A Proof of Proposition 1

As shorthand, we let d(a, a ) = D(IP’(Yt o €| F, A* =

a*)||P(Y:,q € -|Ft)) and z(a) = y/d(a, a). By the defi-
nition of the instantaneous regret we have that
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where (a) follows from the linearity of expectation, (b)
uses the law of total probability, (c¢) follows from the
Pinsker’s inequality.

By the definition of the information gain of observing an
action, we have that
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where (d) follows from Proposition 1 of Liu et al. [2018],
(e) follows from the KL divergence form of mutual in-
formation and (f) follows by dropping some nonnega-
tive terms.
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As shorthand, we let z(a) = . Now, we

are ready to bound the information ration.
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where (g) follows from equation (17), (h) follows from

Cauchy-Schwartz inequality and (¢) follows from equa-
tion (20).

B Proof of Theorem 1

First observe that the entropy bounds the expected cumu-
lative information gain.
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Then, we bound the regret of TS-N.
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where (a) follows from Holder’s inequality and (b) fol-
lows from Proposition 1 and equation (26).

C Proof of Theorem 2

As shorthand, we let d(a, a )
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nition of the instantaneous regret, we have that
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where (a) follows from the linearity of expectation, (b)
uses the law of total probability, (c¢) follows from the fact
that w; = (1 — €)a; + €/ K and the rewards are bounded
by 1, (d) follows from the Pinsker’s inequality. Step (c¢)
allows us to decompose the regret into the regret from
uniform sampling and the regret from Thompson Sam-
pling. Thus, we can further relate the latter regret term to
the expected information gain.

By the definition of the information gain of observing an
action, we have that
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where (e) follows from Proposition 1 of Liu ez al. [2018],
(f) follows from the KL divergence form of mutual in-
formation and (g) follows by dropping some nonnegative
terms.
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As shorthand, we let ((a) = . Now we

are ready to bound the first term in equation (32).
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where (h) follows from Cauchy-Schwartz inequality, (7)
follows from equation (35) and (j) follows from the fact
that 7, > (1 — €)ay.
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Now, we are ready to bound the regret.
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where (k) follows from equation (32), () follows from
equation (40), (m) follows from Holder’s inequality and
(n) follows from equation (26).



