
A NOTATIONAL TABLE

notation meaning
A set of agents
I set of incentives
P = A× I allowed agent-incentive pairs
Θa state (type) space of agent a
Pa,i transition probability kernel
β

(t)
a agent a’s type distribution at epoch t
πa,i stationary distribution of (a, i) ∈ P
µa,i expected reward from (a, i) ∈ P

τk
number of iterations matching offered
in epoch k, τk = τ0 + ζk, ζ > 0

rθaa,i random reward
Tr(a, i, θa) agent a’s reward distribution

rθa,i
time-averaged reward during epoch k
r
θa(k)
a,i = 1

τk

∑tk+1−1
t=tk

r
θa(t)
a,i

bξl maximum number of edges of class ξl
G∗ greedy matching on weights (µa,i)

g∗j
the edge having the j–th
largest weight (µa,i) in G∗.

i∗(a) incentive agent a is matched to in G∗

L∗j
set of (a, i) ∈ P that become infeasi-
ble when g∗j is added to matching
but not before that

Sa
set of edges (a, i) such that
µa,i ≤ µa,i∗(a)

S
⋃
a∈A Sa

m number of agents & incentives
n the total number of epochs

θa(t)
state of agent a at the beginning
of epoch t

Ca,i, ρa,i constants specific to each edge (a, i)
C∗ max(a,i)∈P\S Ca,i

Rα(n)
regret of given matching policy
α at the end of n epochs

Ta,i(n)
number of times edge (a, i)
selected in first n epochs

Rθ,ka,j
reward on edge (a, i) when selected
for the k–th time given θa

R̄ka,j
average reward on first k times (a, i)

is selected, i.e., 1
k

∑k
i=1R

θ,k
a,j

θa(tla,i)
agent a’s state at the beginning
of epoch l

Xk
a,i Rθ,ka,i − E[Rθ,ka,i |F

k−1
a,i ]

Y ka,i
∑k
j=1X

j
a,i a martingale

Qa,i(k)
Ca,i

2

(
1

ζ+τ0
+ 1

ζ log
(

1 + kζ
τ0

))
cka,j(t)

upper confidence parameter for edge
(a, j) after being selected for k times

uka,j(t)
average reward plus upper confidence
parameter for (a, j), i.e., R̄ka,j + cka,j

B PROOFS

B.1 PROOF OF THEOREM 1

Proof Our proof relies on what is referred to in the
matching literature as a charging argument. In sim-
ple terms, we take each edge belonging to the bench-
markM∗ and identify a corresponding edge inG∗ whose
weight is larger than that of the benchmark edge. This
allows us to charge the weight of the original edge to an
edge in G∗. During the charging process, we ensure that
no more than three edges inM∗ are charged to each edge
in G∗. This gives us an approximation factor of three.

Suppose that an edge (a, i) belongs to M∗ but not G∗.
This implies that the edge (a, i) was removed from the
setE′ at some iteration during the course of Algorithm 1.
Moreover, as per the algorithm, this removal can happen
in one of two ways: (i) via Line 7, in which case there
exists some edge (a, i′) or (a′, i) that was selected to G∗

ahead of (a, i), and (ii) via Line 8 in which case bξj edges
belonging to class ξj = c(a, i) were added to G∗ before
(a, i), as a result of which the capacity constraint for that
class was met. Based on this, we divide the analysis into
two cases.

Case I: Removal via Line 7. Without loss of generality,
suppose that (a′, i) is the edge added to G∗ during the
iteration in which (a, i) is removed. Then, by definition,
since (a′, i) = arg max(a′′,i′′)∈E′ w(a′′, i′′) before the
removal of (a, i) from E′, we infer that

w(a, i) ≤ w(a′, i) (1)

Case II: Removal via Line 8. In this case, since the class
ξj = c(a, i) has reached its capacity limit, and since the
greedy algorithm selects edges in the decreasing order
of weight, it must be the case that for every (a′, i′) ∈
G∗ ∩ ξj , we have that

w(a, i) ≤ w(a′, i′).

Since G∗ ∩ ξj contains exactly bξj , we can average the
above equation over the edges in G∗ ∩ ξj to get that

w(a, i) ≤ 1
bξj

∑
(a′,i′)∈G∗∩ξj w(a′, i′). (2)

Finally, we note that if edge (a, i) belongs to both the
greedy matching and M∗, we can simply ‘charge the
weight of (a, i)’ to itself.

Now we can complete the proof by summing (1) and (2)
over all the edges in M∗. Formally, let M∗ = M∗1 ∪M∗2
such that M∗1 denotes the set of edges that are present
in both M∗ and G∗ as well as the edges that fall under
the first case. Similarly, let M∗2 denote the edges that fall



under the second case. Summing 1 over all of the edges
in M∗1 , we get that∑

(a,i)∈M∗1
w(a, i) ≤ 2

∑
(a,i)∈G∗ w(a, i). (3)

The factor of two in the right hand side comes from the
fact that for any given edge (a, i) in G∗, at most two
edges in M∗1 can be charged to this edge. Indeed, the
only edges that can be charged to (a, i) must contain ei-
ther the node a or the node i and in a matching, each
node can appear in at most one edge. Next, summing (2)
over all of the edges in M∗2 , we get that∑

(a,i)∈M∗2
w(a, i) =

∑
ξj∈C

∑
(a,i)∈M∗2∩ξj

w(a, i)

≤
∑
ξj∈C

∑
(a,i)∈ξj∩G∗ w(a, i)

=
∑

(a,i)∈G∗ w(a, i). (4)

To see why this is the case, first observe that in (2), for
each edge in class ξj belonging to M∗2 , all of the edges
in class ξj in matching G∗ appear in the right hand side
with coefficient 1

bξj
. By definition,there are at most bξj

edges of class ξj inM∗ and exactly bξj edges of this class
belong to G∗—if this were not the case, Line 8 of Algo-
rithm 1 would not be used. To conclude, the coefficient
for each edge in the right hand side is increased by 1

bξj

for every edge in M∗2 ∩ ξj , and summing over all edges,
we get a coefficient of one, therefore validating (4).

Summing (3) and (4), concludes the proof.

B.2 PROOF OF PROPOSITION 1

Properties of Markov Chains Before decomposing
the regret, we briefly digress to recall some classic results
on mixing of Markov chains. For an ergoidic (i.e. irre-
ducible and aperiodic) transition matrix on a finite state
space Θ, let π be its stationary distribution and P̃ denote
the time reversal of its transition matrix P—that is,

P̃ (θ, θ′) =
π(θ′)P (θ′, θ)

π(θ)
.

The time reversal kernel P̃ is also ergodic with stationary
distribution π. Define the multiplicative reversiblization
M(P ) of P by M(P ) = PP̃ which is a reversible tran-
sition matrix itself. The eigenvalues of M(P ) are real
and non-negative so that the second largest eigenvalue
λ1(M) ∈ [0, 1] (Fill, 1991). Define chi-squared distance
from stationary at time n by

χ2
n =

∑
θ

(πn(θ)− π(θ))2

π(θ)
.

where πn =
∑
θ π0(θ)Pn(θ, ·).

Proposition 1 ((Fill, 1991)). Let P be an er-
godic transition matrix on a finite state space Θ
and let π be the stationary distribution. Then
4‖πn − π‖2 ≤

(
λ1(M)

)n
χ2

0. Furthermore,

maxπ0∈P(Θ)

∥∥∑
θ P

n(θ, ·)π0(θ) − π(·)
∥∥2 ≤

1
4

(1−minθ π(θ))2

minθ π(θ)

(
λ1(M)

)n
.

where P(Θ) us the space of probability distributions on
Θ1.

From the perspective of a general epoch mixing policy
α, the above proposition provides a bound on how close
the distribution on types for the Markov chain is after τk
time steps has elapsed when edge (a, i) is chosen.

Lemma 1. Consider an arbitrary epoch mixing policy α
that selects a matching α(k) during the k–th epoch for
τk iterations. For each arm (a, i) ∈ α(k), there exists a
constant Ca,i > 0 such that

∣∣E[µa,i − r
θa(k)
a,i

]∣∣ ≤ Ca,i
τk

(5)

The proof is a direct consequence of Proposition 1.

Proof Noting that µj =
∑
θ r

j
θπ

j(θ), a direct applica-
tion of Proposition 1 gives us the following:∣∣∣E [∑θ r

j
θπ
j(θ)− 1

τk

∑tk+1−1
t=tk

rjθ,t

∣∣∣θtk]∣∣∣
≤ 1

τk

∑tk+1−1
t=tk

∑
θ

∣∣(πj(θ)− βt(θ))∣∣
≤ 1

τk

∑tk+1−1
t=tk

∑
θ

∣∣(πj(θ)−∑θ′ P
t−tk
j (θ′, θ)βtk(θ′))

∣∣
= 1

τk

∑tk+1−1
t=tk

‖πj(·)−
∑
θ′ P

t−tk
j (θ′, ·)βtk(θ′)‖1

≤ 1
τk

∑tk+1−1
t=tk

Cjλ
t−tk
j =

Cj(1−λ
τk
j )

τk(1−λj)

This is simply because of the fact that the expected re-
ward is less than 1 by construction, the triangle inequal-
ity, and Fubini’s theorem (Folland, 2007, Theorem 2.37).

We also remark that Proposition 1 also implies that this
bound holds for all β(k)

a (i.e. the distribution of agent a’s
type at the beginning of epoch k) and hence, is indepen-
dent of the algorithm α.

Proof [Proposition 1] Consider the expression for regret
from Definition 1:

Rα(n) = n
∑
g∗j∈G∗

µg∗j −
∑n
k=1

∑
(a,i)∈α(k) E[rθa,i],

1We remark that the bound in the above equation is eas-
ily computed by noting that χ2

n is always bounded above by
(minθ π(θ))

−1(1−minθ π(θ))
2.



By adding and subtracting
∑

(a,i)∈P T
α
a,i(n)µa,i from

the above equation, the cumulative regret can be written
as:

Rα(n) = n
∑
a∈A

µa,i∗(a) −
∑

(a,i)∈P

Tαa,i(n)µa,i

+
∑

(a,i)∈P

Tαa,i(n)µa,i −
n∑
k=1

∑
(a,i)∈α(k)

r
θa(k)
a,i

=
∑

(a,i)∈P

Tαa,i(n)µa,i∗(a) −
∑

(a,i)∈P

Tαa,i(n)µa,i

+
∑

(a,i)∈P

Tαa,i(n)µa,i

−
n∑
k=1

∑
(a,i)∈P

1{(a, i) ∈ α(k)}rθa(k)
a,i

=
∑

(a,i)∈P

Tαa,i(n)(µa,i∗(a) − µa,i)

+

n∑
k=1

∑
(a,i)∈P

1{(a, i) ∈ α(k)}
(
µa,i − r

θa(k)
a,i

)
(6)

where 1(·) is the indicator function—e.g., 1{(a, i) ∈
α(k)} is one when the edge (a, i) belongs to the match-
ing α(k). In the term

∑
(a,i)∈P T

α
a,i(n)µa,i∗(a), µa,i∗(a)

appears exactly n times. Although one would expect
the matching chosen by the policy (at least in the ini-
tial stages) to be sub-optimal compared to the benchmark
greedy matching, it is highly possible that some indi-
vidual edges (arms) may outperform those in the greedy
matching. To account for this, we separate the edges in
P into the sub-optimal edges and the super-optimal ones.
Formally, for any given a ∈ A, define the set of sub-
optimal edges Sa as follows:

Sa = {(a, i) | µa,i∗(a) ≥ µa,i ∀i ∈ I}.

Suppose that S =
⋃
a∈A Sa. Then, the regret bound in

Equation (6) can be simplified by ignoring the contribu-
tion of the terms in P \ S . That is, since µa,i∗(a) < µa,i
for all (a, i) ∈ P \ S , we have that:

Rα(n) ≤
∑

(a,i)∈S

Tαa,i(n)(µa,i∗(a) − µa,i)

+

n∑
k=1

∑
(a,i)∈P

1{(a, i) ∈ α(k)}
(
µa,i − r

θa(k)
a,i

)
.

(7)

Next, we separate the second term above into the con-
tribution of the edges in S and those in P \ S. That is,

∑n
k=1

∑
(a,i)∈P 1{(a, i) ∈ α(k)}

(
µa,i− r

θa(k)
a,i

)
can be

written as:
n∑
k=1

∑
(a,i)∈S

1{(a, i) ∈ α(k)}
(
µa,i − r

θa(k)
a,i

)
+

n∑
k=1

∑
(a,i)∈P\S

1{(a, i) ∈ α(k)}
(
µa,i − r

θa(k)
a,i

)
(8)

We can now use Lemma 1 to bound the difference be-
tween the empirical rewards and the stationary reward
during any given epoch. Suppose that τ0 ≥ 1 and
τk = τ0 + ζk with ζ a non-zero natural number2. An ap-
plication of Lemma 1 and the tower property of expecta-
tion allows us to bound the first term above, i.e., suppose
that T1 = E

[∑n
k=1

∑
(a,i)∈S 1{(a, i) ∈ α(k)}

(
µa,i −

r
θa(k)
a,i

)]
. Then,

T1 = Eα
[ n∑
k=1

∑
(a,i)∈S

1{(a, i) ∈ α(k)}E
[

µa,i − r
θa(k)
a,i

∣∣θa(k)
]]

≤ Eα
[ n∑
k=1

∑
(a,i)∈S

1{(a, i) ∈ α(k)}Ca,i
τk

]
≤ Eα

[ ∑
(a,i)∈S

n∑
k=1

1{(a, i) ∈ α(k)}Ca,i
τ0

]
≤

∑
(a,i)∈S

Ca,i
τ0

Eα[Tαj (n)] (9)

where we use the notation Eα to emphasize that
this expectation is now dependent only on the
algorithm where the number of times an arm
is chosen is a random variable. Analogously,
bound the second term of Equation 8, i.e., T2 =

E
[∑n

k=1

∑
(a,i)∈P\S 1{(a, i) ∈ α(k)}

(
µa,i − r

θa(k)
a,i

)]
T2 ≤ Eα

[ n∑
k=1

∑
(a,i)∈P\S

1{(a, i) ∈ α(k)}Ca,i
τk

]
≤

n∑
k=1

1

τk

∑
(a,i)∈P\S

Ca,iEα
[
1{(a, i) ∈ α(k)}

]
≤ C∗

n∑
k=1

1

τk

∑
(a,i)∈P

Eα
[
1{(a, i) ∈ α(k)}

]
≤ mC∗

n∑
k=1

1

τk
,

2There are other choices for the sequence {τk}; e.g., τk =
akτ0. The choice we make allows for tighter bounds.



where C∗ = max(a,i)∈P\S Ca,i. Note that for any given
epoch k, our policy selects at mostm edges in the match-
ing and therefore,

∑
(a,i)∈P\L Eα

[
1{(a, i) ∈ α(k)}

]
≤∑

(a,i)∈P Eα
[
1{(a, i) ∈ α(k)}

]
≤ m. Finally, we

can bound the harmonic summation using the fact that
τk = τ0 + ζk:

T2 ≤ mC∗
n∑
k=1

1

τk

≤ mC∗
1

ζ

(
1 +

∫ n−1+τ0/ζ

τ0/ζ

1

x
dx
)

≤ mC∗
1

ζ

(
1 + log

(n− 1

τ0
+ 1
))

(10)

Recall from the definition of the marginal infeasibility
sets in Equation (1) that for any given (a, i) ∈ P \ G∗,
there exists a unique edge g∗j ∈ G∗ such that (a, i) ∈ L∗j .
Define L−1(a, i) := g∗j ∈ G∗ such that (a, i) ∈ L∗j .
Now, we can define the reward gap for any given edge
(a, i) ∈ P as follows:

∆a,i = µa,i∗(a) − µa,i if (a, i) ∈ S
= µL−1(a,i) − µa,i if (a, i) ∈ (P \G∗) \ S
= µg∗j−1

− µg∗j if (a, i) = g∗j for j ≥ 2.

Going back to our regret lower bound in (7) and decom-
posing the second term using (9) and (10), we get the
main proposition.

B.3 PROOF OF THEOREM 2

Before proving Theorem 2, we state some useful supple-
mentary lemmas.
Lemma 2 (Azuma-Hoeffding Inequality (Azuma, 1967;
Hoeffding, 1963)). Suppose (Zk)k∈Z+

is a martingale
with respect to the filtration (Fk)k∈Z+ having bounded
differences, i.e., there are finite, non-negative constants
ck, k ≥ 1 such that |Zk − Zk−1| < ck almost surely.
Then for all t > 0

P (Zk − EZk ≤ −t) ≤ exp

(
− t2

2
∑N
k=1(ck)2

)
.

We define some notation that is useful for the follow-
ing lemma as well the proof of Theorem 2. Consider
the MG-EUCB algorithm described in Algorithm 2. Let
Rθ,ja,i be the cumulative reward received when arm (a, i)
is chosen for the j–th time where we include θ in the
subscript to note the state-dependence of the random re-

ward. That is, Rθ,ja,i = r
θa(tja,i)

a,i where, by an abuse of no-
tation, tja,i denotes the time instance at which edge (a, i)

is pulled for the j–th time and θa(tja,i) denotes the state
of agent a during that epoch.

Define the filtration Fka,i =

σ(Rθ,1a,i , . . . , R
θ,k
a,i , θa(tj1), . . . , θa(tjk))—that is, the

smallest σ-algebra generated by the random vari-
ables (Rθ,1a,i , . . . , R

θ,k
a,i , θa(t1a,i), . . . , θa(tka,i)). Let

Xk
a,i = Rθ,ka,i − E[Rθ,ka,i |F

k−1
a,i ] and Y ka,i =

∑k
j=1X

j
a,i.

We have that Y ka,i is a martingale since E[Y k+1
a,i |Fka,i] =

E[Xk+1
a,i |Fka,i] + E[Y ka,i|Fka,i] = Y ka,i (since Y ka,i is

Fka,i–measurable by construction) and E[|Y ka,i|] < ∞
(rewards are bounded). Moreover, the boundedness of
the rewards also implies the martingale Y ka,i has bounded
differences. Indeed, |Y ka,i − Y

k−1
a,i | = |Xk

a,i| ≤ 1 almost
surely since rewards are normalized to be on the interval
[0, 1], without loss of generality. Now, we are ready to
show an upper bound on the difference in the empirical
reward and the stationary state rewards.

Lemma 3. Given aperiodic, irreducible Markov chains
Pa,i with corresponding stationary distributions µa,i for
each (a, i) ∈ P and mixing sequence {τk} such that
τk = τ0 + ζk, τ0 ≥ 1, we have that∣∣∣E [µa,i − 1

k

∑k
j=1 E[Rθ,ja,i |F

j−1
a,i ]

]∣∣∣
≤ Ca,i

2k

(
1

ζ+τ0
+ 1

ζ log
(

1 + kζ
τ0

))
(11)

The proof of the above lemma follows a similar line of
reasoning as Lemma 1.

Proof Since Θ is a finite set with finite elements
(i.e. |x| < ∞ for all x ∈ Θ), we are able to use
analogous reasoning as was used in Proposition 1 along
with the Markov property on the conditional expecta-
tion E[Rji |F

j
i−1] to bound µj − 1

k

∑k
i=1 E[Rji |F

j
i−1] by

Lj(k)
k for some constant Lj(k). Indeed, the quantity

V =
∣∣∣E[µj − 1

k

∑k
i=1 E[Rji |F

j
i−1]

]∣∣∣ can be simplified
as follows:

V =
∣∣∣ 1k∑k

i=1

(
E
[
µj − E[Rji |F

j
i−1]

])∣∣∣
≤ 1

k

∑k
i=1 E

[∑
θ r

j
θπ
j(θ)−

E
[
(τ ji )−1

tji+1−1∑
t=tji

rjθ,t

∣∣∣F ji−1

]]
≤ 1

k

∑k
i=1 E

[
(τ ji )−1

∑tji+1−1

t=tji

∑
θ |πj(θ)− βt(θ)|

]
≤ 1

k

∑k
i=1

Cj
2 E
[
(τ ji )−1

∑tji+1−1

t=tji
(λj)

(t−tji )
]

≤ 1
k

∑k
i=1

Cj
2 E

[
(τ ji )−1(1− (λj)

τji )(1− λj)−1
]



≤ 1
k
Cj
2

1
1−λj

∑k
i=1 E

[
(τ ji )−1

]
,

where we have used the fact that the reward bounded al-
most surely on [0, 1]. Now, 1/τij is a random variable
with respect to the algorithm since at the i–th pull of arm
j we do not know a priori what iteration of the algo-
rithm we are on. However, at the i–th pull of arm, we
do know that the algorithm is at least at the i–th iter-
ation. Hence,

∑k
i=1 E

[
(τ ji )−1

]
≤
∑k
i=1(τ0 + ζi)−1.

Now, for any a ≥ 1 and positive integer k, we have
that

∑a+k
i=a (i)−1 ≤ 1

a + log(1 + k
a ). Indeed, rewrite

the summation in the lemma statement as
∑a+k
i=a i

−1 =

a−1+
∑a+k
i=a+1 i

−1 and apply the fundamental inequality,
(i)−1 ≤

∫ i
i−1

x−1dx, which holds for any i ≥ 1, repeat-
edly for i = a + 1, a + 2, . . . , a + k so that we have a
telescoping summation of integrals—i.e.∑a+k

i=a
1
i = 1

a +
∑a+k
i=a+1

1
i

≤ 1

a
+

∫ a+k

a

1

x
dx =

1

a
+ log

(
a+ k

a

)
.

Thus,
∑k
i=1(τ0 + ζi)−1 ≤ (ζ + τ0)−1 + 1

ζ log
(
1 + kζ

τ0

)
so that (11) holds.

Proof [Theorem 2] We begin by formalizing the choice
of the UCB parameter cka,i(t)—it is crucial that this pa-
rameter reflects the error due to both the Markov chain
and the randomness of rewards. Applying Lemma 3 to
our problem, we observe that the average error stemming
from the randomness in the user state after k pulls of the
edge (a, i) can be written as:∣∣∣E [µa,i − 1

k

∑k
j=1 E[Rθ,ja,i |F

j−1
a,i ]

]∣∣∣
≤ Ca,i

2k

(
1

ζ+τ0
+ 1

ζ log
(

1 + kζ
τ0

))
Based on this, for each edge (a, i) and ‘pull count’ k, we
define the constant Qa,i(k)

Qa,i(k) =
Ca,i

2

(
1

ζ + τ0
+

1

ζ
log

(
1 +

kζ

τ0

))
.

Finally, we can now define the confidence parameter as
follows:

cka,i(t) = Qa,i(k)/k +

√
6

k
log(t) +

4

k
log(m).

Coming back to the proof of Theorem 2, our primary
goal is to map every selection of a sub-optimal edge to
a condition on the relative empirical rewards between
edges that can then be resolved using Azuma-Hoeffding
inequality. Applying Lemma 1, we see that if MATCH-
GREEDY does not return the benchmark matching G∗

at epoch t and instead returns a matching α(t) 6= G∗, at
least one of the above conditions must fail. Alternatively,
this implies that one of the following two (inverse) con-
ditions must be true:

1. 1{∃j < j′|
(
ug∗

j′
(t) > ug∗j (t)

)
∧ (g∗j′ ∈ α(t))}

2. 1{∃j, (a, i) ∈ L∗j |
(
ug∗j (t) < ua,i(t)

)
∨ ((a, i) ∈

α(t))} = 1

To express the above conditions in a concise manner, let
us augment the sets L∗j to include edges from the greedy
matching. Specifically, for all 1 ≤ j ≤ m− 1, let L+

j =

L∗j ∪ {g∗j+1} and L+
m = L∗m. Observe that

⋃
j L

+
j =

P \ g∗1 . Now, we can formally say that if the matching
returned by the UCB algorithm during iteration t (call
this matching α(t)) does not coincide with the greedy
matching, then

1{∃1 ≤ j ≤ m, (a, i) ∈ L+
j | ug∗j (t)

< ua,i(t) ∧ (a, i) ∈ α(t)} = 1. (12)

We will use the notation R̄ka,i = 1
k

∑k
j=1R

θ,j
a,i . Since

Proposition 1 provides an upper bound for the regret in
terms of the number of times each (sub-optimal) edge
is chosen, it suffices to bound the quantity Ta′,i′(n),
which is the number of times our UCB algorithm selects
the edge (a′, i′) given that (a′, i′) ∈ S—i.e. µa′,i′ <
µa′,i∗(a′). Note that by definition, for any (a, i) ∈ S , the
edge (a′, i′) does not belong to the greedy benchmark
matchingG∗. Suppose that ` denotes an arbitrary integer
(to be formalized later). Then, we have that:

Ta′,i′(n) = 1 +
∑n
t=m+1 1{(a′, i′) ∈ α(t)}

≤ 1 +
∑n
t=m+1 1{∃j, (a, i) ∈ L

+
j | ug∗j (t)

< ua,i(t) ∧ (a, i) ∈ α(t)} (from (12))
≤ 1 +

∑n
t=m+1

∑m
j=1

∑
(a,i)∈L+

j
1{ug∗j (t) ≤

ua,i(t) ∧ (a, i) ∈ α(t)}
= 1 +

∑m
j=1

∑
(a,i)∈L+

j

∑n
t=m+1 1{ug∗j (t)

≤ ua,i(t) ∧ (a, i) ∈ α(t)}
≤ 1 +

∑m
j=1

∑
(a,i)∈L+

j

(
`

+
∑n
t=m+1 1{ug∗j (t) ≤ ua,i(t)

∧ (a, i) ∈ α(t) ∧ Ta,i(t) > `}
)

≤ 1 +
∑m
j=1

∑
(a,i)∈L+

j

(
`

+
∑n
t=m+1 1{ug∗j (t) ≤ ua,i(t)

∧ Ta,i(t) > `}
)

≤ `m2 +
∑m
j=1

∑
(a,i)∈L+

j

∑n
t=m+1 1{ug∗j (t)

≤ ua,i(t) ∧ Ta,i(t) > `}
≤ `m2 +

∑m
j=1

∑
(a,i)∈L+

j

∑n
t=m+1

(



1{min0<s<t u
s
g∗j

(t) ≤ max`≤k<t u
k
a,i(t)}

)
≤ `m2 +

∑m
j=1

∑
(a,i)∈L+

j

(
∑n
t=m+1

∑t−1
s=1

∑t−1
k=` 1{usg∗j (t) ≤ uka,i(t)}

)
= `m2 +

∑m
j=1

∑
(a,i)∈L+

j

∑n
t=m+1

∑t−1
s=1

(
∑t−1
k=` 1{R̄sg∗j + csg∗j (t) ≤ R̄ka,i + cka,i(t)}

)
Now, R̄sg∗j + csg∗j (t) ≤ R̄ka,i + cka,i(t) implies that atleast
one of the following must hold:

R̄sg∗j ≤ µg∗j − c
s
g∗j

(t) (13)

R̄ka,i ≥ µa,i + cka,i(t) (14)

µg∗j < µa,i + 2cka,i(t) (15)

Indeed, suppose that all three of the above inequalities
are false. Then, usg∗j (t) = R̄sg∗j + csg∗j (t) > µg∗j ≥ µa,i +

2cka,i(t) > R̄ka,i + cka,i(t) = uka,i(t), which is, of course,
a contradiction. Hence, if R̄sg∗j + csg∗j (t) ≤ R̄ka,i + cka,i(t),
then at least one of (13)–(15) holds. We bound the proba-
bility of events (13) and (14) using the Azuma-Hoeffding
inequality in Lemma 2 and find an ` such that (15) is al-
ways false for every j, (a, i) ∈ L+

j .

Towards this end, we apply Lemma 2 to the martingale
(Y ka,i)k∈Z+ . Note that by the law of conditional ex-
pectations, E[Y ka,i] = 0 so that Lemma 2 implies that
for each arm (a, i) and any t > 0, P (Y ka,i ≤ −t) ≤
exp(−t2/(2k)).

We need to relate the random variable Y ka,i to the dif-
ference of the empirical mean of the average cumulative
reward from its true value for each arm so that we can
bound this difference. Consider the event

ω =
{
µg∗j − R̄

s
g∗j
≥ γ

}
=
{
µg∗j −

1
s

∑s
l=1 E[Rθ,lg∗j

|F l−1
g∗j

]

+ 1
s

∑s
l=1 E[Rθ,lg∗j

|F l−1
g∗j

]− R̄sg∗j ≥ γ
}

=
{
µg∗j −

1
s

∑s
l=1 E[Rθ,lg∗j

|F l−1
g∗j

]− 1
sY

s
g∗j
≥ γ

}
where we have added and subtracted the random variable
1
s

∑s
l=1 E[Rθ,lg∗j

|F l−1
g∗j

]. By Lemma 3,

ω ⊂
{

1
sQg∗j (s)− 1

sY
s
g∗j
≥ γ

}
=
{

1
sY

s
g∗j
≤ 1

sQg∗j (s)− γ
}
.

Hence,

P
(
µg∗j − R̄

s
g∗j
≥ γ

)
≤ P

(1

s
Y sg∗j ≤

1

s
Qg∗j (s)− γ

)
≤ exp

(
− 1

2
s
(
γ − 1

s
Qg∗j (s)

)2)

so that with γ = csg∗j (t) =
√

6
s log t+ 4

s logm +
1
sQg∗j (s), we have,

P
(
µg∗j − R̄

s
g∗j
≥ csg∗j (t)

)
≤ t−3m−2.

Therefore, it follows that P (R̄sg∗j ≤ µg∗j − csg∗j (t)) ≤
t−3m−2 and P (R̄ka,i ≥ µa,i + cka,i(t)

∗) ≤ t−3m−2

which imply that (13) and (14) occur with very low prob-
ability.

Now, we choose ` to be the largest integer such that (15)
is always false. Indeed, we choose it such that

µg∗j − µa,i − 2cka,i(t)

> µg∗j − µa,i − 2

(
Qa,i(`)

` +
√

6 log t
` + 4 logm

`

)
> 0.

Plugging in Qa,i(`), we have

∆a,i − 2
(
Ca,i
2`

(
1

ζ+τ0
+ 1

ζ log
(

1 + `ζ
τ0

))
+
√

1
` 6 log t+ 1

` 4 logm
)
> 0. (16)

Let ˜̀= `ζ/τ0 so that

∆a,i − 2
(
Ca,i
2τ0

(
1
˜̀

ζ
ζ+τ0

+ 1
˜̀ log

(
1 + ˜̀

))
+
√

6 log t
` + 4 logm

`

)
> 0.

Since 1/x < 1/
√
x and 1/x log(1 + x) < 1/

√
x on

[1,∞), we have that

1
˜̀

ζ

ζ + τ0
+

1
˜̀

log
(

1 + ˜̀
)
<

ζ

ζ + τ0

1√
˜̀

+
1√

˜̀

so that (16) reduces to finding the largest integer ` such
that

∆a,i − 2

(
Ca,i
2τ0

(
ζ

ζ + τ0

√
τ0√
`ζ

+

√
τ0√
`ζ

)
+

√
6 log t+ 4 logm√

`

)
> 0

Rearranging and squaring terms, we get that (15) is false
for

` ≥
⌈ 4

∆2
a,i

( ρa,i√
τ0

+
√

6 log n+ 4 logm
)2⌉

. (17)

In the above equation, ρa,i is the edge-specific constant

ρa,i = (
ζ

ζ + τ0
+ 1)

Ca,i

2
√
ζ
.

In fact, we require that (15) be false for all 1 ≤ j ≤ m
and (a, i) ∈ L+

j . Therefore, we set the parameter ` to be



the maximum of the right hand side of (17). Formally,
define (a∗, i∗) to be the edge in P \ g∗1 that maximizes
the right hand side of (17). That is, for a given instance,

(a∗, i∗) = argmax(a1,i1)∈P\g∗1

⌈
4

∆2
a1,i1

(
ρa1,i1√
τ0

+
√

6 log n+ 4 logm

)2
⌉

(18)

Then, by defining ` as follows, we are assured that Equa-
tion 17 holds for all 1 ≤ j ≤ m and (a, i) ∈ L+

j .

` =

⌈
4

∆2
a∗,i∗

(
ρa∗,i∗√
τ0

+
√

6 log n+ 4 logm

)2
⌉
(19)

Hence, we can bound the number of plays of our original
sub-optimal arm (a′, j′) as follows:

E[Ta′,i′(n)] ≤ `m2 +

m∑
j=1

∑
(a,i)∈L+

j

n∑
t=m+1

t−1∑
s=1

t−1∑
k=`

(
P (R̄sg∗j ≤ µg∗j − c

s
g∗j

(t))

+ P (R̄ka,i ≥ µa,i + cka,i(t))
)

≤
⌈ 4m2

∆2
a∗,i∗

(ρa∗,i∗√
τ0

+
√

6 log n+ 4 logm
)2⌉

+
∑

(a,i)∈P

n∑
t=1

t∑
s=1

t∑
k=1

2t−3m−2

≤ 4m2

∆2
a∗,i∗

(ρa∗,i∗√
τ0

+
√

6 log n+ 4 logm
)2

+ 2(1 + log(n)).

As a direct consequence of Theorem 2, we can bound the
regret of the MatchGreedy-EpochUCB policy.
Corollary 1 (Regret Bound for UCB). Consider α as the
MatchGreedy-EpochUCB algorithm and suppose that
τk = τ0 + ζk with τ0 ≥ 1. The regret bound is

Rα(n) ≤
∑

(a,i)∈S

(
4m2

∆2
a∗,i∗

(ρa∗,i∗√
τ0

+
√

6 log n+ 4 logm
)2

+ 2(1 + log(n))

)(
∆a,i +

Ca,i
τ0

)
+
mC∗
ζ

(
1 + log

(
ζ(n− 1)

τ0
+ 1

))
,

where (a∗, i∗) is an edge defined in (18) and ρa∗,i∗ and
Ca,i are edge-specific constants.

C UCB ALGORITHM

C.1 INITIAL PLAY OF UCB ALGORITHM

Since the UCB algorithm estimates the average reward
for each edge (a, i), it is customary to initialize a prelim-
inary round where each arm is played exactly once. In
the absence of any capacity constraints (e.g., bξl = m
for all ξl ∈ C), it is easy to compute a sequence of m
matchings so that every edge in P belongs to exactly one
of these matchings. We now present a procedure that
achieves the same effect even in the presence of arbitrary
capacity constraints.

Algorithm 1 Computation of disjoint matchings that
play each arm once

1: function MATCHINGS-INITIALPLAY(P)
2: E ← P . Edges not yet selected
3: i← 1 . Index for current matching
4: while E 6= ∅ do
5: F ← E . Feasible set for current matching
6: M ← ∅
7: while F 6= ∅ do
8: Select any (a, i) ∈ F
9: if M ∪ (a, i) does not violate (P1) then

10: M ←M ∪ (a, i)
11: else
12: F ← F \ (a, i).
13: end if
14: end while
15: Mi ←M , i← i+ 1, E ← E \M .
16: end while
17: return M1,M2, . . . ,Mi−1

18: end function

Informally, in some iteration i, the above algorithm
greedily selects edges for matching Mi without violat-
ing the capacity constraints. When no additional edge
can be added toMi—a maximal matching—we move on
to the next iteration.

Unfortunately, the number of matchings returned by this
procedure can be quite large—in the worst case this can
be as large as m2, where m is the number of agents or
incentives. However, for more reasonable instances such
as the ones considered in our simulations, we observe
that the number of initial matchings required to play each
edge at least once is much closer to the lower bound of
m.
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Figure 1: Figure 1a presents results demonstrating how the performance of our algorithm varies with the number of states given
that the number of agents and incentives is fixed for two instances of each configuration. Figure 1b shows how the performance
of the algorithm varies with the number of agents and incentives given that the number of states is fixed for two instances of each
configuration.

Algorithm 2 Environment Implementation for Pulling a
Matching (Set of Arms)

1: function INCENT(M , tn, n τ0,ζ)
2: rtna,i ← 0 ∀(a, i) ∈M
3: for t ∈ [tn, tn + τ0 + ζn− 1] do
4: for (a, i) ∈M do
5: offer incentive i to agent a
6: receive reward rθa,ta,i

7: rtna,i ← rθ,ta,i + rtna,i
8: end for
9: end for

10: return (rtna,i)(a,i)∈M
11: end function

D ADDITIONAL EXPERIMENTS

D.1 COMPARISON OF TRADITIONAL UCB
AND MG-EUCB FOR SIMPLE EXAMPLE

We return to the simple two-agent two-incentive instance
depicted in Figure 1. We ignore the capacity constraints
by assuming that there is a single class C1 such that ev-
ery edge belongs to this class and bC1 = 2. Clearly,
this instance only admits two unique matchings M∗ =
{(a1, i1), (a2, i2)}—the optimum matching—and M =
{(a1, i2), (a2, i1)}—the sub-optimal matching.

As discussed previously, any traditional bandit approach
that ignores the evolution of agent rewards would con-
verge to the sub-optimal matching, i.e., M . To see why,
observe that every time the algorithm selects the match-
ingM , both the agents’ states are reset to θ1 . Following
this, when the algorithms ‘explores’ the optimum match-
ing, the reward consistently happens to be zero since the

agents are in state θ1. Owing to this, the traditional ap-
proach largely underestimates the rewards for the (edges
in the) optimum matching and converges to M .
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Figure 3: Comparison of the performance of classical UCB
algorithms for matching problems versus the MatchGreedy-
EpochUCB algorithm for the example depicted in Figure 1.The
length of horizon was n = 5000.

To validate this experimentally, we compare the perfor-
mance of our MatchGreedy-EpochUCB algorithm de-
scribed in Algorithm 2 to a conventional implementa-
tion of the UCB algorithm for matching problems (e.g.,
as in (Chen et al., 2016; Gai et al., 2011; Kveton et al.,
2015)). More specifically, we consider an implementa-
tion that runs for a total of

∑k
i=1 τk for some suitable

set of parameters—in each iteration, the algorithm se-
lects a matching based on the empirical rewards and the
confidence bound. The iterations are then divided into
rewards for convenience and the time-average reward in
each epoch is computed and plotted alongside the same
metric for the MG-EUCB algorithm in Figure 3.

Our simulations support our prior conclusions. For ex-
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(b) Random Demand

Figure 2: Bike-share experiments with utility model: Figures 2a and 2b compare the efficiency of the bike-share system with two
demand models and a utility based behavioral model under incentive matchings selected by MG-EUCB+ with upper and lower
bounds given by the system performance when the incentive matching is given by computing the optimal greedy matching at each
epoch based on the current state information and when no incentives are offered respectively.

ample, after 5000 epochs, the classical UCB algorithm
selects the sub-optimal matching over 99% of the time.
Owing to this reason, the classical algorithm has a re-
gret that grows linearly with the length of the horizon
whereas the regret of our algorithm is almost zero for
this instance.

D.2 ADDITIONAL SYNTHETIC
EXPERIMENTS

In our synthetic simulations we fixed the num-
ber of agents, incentives, and states equally as
m = |A| = |I| = |Θa| = 10. We now present results in
Figure 1 evaluating how the performance of our algo-
rithm varies with each of these parameters. In Figure 1a,
we observe that when the number of agents and incen-
tives is fixed, the number of states has a negligible im-
pact on the rate of convergence to the optimal solution.
This indicates that within this range of states the Markov
chains mix rapidly and the edge dependent constants in
the regret bound do not significantly factor in. We find
in Figure 1b, as predicted by our regret bounds, the con-
vergence slows as the number of agents in the problem
increases.

D.3 ADDITIONAL BIKE-SHARE
DESCRIPTION AND EXPERIMENTS

In this section we provide further motivation for the bike-
sharing problem as a matching problem, more detail on
our problem setup, as well as additional experimental
results. Bike-share programs must deal with varying

spatio-temporal demand to ensure that a high percent-
age of demand is met in order to satisfy customers and
maximize profit. To avoid both pile-ups of bikes at pop-
ular destinations and depletion of bikes at stations with
high demand, bike sharing companies manually replen-
ish and manipulate the spatial supply of bikes. This is
costly to companies and an alternative is to attempt to
incentivize users to alter their paths in order to balance
the spatial supply of bikes in such a way that meets fu-
ture demand. A successful incentive system could reduce
the need for manually replenishing the supply of bikes at
stations, saving money and time as a result.

Figure 4: Heatmap of the scaled initial supply of the Boston
Hubway stations. Each bubble indicates the location of a sta-
tion and are scaled in size and colored according to the number
of bikes available at the station.

We consider the bike-share problem as a repeated game
in our simulations. Specifically, at each epoch users
move into the system seeking a bike from a station



Figure 5: This heatmap shows the spatial reduction in the num-
ber of rejections at each station in epoch 20000 from epoch
1000 corresponding to the result in Figure 3a. Positive num-
bers indicate how many fewer rejections occurred at the station
at the later epoch than the earlier epoch. We observe a global
reduction spatially in rejections nearly uniformly.

while simultaneously users transition from the location
in which they picked up a bike to a location where they
drop off the bike. In our simulations we allow the spa-
tial supply of bikes to evolve based on the transitions of
bikes between stations. We begin each simulation with
the supply at each station given by the data scaled by a
factor of two. As a result we have over 6000 agents in
the system that can move between close to 200 stations.

We experimented with static and random demand models
using quantities derived from the data. In the static de-
mand model we set the demand between a directed pair
of stations at each epoch to be the empirical mean of the
number of transitions between the stations within 12PM–
1PM at each day over June, 2017 – August, 2017. In our
random demand model we used the empirical means as
the parameter of a Poisson distribution from which we
sampled the demand at each epoch for each directed pair
of stations. To justify this choice we have included sev-
eral representative probability mass functions for the de-
mand between stations and the Poisson distributions that
were fit to them in Figure 6. We also applied goodness
of fit tests to ensure this was a realistic modeling choice.

In our simulations we considered two behavioral models
of the users in the system that govern how rewards are
produced as well as the probability of a user accepting
an incentive. As touched upon previously, in our bike-
share model, associated with the state of a user are a dis-
tance threshold parameter and a parameter of a Bernouilli
distribution. The distance threshold gives the maximum
distance a user is willing to be re-routed and is drawn uni-
formly at random for each state in [0, 4000] meters. The
Bernouilli parameter gives the probability that a user will
accept an incentive below its distance threshold for a par-
ticular state and is drawn uniformly at random in [0, 1].
In the primary behavioral model we consider based on a

Bernouilli distribution presented in Figure 3, if the dis-
tance between the two stations of the proposed incen-
tive is less than the threshold parameter associated with
an agent’s state the agent will accept the incentive with
probability p and give a reward of one, otherwise the
incentive will be rejected and a reward of zero will be
given. We also investigate a utility-based model; this
model is the same as the Bernouilli based model with the
slight modification that if an incentive is accepted fol-
lowing a successful realization of the Bernouilli draw, a
reward is given that is proportional to the difference in
distance between the threshold associated with a users
state and the distance between the station the user in-
tended to go to and the station of the proposed incentive.

We now give an overview of our results and the addi-
tional experiments we present in this section. We make
two key favorable observations from the simulations in
Figure 3 in which we investigated static and random de-
mand with the Bernoulli behavioral model. First, com-
pared to a naive baseline of the convergence of the sys-
tem without any incentives our algorithm is able to in-
crease the efficiency of the system approximately 40%
with the static demand model. Furthermore, the exten-
sion to random demand does not reduce the performance
significantly. When comparing to an upper bound on per-
formance we observe that our algorithm leads the system
to approach this limit.

The mean matching rewards presented in Figure 3c can
be interpreted as the mean number of incentives that are
accepted and equivalently the mean of users re-routed.
This result indicates that on average less than 1% of users
are matched to an incentive. This is a highly desirable
property as it means we only need to influence a small
part of the population in order to get significant perfor-
mance gains. As a result, most users will only benefit
from the incentive system, while from the planners per-
spective the minuscule cost of incentivizing only a small
portion of the population is a beneficial.

We now show the results in Figure 2 of the static and
random demand in combination with the utility based be-
havioral model. We generally draw the same conclusions
as from Figure 3 with somewhat lower performance for
the system. This is an expected result as the users are
more sensitive to the extra distance they must travel due
to an incentive and they are therefore more difficult to
incentivize. We note that we observed looking at the ad-
ditional distances traveled due to an accepted incentive,
that users under the utility based model do travel mod-
estly less additional distance as a result of accepting an
incentive than when we used the Bernouilli based model.
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Figure 6: Each empirical probability mass function in the figure gives the probability on the number of users that transitioned
between a pair of stations in the Boston Hubway dataset between 12PM–1PM each day between June, 2017 – August, 2017. The
red lines show the Poisson distribution that we fit to the distributions that we sampled from to generate random demand at each
epoch of the simulation.

E IMPLEMENTATION DETAILS

We make a small modification to the number of iterations
within an epoch to reduce computation time of the MG-
EUCB algorithm. Specifically when the time-averaged
reward has changed by no more than 5 × 10−4 be-
tween consecutive iterations for 200 iterations in a row—
indicating the time averaged reward has converged—we
end the epoch early. We find that this leads to the num-
ber of iterations in an epoch being roughly in the range of
1000-1500. We observe this leads to a negligible change
in the mean and cumulative rewards of the algorithm
while significantly speeding up computation over a large
horizon.

F Discussion

In this work we developed a bandit algorithm for match-
ing incentives to users, whose preferences are unknown
a priori and evolving dynamically in time, in a resource
constrained environment. We theoretically analyzed the
problem and derived logarithmic gap-dependent regret
bounds. There are several interesting future lines of work
that we believe are worth pursuing.

In this work, under the MDP dynamics we only inves-
tigated the combinatorial optimization problem of re-
source constrained matching and our proof techniques
relied on the properties of the greedy matching paradigm.
In future work, we are interested in attempting to extend
this work to arbitrary combinatorial optimization prob-
lems with constraints in the case that the designer is al-
lowed oracle access to solve the optimization problem,
as has been done in the case without dynamics (Kveton
et al., 2015; Wen et al., 2015).

The resource constraints that we considered were static
over time. It is often the case that constraints of this form
are time-varying or coupled over the decision-making
horizon. A prominent example in online resource allo-
cation is the Adwords problem. Due to the practical sig-
nificance, we plan to explore if our model can be adapted
to capture this richer class of constraints.

Finally, we would like to make our model increasingly
realistic from the designer’s and agents’ perspectives.
From the designer’s point of view, this would be to incor-
porate incentive compatibility and fairness constraints.
From the perspective of the agent, beyond the MDP dy-
namics, strategic behavior will be important to model and
assess the impacts of going forward.


