Appendix-A

In this appendix we provide the materials to complete the
proof of Theorem 3.3.
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As, s& grows with u faster than log s,,, therefore,

Yu > u*, sy > log s,,. (6)
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Therefore, recalling that r is an integer, for all values of
r > [u*], the statement of the lemma follows. O

Assuming r* = [r*], below we present the detailed steps

for obtaining (3) in the proof of Theorem 3.3.
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Below are the detailed steps for obtaining (4) in the proof
of Theorem 3.3.
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for some constant C”.

Appendix-B

For the experiments in Section 4.1, we have used four prob-
lem instances, namely I-P, I-N, I-W, and I-S. For each in-
stance, the mean reward is a Lipschitz-continuous function
over the set of arms, which is [0, 1]. Figure 2 presents a
visualisation; the precise mathematical specifications are
provided below.

I-P (Parabolic): The mean function is a segment of a
parabola with p,y = 1 for x = 0.5, and p(,) = 0 for
x € {0,1}. Precisely, fi(;) = 1 — 4(z — 0.5).

I-N (Notch): The mean function has value 0.5 everywhere
except in the interval [0.25, 0.45], where it forms a notch



and attains the value 1 at 0.35. Precisely,

_ f05if |2 —0.35| > 0.1
H@ = 1-5. |& — 0.35] otherwise.

I-W (Wave): The mean function is a smooth approximation
of a rectangular wave form. The interval [0, 1] is divided
into ten equal sub-intervals, each of length 0.1. Let [a, b]
be a sub-interval, ¢ = 0.01, and f(x,c,a,b) = 6y° —
15y* + 10y® where y = (x — ¢)/(b — a). Here f(-) is a
SMOOTHSTEP function (Ebert et al., 2002). Then () on
each sub-interval [a, b] is given by

0.5if x € [a,a + 2¢] U [a + 8¢, b]

0.5+ 0.5f(z,a,a,b) if z € [a+ 2¢, a + 3¢
0.5+ 0.5f(z,b,a,b) if z € [a+ Te,a + 8¢
1 otherwise.

Ha) =

I-S (Smooth Step): The mean is a sigmoid function whose
both ends are flat. Borrowing the definition of f(-) from
instance I-W,

0.5if = € [0,0.4]
My = § Lifz €[0.6,1]
f(x,0.4,0.4,0.6) otherwise.



