
6 APPENDIX

6.1 BOUND TIGHTENING

The quality of the bound in theorem 1 depends crucially
on having bounds on all the intermediate pre and post
activations zl, xl. In this section, we describe how these
bounds may be derived. One simple way to compute
bounds on neural activations is to use interval arithmetic
given bounds on the input x0 ≤ x ≤ x0. Bounds at
each layer can then be computed recursively for l =
0, . . . , L− 1 as follows:

zl =
[
W l
]
+
xl +

[
W l
]
−x

l + bl (11a)

zl =
[
W l
]
+
xl +

[
W l
]
−z

l + bl (11b)

xl+1 = hl
(
zl
)

(11c)

xl+1 = hl
(
zl
)

(11d)

However, these bounds could be quite loose and could
be improved by solving the optimization problem

max
z0,...,zL−1

x1,...,xL−1

xlk (12a)

s.t (5b), (5c), (5d) (12b)

We can relax this problem using dual relaxation ap-
proach from the previous section and the optimal value
of the relaxation would provide a new (possibly tighter)
upper bound on xlk than xlk. Further, since our relaxation
approach is anytime (ie for any choice of dual variables
we obtain a valid bound), we can stop the computation at
any time and use the resulting bounds. This is a signifi-
cant advantage compared to previous approaches used in
[Bunel et al., 2017]. Similarly, one can obtain tighter up-
per and lower bounds on xl for each value of l, k. Given
these bounds, one can infer tighter bounds on zl using
(11).

Plugging these tightened bounds back into (6) and re-
running the dual optimization, we can compute a tighter
upper bound on the verification objective.

6.2 CONJUGATES OF TRANSFER FUNCTIONS

We are interested in computing g? = maxy∈[y,y] g(y) =

µy − λh (y). This is a one dimensional optimization
problem and can be computed via brute-force discretiza-
tion of the input domain in general. However, for most
commonly used transfer functions, this can be computed
analytically. We derive the analytical solution for various
commonly used transfer functions:
ReLUs: If h is a ReLU, g(y) is piecewise linear and
specifically is linear on [y, 0] and on [0, y] (assuming that
0 ∈ [y, y], else g(y) is simply linear and can be optimized

by setting y to one of its bounds). On each linear piece,
the optimum is attained at one of the endpoints of the in-
put domain. Thus, the overall maximum can be obtained
by evaluating g at y, y, 0 (if 0 ∈ [y, y]). Thus,

g? =

{
max

(
g(y), g(y), g(0)

)
if 0 ∈ [y, y]

max
(
g(y), g(y)

)
otherwise

.

Sigmoid: If h is a sigmoid, we can consider two cases: a)
The optimum of g is obtained at one of its input bounds
or b) The optimum of g is obtained at a point strictly in-
side the interval [y, y]. In case (b), we require that the
derivative of g vanishes, i.e:µ − λσ(y)(1 − σ(y)) = 0.
Since σ(y) ∈ [0, 1], this equation only has a solu-
tion if λ 6= 0 and µ

λ ∈
[
0, 14
]

In this case, the solu-

tions are σ(y) =
1±
√

1− 4µ
λ

2 Solving for y, we obtain

y = σ−1
(

1±
√

1− 4µ
λ

2

)
where σ−1 is the logit function

σ−1(t) = log
(

t
1−t

)
. We only consider these solutions

if they lie within the domain [y, y]. Define:

y1(µ, λ) = max

y,min

y, 1−
√
1− 4µ

λ

2


y2(µ, λ) = max

y,min

y, 1 +
√
1− 4µ

λ

2


Thus, we obtain the following expression for g?:{
max

(
g
(
y
)
, g (y)

)
if λ = 0 or µλ 6∈ [0, 14 ]

max
(
g
(
y
)
, g (y) , g (y1(µ, λ)) , g (y2(µ, λ))

)
otherwise

Tanh: Define

y1(µ, λ) = max

(
y,min

(
y, arctanh

(√
1− µ

λ

)))
y2(µ, λ) = max

(
y,min

(
y, arctanh

(√
1− µ

λ

)))
and obtain g? to be

max
(
g
(
y
)
, g (y)

)
if λ = 0 or µλ 6∈ [0, 1]

max
(
g
(
y
)
, g (y) , g (y1(µ, λ)) , g (y2(µ, λ))

)
otherwise

6.2.1 MaxPool

If h is a max-pool, we need to deal with it layer-wise and
not component-wise. We have h (y) = max (y1, . . . , yt)
and are interested in solving for

g? = max
y∈[y,y]

(µ)
T
y − λh (y)



Note here that λ is a scalar while µ is a vector. This can
be solved by considering the case of each component of
y attaining the maximumum separately. We look at the
case where yi attains the maximum below:

max
y∈[y,y],yi≥yj ∀j 6=i

(µ)
T
y − λyi

Fixing yi and optimizing the other coordinates, we obtain

max
yi∈[y

i
,yi]

∑
j 6=i,yi≥yj

max
(
µjyj , µjyj

)
+

∑
j 6=i,yi≤yj

max
(
µjyi, µjyj

)
− (µi − λ) yi

This one-dimensional function can be optimized via bi-
nary search on yi. After solving for each i, taking the
maximum over i gives the value g?

6.2.2 Upper bounds for general nonlinearities

In general, we can compute an upper bound on g even
if we cannot optimize it exactly. The idea is to decou-
ple the y from the two terms in g: µy and −λh(y) and
optimize each independently. However, this gives a very
weak bound. This can be made much tighter by apply-
ing it separately to a decomposition of the input domain
[y, y] = ∪i[ai, bi]:

max
y∈[ai,bi]

g(y) ≤ max(µai, µbi)+max (−λh(ai),−λh(bi))

Finally we can bound max[y,y] g(y) using

max
y∈[y,y]

g(y) ≤

max
i

(max(µai, µbi) + max (−λh(ai),−λh(bi)))

As the decomposition gets finer, ie, |ai − bi| → 0, we
obtain an arbitrarily tight upper bound on g) this way.

6.3 OPTIMIZING OVER THE INPUT
CONSTRAINTS

In this section, we discuss solving the optimization prob-
lem defining f0(µ0) in (7)

max
x∈Sin

(WTµ)Tx+ bTµ

where we dropped the superscript (0) for brevity. For
commonly occuring constraint sets Sin, this problem can
be solved in closed form easily:
Norm constraints: Consider the case Sin = ‖x− x̂‖ ≤

ε. In this case, we by Holder’s inequality, the objective is
larger than or equal to

bTµ−
∥∥WTµ

∥∥
?

where ‖·‖? is the dual norm to the norm ‖‖. Further this
bound can be achieved for an appropriate choice of x.
Hence, the optimal value is precisely bTµ−

∥∥WTµ
∥∥
?
.

Combinatorial objects: Linear objectives can be opti-
mized efficiently over several combinatorial structures.
For example, if x is indexed by the edges in a graph
and Sin imposes constraints that x is binary valued and
that the edges set to 1 should form a spanning tree of the
graph, the optimal value can be computed using a maxi-
mum spanning tree approach.
Cardinality constraints: x may have cardinality con-
strained imposed on it: ‖x‖0 ≤ k, saying that at most
k elements of x can be non-zero. If further we have
bounds on x ∈ [x, x], then the optimization problem
can be solved as follows: Let v(µ) =

[
WTµ

]
+
� x +[

WTµ
]
− � x and let [v]i denote the i-th largest compo-

nent of v. Then the optimal value is
∑k
i=1[v(µ)]i+ b

Tµ.

6.4 PROOFS OF THEORETICAL RESULTS

6.4.1 NP-hardness of a verification of a single
hidden layer network

Consider the case of sigmoid transfer function with an
∞ norm perturbation. Then, the verification problem re-
duces to :

max
xin,z

∑
i

cihi (zi)

s.t z =Wx+ b,
∥∥xin − xnom∥∥∞ ≤ ε

This is an instance of a sigmoidal programming problem,
which is proved to be NP-hard in Udell and Boyd [2013]

6.4.2 Proof of theorem 2

Proof. In this case, since h is a relu, f̃ can be written as
(from section 6.2) as

f̃l,k(λ, µ) =


max

(
µzlk, (µ− λ) zlk, 0

)
if 0 ∈ [zlk, z

l
k]

max
(
µzlk, µz

l
k

)
if 0 if zlk ≤ 0

max
(
(µ− λ) zlk, (µ− λ) zlk

)
if zl ≥ 0

(13)



Now, the LP relaxation from [Ehlers, 2017] can be writ-
ten as

max cTxL

s.t zl =W lxl + bl, l = 0, . . . , L− 1

xl+1
k = zlk ∀l, k s.t zlk ≥ 0

xl+1
k = 0 if ∀l, k s.t zlk ≤ 0

xl+1
k ≥ 0, xl+1

k ≥ zlk, xl+1
k ≤

(
zlk − zlk

)( zlk
zlk − zlk

)
∀l, k s.t 0 ∈ [zlk, z

l
k]

zl ≤ zl ≤ zl, xl ≤ xl ≤ xl ∀l

We can rewrite this optimization problem as

max cTxL

s.t zl =W lxl + bl, l = 0, . . . , L− 1

xl+1
k = zlk ∀l, k s.t zlk ≥ 0

xl+1
k = 0 if ∀l, k s.t zlk ≤ 0

xl+1
k ≥ max

(
0, zlk

)
, xl+1
k ≤

(
zlk − zlk

)( zlk
zlk − zlk

)
∀l, k s.t 0 ∈ [zlk, z

l
k]

zl ≤ zl ≤ zl, xl ≤ xl ≤ xl ∀l

which is still a convex optimization problem, since all the
constraints are either linear of the form max(0, z) ≤ x
which is a convex constraint since the LHS is a convex
function and the RHS is linear.

Taking the dual of this optimization problem, we obtain

max
x,z

cTxL +
∑
l

(
µl
)T (

zl −W lxl − bl
)

+
∑

l,k:zlk≥0

λlk
(
xl+1
k − zlk

)
+

∑
l,k:zlk≤0

λlk
(
xl+1
k

)
+

∑
l,k:0∈[zlk,z

l
k]

(
λlk;a

(
xl+1
k −max

(
zlk, 0

)))
+

∑
l,k:0∈[zlk,z

l
k]

−
(
xl+1
k − slk

(
zlk − zlk

))
λlk;b

s.t zl ≤ zl ≤ zl, xl ≤ xl ≤ xl ∀l

where slk =
zlk

zlk−z
l
k

. Let λlk = λlk;a − λlk;b for l, k such

that 0 ∈ [zlk, z
l
k]. Further let Il,k = [zlk, z

l
k] and let Ia

denote the set of l, k such that zlk ≥ 0, Ib the set of l, k
such that zlk ≤ 0 and Ic the set of l, k such that 0 ∈ Il,k.

We can then rewrite the dual as

max
x

cTxL +

L−1∑
l=0

(
xl
)T (

λl −
(
W l
)T
µl
)
−
∑
l

(
µl
)T
bl

+
∑
l,k∈Ia

max
zlk∈[z

l
k,z

l
k]

(
µlk − λlk

)
zlk

+
∑
l,k∈Ib

max
zlk∈[z

l
k,z

l
k]

(
µlk
)
zlk

+
∑
l,k∈Ic

max
zlk∈Il,k

(
µlk + λlk;bs

l
k

)
zlk −

(
λlk;a

)
max

(
zlk, 0

)
+
∑
l,k∈Ic

−λlk,bslkzlk

s.t xl ≤ xl ≤ xl ∀l

We now solve for the maximum over zlk considering
three cases:
(a) l, k ∈ Ia: The maximization is over a linear function
and the maximum is attained at one of the bounds, hence
the maximum evaluates to

max
((
µlk − λlk

)
zlk,
(
µlk − λlk

)
zlk
)

This evaluates to f̃l,k
(
λlk, µ

l
k

)
for l, k ∈ Ia. (b) l, k ∈

Ib: The maximization is over a linear function and the
maximum is attained at one of the bounds, hence the
maximum evaluates to

max
((
µlk
)
zlk,
(
µlk
)
zlk
)

This evaluates to f̃l,k
(
λlk, µ

l
k

)
for l, k ∈ Ib. (c) l, k ∈

Ib: The maximization is over a piecewise linear function
and the maximum is attained at one of the bounds or at
the breakpoint 0, hence the maximum evaluates to

max
(
0,
(
µlk + λlk,bs

l
k

)
zlk,
(
µlk + λlk,b

(
slk − 1

)
− λlk

)
zlk
)

Adding the constant −λlk,bslkzlk we obtain

max
(
−λlk,bslkzlk, µlkzlk,

(
µlk − λlk

)
zlk
)

Minimizing the above expression with respect to λlk;b
subject to λlk;b ≥ max

(
0,−λlk

)
, we obtain

max

(
0, λlk

zlkz
l
k

zlk − zlk
, µlkz

l
k,
(
µlk − λlk

)
zlk

)
(since the expression is monotonically increasing in λlk;b,
minimizing it subject to these constraints we just set
λlk;b to the larger of its lower bounds). Now, for the
second term to attain the maximum, we require that
λlk ≤ 0, µlk = slkλ

l
k, in which case all the last three terms

attain the maximum. Thus, the maximum is equal to the
max of three terms:

max
(
0, µlkz

l
k,
(
µlk − λlk

)
zlk
)



showing that the expression evaluts to f̃l,k
(
λlk, µ

l
k

)
for

l, k ∈ Ic.

Thus, the dual objective is equal to

max
x:xl≤xl≤xl

cTxL +

L−1∑
l=0

(
xl
)T (

λl −
(
W l
)T
µl
)

−
∑
l

(
µl
)T
bl

+
∑
l,k

f̃l,k
(
λlk, µ

l
k

)
Given this, the rest of the dual exactly matches the cal-
culations from section 3.3.

6.4.3 Proof of theorem 3

Proof. We leverage results from [Polyak, 2003] which
argues that a smooth nonlinear function can be effici-
cently optimized over a “small enough” ball. Specif-
ically, we use theorem 7 from [Polyak, 2003]. In or-
der to apply the theorem, we need to bound the Lips-
chitz costant of the derivative of the function f(x) =∑
i cihi(Wix+ bi). Writing down the derivative, we ob-

tain
f ′(x) =WT diag (c)h′(Wx+ b)

Thus,

f ′(x)− f ′(y)
=WT diag (c) (h′(Wx+ b)− h′(Wy + b))

We have

h′i(Wix+ bi)− h′i(Wiy + bi) = h′′i (t) (Wi(x− y))

where t ∈ [Wix+ bi,Wiy + bi]. Thus, we have

|h′i(Wix+ bi)− h′i(Wiy + bi)| ≤ γi|Wi(x− y)|2

So that

‖f ′(x)− f ′(y)‖2
≤ σmax

(
WT diag (c)

)
‖h′(Wx+ b)− h′(Wy + b)‖2

= σmax

(
WT diag (c)

)
×√∑

i

(h′i(Wix+ bi)− h′i(Wiy + bi))
2

≤ σmax

(
WT diag (c)

)
γ

√∑
i

|γiWi(x− y)|2

= σmax

(
WT diag (c)

)
‖diag (γ)W (x− y)‖2 γ

≤ σmax

(
WT diag (c)

)
σmax (diag (γ)W ) ‖x− y‖2

Thus f ′ is Lipschitz with Lipschitz constant
σmax

(
WT diag (c)

)
σmax (W ) γ. Further∥∥f ′ (x0)∥∥ =
∥∥WT diag (c)h′

(
Wx0 + b

)∥∥
Hence by theorem 7 from [Polyak, 2003], the theorem
follows.

6.4.4 PROOF OF THEOREM 4

Proof. We have ‖z‖2 ≤ ε =⇒ |Wiz| ≤ ‖Wi‖2 ε (by
Cauchy-Schwartz). Thus, for eacn i, we have

hi(z
nom
i +Wiz) =

= hi(z
nom
i ) + h′i(z

nom
i )Wiz +

h′′i (z
nom
i )

2
(Wiz)

2

+
1

6
h′′′i (x̃

0
i + ti (Wiz)) (Wiz)

3

The last term can be bounded above by

ηi
6
|Wiz|3 ≤

ηi
6
ζ3i ε

3

Adding the error terms over all terms in the objective
function, we obtain the result.


