
Appendix-A

In this appendix we provide the materials to complete the
proof of Theorem 3.3.

Lemma 5.1. Let, r∗ = d(1/α) log((1/ρ) log(1/ρ))e.
Then, for every phase r ≥ r∗, the size of Kr can be lower
bounded as nr = dtαr e ≥ d α
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Then, for each r ≥ r∗, we can lower bound the size of the set
Kr as follows. As, nr is an integer, to ease the calculation
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As, sαu grows with u faster than log su, therefore,

∀u ≥ u∗, sαu ≥
α

(1 + γ)ρ
log su. (6)

Therefore, recalling that r is an integer, for all values of
r ≥ du∗e, the statement of the lemma follows.

Assuming r∗ = dr∗e, below we present the detailed steps

for obtaining (3) in the proof of Theorem 3.3.
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Below are the detailed steps for obtaining (4) in the proof
of Theorem 3.3.
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for some constant C ′.

Appendix-B

For the experiments in Section 4.1, we have used four prob-
lem instances, namely I-P, I-N, I-W, and I-S. For each in-
stance, the mean reward is a Lipschitz-continuous function
over the set of arms, which is [0, 1]. Figure 2 presents a
visualisation; the precise mathematical specifications are
provided below.

I-P (Parabolic): The mean function is a segment of a
parabola with µ(x) = 1 for x = 0.5, and µ(x) = 0 for
x ∈ {0, 1}. Precisely, µ(x) = 1− 4(x− 0.5)2.

I-N (Notch): The mean function has value 0.5 everywhere
except in the interval [0.25, 0.45], where it forms a notch



and attains the value 1 at 0.35. Precisely,

µ(x) =

{
0.5 if |x− 0.35| > 0.1

1− 5 · |x− 0.35| otherwise.

I-W (Wave): The mean function is a smooth approximation
of a rectangular wave form. The interval [0, 1] is divided
into ten equal sub-intervals, each of length 0.1. Let [a, b]
be a sub-interval, ε = 0.01, and f(x, c, a, b) = 6y5 −
15y4 + 10y3 where y = (x − c)/(b − a). Here f(·) is a
SMOOTHSTEP function (Ebert et al., 2002). Then µ(x) on
each sub-interval [a, b] is given by

µ(x) =


0.5 if x ∈ [a, a+ 2ε] ∪ [a+ 8ε, b]

0.5 + 0.5f(x, a, a, b) if x ∈ [a+ 2ε, a+ 3ε]

0.5 + 0.5f(x, b, a, b) if x ∈ [a+ 7ε, a+ 8ε]

1 otherwise.

I-S (Smooth Step): The mean is a sigmoid function whose
both ends are flat. Borrowing the definition of f(·) from
instance I-W,

µ(x) =


0.5 if x ∈ [0, 0.4]

1 if x ∈ [0.6, 1]

f(x, 0.4, 0.4, 0.6) otherwise.


