Appendix-A

In this appendix we provide the materials to complete the proof of Theorem 3.3.

Lemma 5.1. *Let,* $r^* = [(1/\alpha) \log((1/\rho)) \log(1/\rho))]$. *Then, for every phase* $r \geq r^*$ *, the size of* \mathcal{K}_r *can be lower bounded as* $n_r = \lceil t_r^{\alpha} \rceil \geq \lceil \frac{\alpha}{(1+\gamma)\rho} \cdot \ln t_r^{\log e} \rceil$, wherein, $0.53 < \gamma \triangleq \max_x \frac{\log \log x}{\log x} < 0.531.$

Proof. We notice, for every, $r \geq r^*$, $t_r \geq \left[\left(\frac{1}{\rho} \log \frac{1}{\rho} \right)^{\frac{1}{\alpha}} \right]$. Then, for each $r \geq r^*$, we can lower bound the size of the set \mathcal{K}_r as follows. As, n_r is an integer, to ease the calculation let us define $s_u = 2^u$, where $u \in \mathbb{R}^+$, and s_u does not need to be an integer. Now, letting $u^* \stackrel{\text{def}}{=} \log \left(\frac{1}{\rho} \log \frac{1}{\rho} \right)^{\frac{1}{\alpha}}$, we get

$$
\frac{1}{\rho} \log s_{u^*}
$$
\n
$$
= \frac{1}{\rho} \log \left(\frac{1}{\rho} \log \frac{1}{\rho} \right)^{\frac{1}{\alpha}}
$$
\n
$$
= \frac{1}{\alpha \rho} \left(\log \frac{1}{\rho} + \log \log \frac{1}{\rho} \right)
$$
\n
$$
= \frac{1}{\alpha \rho} \log \frac{1}{\rho} \left(1 + \frac{\log \log \frac{1}{\rho}}{\log \frac{1}{\rho}} \right)
$$
\n
$$
\leq \frac{1 + \gamma}{\alpha \rho} \log \frac{1}{\rho} \left[\text{as } \gamma \stackrel{\text{def}}{=} \max_{x} \frac{\log \log x}{\log x} \right]
$$
\n
$$
= \frac{1 + \gamma}{\alpha} \left(\frac{1}{\rho} \log \frac{1}{\rho} \right)
$$
\n
$$
= \frac{1 + \gamma}{\alpha} s_{u^*}^{\alpha}.
$$
\n
$$
\implies s_{u^*}^{\alpha} \geq \frac{\alpha}{(1 + \gamma)\rho} \log s_{u^*}.
$$

As, s_u^{α} grows with u faster than $\log s_u$, therefore,

$$
\forall u \ge u^*, \ s_u^{\alpha} \ge \frac{\alpha}{(1+\gamma)\rho} \log s_u. \tag{6}
$$

Therefore, recalling that r is an integer, for all values of $r \geq \lceil u^* \rceil$, the statement of the lemma follows. \Box

Assuming $r^* = \lceil r^* \rceil$, below we present the detailed steps

for obtaining (3) in the proof of Theorem 3.3.

$$
\sum_{r=1}^{\log T} t_r \Pr\{E_r(\rho)\}
$$
\n
$$
= \sum_{r=1}^{r^*-1} t_r \Pr\{E_r(\rho)\} + \sum_{r=r^*}^{\log T} t_r \Pr\{E_r(\rho)\}
$$
\n
$$
\leq \sum_{r=1}^{r^*-1} t_r + \sum_{r=r^*}^{\log T} t_r^{1-\frac{\alpha \log e}{1+\gamma}} \leq t_{r^*} + \sum_{r=r^*}^{\log T} t_r^{1-\frac{\alpha \log e}{1+\gamma}}
$$
\n
$$
\leq t_{r^*} + \sum_{j=1}^{\log T-r^*} (T/2^j)^{1-\frac{\alpha \log e}{1+\gamma}}
$$
\n
$$
\leq 2^{\left[\log\left(\frac{1}{\rho}\log\frac{1}{\rho}\right)\frac{1}{\alpha}\right]} + T^{1-\frac{\alpha \log e}{1+\gamma}} \sum_{j=0}^{\log T-r^*} \left(\frac{1}{2}\right)^{j(1-\frac{\alpha \log e}{1+\gamma})}
$$
\n
$$
< 2^{\log\left(\frac{1}{\rho}\log\frac{1}{\rho}\right)\frac{1}{\alpha}} + T^{1-\frac{\alpha \log e}{1+\gamma}} \sum_{j=0}^{\infty} \left(\frac{1}{2}\right)^{j(1-\frac{\alpha \log e}{1+\gamma})}
$$
\n
$$
= O\left(2^{\log\left(\frac{1}{\rho}\log\frac{1}{\rho}\right)\frac{1}{\alpha}} + T^{1-\frac{\alpha \log e}{1+\gamma}}\right)
$$
\n
$$
= O\left(\left(\frac{1}{\rho}\log\frac{1}{\rho}\right)^{\frac{1}{\alpha}} + T^{1-\frac{\alpha \log e}{1+\gamma}}\right).
$$

Below are the detailed steps for obtaining (4) in the proof of Theorem 3.3.

$$
\sum_{r=r^*}^{\log T} C\sqrt{n_r t_r} = \sum_{j=0}^{\log T-r^*} C\sqrt{\frac{T}{2^j} \left(\frac{T}{2^j}\right)^{\alpha}}
$$

$$
= C T^{(1+\alpha)/2} \cdot \sum_{j=0}^{\log T-r^*} \left(\frac{1}{2^{(1+\alpha)/2}}\right)^j
$$

$$
< C T^{(1+\alpha)/2} \cdot \sum_{j=0}^{\infty} \left(\frac{1}{2^{(1+\alpha)/2}}\right)^j
$$

$$
\leq C' T^{(1+\alpha)/2}
$$

for some constant C' .

Appendix-B

 (5)

For the experiments in Section 4.1, we have used four problem instances, namely I-P, I-N, I-W, and I-S. For each instance, the mean reward is a Lipschitz-continuous function over the set of arms, which is [0, 1]. Figure 2 presents a visualisation; the precise mathematical specifications are provided below.

I-P (Parabolic): The mean function is a segment of a parabola with $\mu(x) = 1$ for $x = 0.5$, and $\mu(x) = 0$ for $x \in \{0, 1\}$. Precisely, $\mu_{(x)} = 1 - 4(x - 0.5)^2$.

I-N (Notch): The mean function has value 0.5 everywhere except in the interval [0.25, 0.45], where it forms a notch and attains the value 1 at 0.35. Precisely,

$$
\mu_{(x)} = \begin{cases} 0.5 \text{ if } |x - 0.35| > 0.1\\ 1 - 5 \cdot |x - 0.35| \text{ otherwise.} \end{cases}
$$

I-W (Wave): The mean function is a smooth approximation of a rectangular wave form. The interval $[0, 1]$ is divided into ten equal sub-intervals, each of length 0.1. Let $[a, b]$ be a sub-interval, $\epsilon = 0.01$, and $f(x, c, a, b) = 6y^5$ $15y^{4} + 10y^{3}$ where $y = (x - c)/(b - a)$. Here $f(\cdot)$ is a SMOOTHSTEP function (Ebert et al., 2002). Then $\mu(x)$ on each sub-interval $[a, b]$ is given by

$$
\mu(x) = \begin{cases}\n0.5 \text{ if } x \in [a, a + 2\epsilon] \cup [a + 8\epsilon, b] \\
0.5 + 0.5f(x, a, a, b) \text{ if } x \in [a + 2\epsilon, a + 3\epsilon] \\
0.5 + 0.5f(x, b, a, b) \text{ if } x \in [a + 7\epsilon, a + 8\epsilon] \\
1 \text{ otherwise.}\n\end{cases}
$$

I-S (Smooth Step): The mean is a sigmoid function whose both ends are flat. Borrowing the definition of $f(\cdot)$ from instance I-W,

$$
\mu_{(x)} = \begin{cases} 0.5 \text{ if } x \in [0, 0.4] \\ 1 \text{ if } x \in [0.6, 1] \\ f(x, 0.4, 0.4, 0.6) \text{ otherwise.} \end{cases}
$$