(Ci)

.

There are two possible cases:

1. VC(Ci) ≤ 0, then SEP(Ci) ≤ DISP(Ci) = w(e∗). As for l ∈ {1, 2}, SEP(Cli) ≥ SEP(Ci) and DISP(Cli) ≤
DISP(C〉) because e∗ ∈ argmax

e∈E(C〉)
w(e), then, for l ∈ {1, 2},

SEP(Cli)−DISP(Cli)
max(SEP(Cli),DISP(Cli))

≥ SEP(Cl)−DISP(Ci)
max(SEP(Ci),DISP(Ci))

=
SEP(Ci)
w(e)

− 1

and ∆ ≥ 0.

2. VC(Ci) ≥ 0, then SEP(Ci) ≥ DISP(Ci) = w(e∗) i.e. max(SEP(Ci),DISP(Ci)) = SEP(Ci), for l ∈ {1, 2},
DISP(Cli) ≤ DISP(Ci) i.e. DISP(Cli) ≤ w(e∗), SEP(Cli) = w(e∗) hence SEP(Cli) ≥ DISP(Cli). Thus,

VC(Ci) = 1− DISP(Ci)
SEP(Ci) and for l ∈ {1, 2}, VC(Cli) = 1− DISP(Cli)

SEP(Cli)
. Then, for l ∈ {1, 2}, VC(Cli) ≥ VC(Ci) and

∆ ≥ 0.

For both cases, ∆ = DBCV Ik+1(e∗) −DBCV Ik ≥ 0. Hence, at least the cut of e∗ improves the current DBCVI,
so the algorithm will perform a cut at this stage.
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Figure 1: Illustration for Th. 3.2’s proof.

6.2 PROOF OF THEOREM 3.3

Theorem. 3.3 Let us consider a graph G = (V,E,w) with K homogeneous clusters C∗1 , . . . , C
∗
K and T an MST of

G.

Let now assume that at step k < K−1, DBMSTCLU built k+1 subtrees C1, . . . , Ck+1 by cutting e1, e2, . . . , ek ∈ E.
We still denote Cutk := CutG(T )\{e1, e2, . . . , ek}.
Then, Cutk 6= ∅ =⇒ argmax

e∈T \{e1, e2, ..., ek}
DBCV Ik+1(e) ⊂ Cutk i.e. the edge that the algorithm cuts at step k + 1

is in Cutk.

Proof. It is sufficient to show that, at step k, if there exists an edge e∗ whose cut builds two clusters, then e∗ maximizes
DBCVI among all possible cuts in the union of itself and both resulting clusters. Indeed, showing this for two clusters,
one can easily generalize to the whole graph as a combination of couples of clusters (see Fig. 3 for an illustration): if
for each couple, the best local solution is in Cutk, then the best general solution is necessary in Cutk.

Let us consider at step k of the algorithm two clusters C∗1 and C∗2 such that e∗ the edge separating them in T is in
Cutk (see Fig. 2 for an illustration). For readability we denote T|C∗1 = C∗1 and T|C∗2 = C∗2 Let us proof that for all
ẽ ∈ T|C∗1∪C∗2 , one has: DBCV Ik+1(e∗) > DBCV Ik+1(ẽ). W.l.o.g. let assume ẽ ∈ C∗1 and let denote C∗1,1 and C∗1,2
the resulting subtrees from the cut of ẽ. We still denote DBCV Ik+1(e) the value of the DBCVI at step k + 1 for the
cut of e.

∆ := DBCV Ik+1(e∗)−DBCV Ik+1(ẽ)

=
|C∗1 |
N

(
SEP(C∗1 )−DISP(C∗1 )

max(SEP(C∗1 ),DISP(C∗1 ))

)
+
|C∗2 |
N

(
SEP(C∗2 )−DISP(C∗2 )

max(SEP(C∗2 ),DISP(C∗2 ))

)
︸ ︷︷ ︸

A

−
(
|C∗1,1|
N

(
SEP(C∗1,1)−DISP(C∗1,1)

max(SEP(C∗1,1),DISP(C∗1,1))

)
+
|C∗1,2|
N

(
SEP(C∗1,2)−DISP(C∗1,2)

max(SEP(C∗1,2),DISP(C∗1,2))

))
︸ ︷︷ ︸

B

By weak homogeneity of C∗1 and C∗2 , A =
|C∗1 |
N

(
1− DISP(C∗1 )

SEP(C∗1 )

)
+
|C∗2 |
N

(
1− DISP(C∗2 )

SEP(C∗2 )

)
> 0

B =
|C∗1,1|
N

(
SEP(C∗1,1)−DISP(C∗1,1)

max(SEP(C∗1,1),DISP(C∗1,1))

)
︸ ︷︷ ︸

B1

+
|C∗1,2|
N

(
SEP(C∗1,2)−DISP(C∗1,2)

max(SEP(C∗1,2),DISP(C∗1,2))

)
︸ ︷︷ ︸

B2



By Lem. 6.1, e∗ ∈ argmax
e∈E(T|C∗1∪C∗2 )

w(e) so DISP(C∗1,2) = w(e∗).

Since e∗ ∈ CutG(T ), one has w(e∗) ≥ max(SEP(C∗1 ),SEP(C∗2 )). Moreover, as C∗2 is a subtree of C∗1,2, then

SEP(C∗1,2) ≤ SEP(C∗2 ). Thus, w(e∗) ≥ SEP(C∗1,2). Finally, B2 =
|C∗1,2|
N

(
SEP(C∗1,2)

DISP(C∗1,2) − 1
)
≤ 0.

Besides, w(ẽ) ≤ SEP(C∗1 ) =⇒ SEP(C∗1,1) = w(ẽ) ≤ max
e∈E(C∗1 )

w(e) and DISP(C∗1,1) = max
e∈E(C∗1,1)

w(e) ≥

min
e∈E(C∗1 )

w(e). Then, two possibilities hold:

1. B1 < 0 =⇒ B < 0 < A.

2. B1 ≥ 0, thus one has B1 =
|C∗1,1|
N

(
1− DISP(C∗1,1)

SEP(C∗1,1)

)
≤ |C

∗
1,1|
N

(
1−

min
e∈C∗1

w(e)

max
e∈C∗1

w(e)

)
. Under weak homogeneity condi-

tion, there is: DISP(C∗1 )
SEP(C∗1 ) <

min
e∈C∗1

w(e)

max
e∈C∗1

w(e) . Thus,

B1 <
|C∗1,1|
N

(
1− DISP(C∗1 )

SEP(C∗1 )

)
<
|C∗1 |
N

(
1− DISP(C∗1 )

SEP(C∗1 )

)
because C∗1,1 is a subtree of C∗1

< A

So, B1 +B2 = B < A = DBCV Ik+1(e∗).

Since B < A, ∆ > 0 and e∗ maximizes DBCVI among all possible cuts in the union of itself and both resulting
clusters. Q.E.D.
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Figure 2: Illustration for Th. 3.3’s proof.

6.3 PROOF OF THEOREM 3.4

Theorem. 3.4 Let us consider a graph G = (V,E,w) with K weakly homogeneous clusters C∗1 , . . . , C
∗
K and

T an MST of G. Let now assume that at step K − 1, DBMSTCLU built K subtrees C1, . . . , CK by cutting
e1, e2, . . . , eK−1 ∈ E. We still denote CutK−1 := CutG(T )\{e1, e2, . . . , eK−1}.
Then, for all e ∈ T \{e1, e2, . . . , eK−1}, DBCV IK(e) < DBCV IK−1 i.e. the algorithm stops: no edge gets cut
during step K.



Figure 3: Illustration for Th. 3.3’s proof. Each circle corresponds to a cluster. The six clusters are handled within five
couples of clusters.

Proof. According to Th. 3.2 and Th. 3.3, for all k < K, ifCutk 6= ∅, the algorithm performs some cut fromCutG(T ).
We still denote for all j ∈ [K] C∗j = T|C∗j .Since |CutG(T )| = K − 1, the K − 1 first steps produce K − 1 cuts from

CutG(T ). Therefore, DBCVIK−1 =
∑

j∈[K−1]

|C∗j |
N VC(C∗j ).

Let be e the (expected) edge cut at step K, splitting the tree C∗i into C∗i,1 and C∗i,2.

∆ = DBCVIK−1−DBCVIK

=
|C∗i |
N

VC(C∗i )−
|C∗i,1|
N

VC(C∗i,1)−
|C∗i,2|
N

VC(C∗i,2)

=
|C∗i |
N

SEP(C∗i )−DISP(C∗i )

max(SEP(C∗i ),DISP(C∗i ))
−
|C∗i,1|
N

SEP(C∗i,1)−DISP(C∗i,1)

max(SEP(C∗i,1),DISP(C∗i,1))
−
|C∗i,2|
N

SEP(C∗i,2)−DISP(C∗i,2)

max(SEP(C∗i,2),DISP(C∗i,2))

Since C∗i is a weakly homogeneous cluster, therefore SEP(C∗i ) ≥ DISP(C∗i ). Then, minimal value of ∆, ∆min

is reached when SEP(C∗i,1) ≥ DISP(C∗i,1), SEP(C∗i,2) ≥ DISP(C∗i,2), SEP(C∗i,1) = SEP(C∗i,2) = min
e′∈E(C∗i )

w(e′),

DISP(C∗i,1) = DISP(C∗i,2) = max
e′∈E(C∗i )

w(e′). Then,

N ×∆min = |C∗i |
(

1− DISP(C∗i )

SEP(C∗i )

)
− |C∗i,1|

(
1−

DISP(C∗i,1)

SEP(C∗i,1)

)
− |C∗i,2|

(
1−

DISP(C∗i,2)

SEP(C∗i,2)

)

= |C∗i |
(

1− DISP(C∗i )

SEP(C∗i )

)
− |C∗i,1|

1−
max

e′∈E(C∗i )
w(e′)

min
e′∈E(C∗i )

w(e′)

− |C∗i,2|
1−

max
e′∈E(C∗i )

w(e′)

min
e′∈E(C∗i )

w(e′)


= |C∗i |

−DISP(C∗i )

SEP(C∗i )
+

max
e′∈E(C∗i )

w(e′)

min
e′∈E(C∗i )

w(e′)



By weak homogeneity condition on C∗i , DISP(C∗i )
SEP(C∗i ) <

min
e′∈E(C∗

i
)
w(e′))

max
e′∈E(C∗

i
)
w(e′) ≤

max
e′∈E(C∗

i
)
w(e′))

)
e′∈E(C∗

i

minw(e′) . Therefore, ∆min > 0 and

∆ > 0.



7 PROOFS REGARDING THE ACCURACY OF PTCLUST

7.1 PROOF OF THEOREM 3.8

Theorem. 3.8 Let us consider a graph G = (V,E,w) with K strongly homogeneous clusters C∗1 , . . . , C
∗
K and

T = PAMST(G, uG , w, ε), ε > 0. T has a partitioning topology with probability at least

1−
K∑
i=1

(|C∗i | − 1)e

− ε
2∆uG(|V |−1)

(ᾱimax(w(e))
e∈E(G|C∗

i
)

−min (w(e))
e∈E(G|C∗

i
)

)+ln(|E|)

Proof. Let T = PAMST(G, uG , w, ε), {R1, ...,R|V |−1} denotes the ranges used in the successive calls of the Expo-

nential mechanism in PAMST(G, uG , w, ε), rk =MExp(G, w, uG ,Rk,
ε

|V | − 1︸ ︷︷ ︸
ε′

), and Steps(C∗i ) the set of steps k of

the algorithm wereRk contains at least one edges from G|C∗i . Finally for readability we denote uk = uG(w, rk)

P[T has a partitioning topology]

=P[∀i, j ∈ [K], i 6= j, |{(u, v) ∈ E(T ), u ∈ C∗i , v ∈ C∗j }| = 1︸ ︷︷ ︸
A

] = 1− P[¬A]

If we denote B = “∀i ∈ [K], ∀k > 1 ∈ Steps(C∗i ), if rk−1 ∈ E(G|C∗i ) then rk ∈ E(G|C∗i )” One easily has:
B =⇒ A, therefore P[¬A] ≤ P(¬B). Moreover, by using the privacy/accuracy trade-off of the exponential
mechanism, one has

∀t ∈ R,∀i ∈ [K],∀k ∈ Steps(C∗i ) P

uk ≤ −2∆uG
ε′

(t+ ln |Rk|)︸ ︷︷ ︸
Ak(t)

 ≤ exp(−t).

Moreover one can major P[¬B] as follows

P
[
∃i ∈ [K],∃k ∈ Steps(C∗i ) s.t rk−1 ∈ E(G|C∗i ) and rk /∈ E(G|C∗i )

]
By using the union bound, one gets

≤
∑
i∈[K]

P
[
∃k ∈ Steps(C∗i ) s.t rk−1 ∈ E(G|C∗i ) and rk /∈ E(G|C∗i )

]
Using the strong homogeneity of the clusters, one has

=
∑
i∈[K]

P

∃k ∈ Steps(C∗i ) s.t uk ≤ −|ᾱimaxw(e)
e∈E(G|C∗

i
)

−minw(r)
r∈Rk

|


≤
∑
i∈[K]

P

∃k ∈ Steps(C∗i ) s.t uk ≤ −|ᾱimaxw(e)
e∈E(G|C∗

i
)

− minw(e)
e∈E(G|C∗

i
)

|


By setting tk,i = ε′

2∆uG
(ᾱimax(w(e))

e∈E(G|C∗
i

)

−min (w(e))
e∈E(G|C∗

i
)

) + ln(|Rk|) one gets

=
∑
i∈[K]

P [∃k ∈ Steps(C∗i ) s.t Ak(tk,i)]



Since for all i ∈ [K], and k ∈ Steps(C∗i ), |Rk| ≤ |E|, and using a union bound, one gets

≤
∑
i∈[K]

∑
P

k∈Steps(C∗i )

[Ak(tk,i)] ≤
∑
i∈[K]

∑
exp

k∈Steps(C∗i )

(−ti,k)

≤
K∑
i=1

(|C∗i | − 1) exp

− ε

2∆uG(|V | − 1)

ᾱimaxw(e)
e∈E(G|C∗

i
)

− minw(e)
e∈E(G|C∗

i
)

+ ln(|E|)



7.2 PROOF OF THEOREM 3.9

Let recall the theorem from S. Kotz on the Laplace distribution and generalizations (2001):

Theorem 7.1. Let n ∈ N, (Xi)i∈[n] ∼
iid
Lap(θ, s), denoting Xr:n the order statistic of rank r one has for all k ∈ N,

E
[
(Xr:n − θ)k

]
= sk

n!Γ(k + 1)

(r − 1)!(n− r)!

(−1)k
n−r∑
j=0

aj,r,k +

r−1∑
j=0

bj,r,k


︸ ︷︷ ︸

α(n,k)

Theorem. 3.9 Let us consider a graph G = (V,E,w) with K strongly homogeneous clusters C∗1 , . . . , C
∗
K and

T = PAMST(G, uG , w, ε), and T ′ = Mw.r(T,w|T , s, τ, p) with s << p, τ . Given some cluster C∗i , and j 6= i s.t
e(ij) ∈ CutG(T ), if HT|C∗

i
(e(ij)) is verified, then HT ′|C∗

i
(e(ij)) is verified with probability at least

1−
Λ1 + (θ2

(ij) + δ)Λ2 − (Λ2
3 + θ2

(ij)Λ
2
4)

Λ1 + (θ2
(ij) + δ)Λ2 + 2Λ3Λ4

with the following notations:

• δ = s
p , θmin =

min
e∈E(T )

w(e)+τ

p

• θmax =
max

e∈E(T )
w(e)+τ

p ,θ(ij) = w(e(ij)+τ
p

• Λ1 = 24δ4nα(n, 4) + 12θmaxδ
3nα(n, 3) + 12θ2

maxδ
2nα(n, 2) + 4θ3

maxδnα(n, 1) + θ4
max

• Λ2 = 2δ2nα(1, 2) + 2θminδnα(1, 1) + θ2
min

• Λ3 = 2δ2nα(n, 2) + 2θmaxδnα(n, 1) + θ2
max

• Λ4 = δnα(1, 1) + θmin

Proof. Let τ > 0 and p > 1, according to the weight-release mechanism, all the randomized edge weights
w′(e) with e ∈ E(T ′) are sampled from independents Laplace distributions Lap(w(e)+τ

p , sp ). Given some cluster C∗i ,
and j 6= i s.t e(ij) ∈ CutG(T ), HT|C∗

i
(e(ij)) is verified. Finding the probability that HT ′|C∗

i
(e(ij)) is verified is equiv-

alent to find the probability P

 (maxXe)
2

e∈E(C∗i )

minXe
e∈E(C∗i )

< Xout

 with Xe ∼
indep

Lap(w(e)+τ
p , sp ) and Xout ∼ Lap(w(e(ij))+τ

p , sp ).

Denoting with Yi ∼
iid

Lap (θmax, δ) , Zi ∼
iid

Lap (θmin, δ) and Xout ∼ Lap(θ(ij), δ), one can lower bounded this



probability by P

 (maxYi)
2

i∈[|C∗
i
|−1]

minZi
i∈[|C∗

i
|−1]

< Xout

 . Choosing τ big enough s.t minZi
i∈[|C∗i |−1]

< 0 is negligible, one has

P

 (maxYi)
2

i∈[|C∗i |−1]

minZi
i∈[|C∗i |−1]

< Xout



=P

(maxYi)
2

i∈[|C∗i |−1]

− minZi
i∈[|C∗i |−1]

×Xout

︸ ︷︷ ︸
ϕ

< 0

 .
Moreover since τ , p� s, one has E(ϕ) ≤ 0. Therefore,

P [ϕ < 0] =P

ϕ− E(ϕ) < −E(ϕ)︸ ︷︷ ︸
≥0


=1− P [ϕ− E(ϕ) > −E(ϕ)]

Using the one-sided Chebytchev inequality, one gets

≥1− V(ϕ)

V(ϕ) + E(ϕ)2
= 1− V(ϕ)

E(ϕ2)

By giving an analytic form to E(ϕ) and V(ϕ) by using Theorem 7.1 one gets the expected result.

8 FURTHER EXPERIMENTS

Both in private and non-private settings, another successful experiment has been conducted on the real NYC ”Taxi &
Limousine Commission Trip Record”1 dataset taking the yellow and green taxis.

8.1 EXPERIMENTAL SETUP

From the dataset is built a graph, taking locations for vertices, edges for trips, and setting the weights by the number of
trips between locations. Some preprocessing is made on the graph. Edges with strictly less than 140 trips are removed
in order to sparsify the graph. Self-loops are removed since they are not supported by the clustering algorithm. Two
points belonging to the same airport are also merged because the goal is to distinguish airport places from Manhattan
and it was considered as noise. Finally, only the biggest connected component is kept since it is more relevant to
perform the clustering on it. As a result, the considered connected graph contains N = 162 nodes and m = 236
edges. For our clustering algorithm, the weights on the edges should represent a dissimilarity between two vertices.
So the following softmax-like transformation taken from the R package2, representing a dissimilarity function, is made
on the weights of the graph:

∀i ∈ [m], wi ← f(wi − wmin) ∈ (0, 1] (1)

where wmin = 140 is the minimum weight in the graph and f is defined such that for all weight w:

f(w) =
1

1 + exp
(

w−µ
σ×π/2

) (2)

where µ is the average weight of the edges before, namely the average number of trips on the edges between the
vertices and σ the standard deviation.

1http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml.
2https://www.rdocumentation.org/packages/DMwR/versions/0.4.1/topics/SoftMax



In this framework, the graph topology is public, and the private information is carried by the weights. In fact, what
an individual would want to be kept private is rather if he/she participated or not to a trip (thus keeping his/her
location/moves private).

8.2 RESULTS

Figure 4a shows an exact MST that has been given as input to DBMSTCLU algorithm. The results of the latter are
demonstrated in Figure 4b. Finally, Figures 4c, 4d and 4e exhibit the visualization results for PTCLUST algorithm
with ε ∈ {1.0, 0.7, 0.5}.
From only the number of trips made by yellow and green taxis between two locations (but not the GPS coordinates), the
private and non-private clustering algorithms (respectively PTCLUST and DBMSTCLU) separate Manhattans island
from the two neighboring airports. Even if the softmax-like function helps a lot, it is really important to emphasize
that geographical information have never been used to obtain these clustering partitions, which is an unusual, but
meaningful way of considering this kind of datasets.



(a) AN EXACT MST BEFORE DBMSTCLU CUTS

(b) DBMSTCLU
(c) PTCLUST, ε = 1.0

(d) PTCLUST, ε = 0.7
(e) PTCLUST, ε = 0.5

Figure 4: NYC taxis experiments.


