
A Proof of Theorem 1

By applying the Theorem 11 in (Dwork et al.
[2015c]) to gradient computation, we get the
following Lemma.
Statement of Lemma 1 Let M be an ε-

differentially private gradient descent algorithm
and St ∼ Pn be the training set. Let ws =M(St)
be the corresponding output for s ∈ 1, ..., T and
ĝ(ws) be the empirical gradient on St. For any
σ > 0, i ∈ 1, ..., d and s ∈ 1, ..., T , setting ε 6 σ

2Gensures

P{|ĝi(ws)− gi(ws)| > σ} 6 6
√

2 exp
(
−nσ2

4G2

)
. (15)

Lemma 1 illustrates that differential privacy en-
ables the reused training set to maintain the
statistical guarantee as a fresh set under the con-
dition that the privacy parameter ε is bounded
by the estimation error σ. Next, we analyze the
privacy parameter ε of StGD.
Statement of Lemma 2 StGD satisfies

2TG
nσ -differentially private.

Proof. At each iteration s, the algorithm is com-
posed of two sequential parts: differential private
estimate g̃(ws) of the gradient on training set
St and gradient descent based on the estimated
gradient g̃(ws). We mark the differential private
estimate as part A and the gradient descent as
part B. We first show A preserves 2G

nσ -differential
privacy. Then according to the post-processing
property of differential privacy (Proposition 2.1
in Dwork and Roth [2014]) we have B ◦A is also
2G
nσ -differentially private.
The part A is an instantiation of basic tools from
differential privacy, the “Sparse Vector Algo-
rithm” (Algorithm 2 in Dwork and Roth [2014])
and the “Laplace Mechanism” (Definition 3.3
in Dwork and Roth [2014]). The sparse vector
algorithm takes as input a sequence of c sen-
sitivity 1/n queries (here c = T , the iteration
time), and for each query, attempts to determine
whether the value of the query, evaluated on the
private dataset, is above a fixed threshold T or
below it. In our instantiation, the training set
St is the private data set, and each function
corresponds to the gradient computation func-
tion gt(ws) which is of sensitivity G/n. StGD

is equivalent to the following procedure: we run
the sparse vector algorithm with c = T , queries
f for each gradient computation function gt(ws),
and noise rate σ. By the privacy guarantee of
the sparse vector algorithm, the sparse vector
portion of StGD satisfies G/nσ-differential pri-
vacy. The Laplace mechanism portion of StGD
satisfies G/nσ-differential privacy by ( Theo-
rem 3.6 in Dwork and Roth [2014]). Finally,
the composition of two mechanisms satisfies 2G

nσ -
differential privacy. After all the iterations, by
the advanced composition theorem (Theorem
3.20 in Dwork and Roth [2014]), T applications
of a 2G

nσ -differentially private algorithm is 2TG
nσ -

differentially private. So StGD preserves 2TG
nσ

differential privacy.

In order to achieve the gradient concentration
bound described in Lemma 1 by considering the
guarantee of Lemma 2 (i.e. to guarantee that for
every ws, we have P{|ĝi(ws) − gi(ws)| > σ} 6
6
√

2 exp(−nσ2

4G2 )), we need to set 2TG
nσ 6 σ

2G so
that we achieve ε-differential privacy for ε 6 σ

2G .
As a result, we get the upper bound of iteration
time T in StGD as T = σ2n

4G2 .
Statement of Theorem1: Given parameter
σ > 0, let w1, w2, ..., wT be the adaptively up-
dated points by StGD and g̃(w1), ..., g̃(wT ) be
the corresponding output gradient. If we set
T = σ2n

4G2 , then for all s ∈ 1, ..., T and for all
t > 0, we have

P{ ‖g̃(ws)− g(ws)‖2 > d(6t+ 1)2σ2}
6 2d exp(−t) + 6

√
2d exp

(
−nσ2

4G2

)
.

(16)

Proof. We first prove the concentration bound
of each coordinate:

P{ |g̃i(ws)− gi(ws)| > (6t+ 1)σ}
6 2 exp(−t) + 6

√
2 exp

(
−nσ2

4G2

)
.

(17)

The above equation can be decomposed the error
into two part:

P{|g̃i(ws)− gi(ws)| > (6t+ 1) · σ}
6 P{|g̃i(ws)− gti(ws))| > σ · 6t}

+P{|gti(ws)− gi(ws)| > σ}.
(18)
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There are two types of error we need to con-
trol. The first type results from the first term in
Equation 18: the deviation between the differen-
tially private estimate gradient g̃i(ws) and the
empirical gradient gti(ws). The second type is
the second term in Equation 18: the deviation
between empirical gti(ws) and the population
gradient gi(ws). Lemma 4.2 has already give the
bound of the second type.
We now bound the first term of Equation 18
by considering two cases, depending on whether
StGD answer the estimated gradient g̃i(ws) by
returning g̃i(ws) = gti(ws) + ξ or by returning
g̃i(ws) = ghi (ws). In the first case, we have

|g̃i(ws)− gti(ws)| = |ξ|.

In the second case we have

|g̃i(ws)− gti(ws)| 6 γ + δ 6 |γ|+ |δ|.

Combining these two cases implies that

P{|g̃i(ws)− gti(ws)| > 6tσ}
6 max{P{|ξ| > 6tσ}, P{|γ|+ |δ| > 6tσ}}.

(19)
We note that the noise variables are chosen
from Laplace distribution. By properties of the
Laplace distribution, we have

P{|ξ| > 6tσ} 6 exp(−6t), (20)

and

P{|γ|+ |δ| > 6tσ}
6 P{|γ| > 2tσ}+ P{|δ| > 4tσ} 6 2exp(−t).

(21)
Combining Equation 20 and 21 with Equation
19, we have:

P{|g̃i(ws)−gti(ws)| > 6t ·σ} 6 2 exp(−t). (22)

Bring the Equation 22 and the result in Lemma
4.21 into Equation 18, we get Equation 17. Then,
applying the union bound over all the coordinate
i = 1, ..., d, we complete the proof of Theorem
1.

B Proof of Theorem 2 and Theorem
3

We first prove that the convergence rate of a
gradient-based iterative algorithm is related to
the gradient concentration error ε and its iter-
ation time T . Besides, the probability of the
convergence rate is related to the probability δ
of the gradient concentration bound. The details
are given in the following theorem.
Theorem 6. If there exists a gradient descent
algorithm A with with T iterations and initial
point w0: For s = 0, .., T , A queries the training
data at ws to get a estimated gradient g̃(ws)
such that P{‖g̃(ws) − g(ws)‖2 ≥ ε} ≤ δ and
updates ws+1 = ws + ηs∇̃F (ws). For A we have
the following.

1. F is L-Lipschitz and α-strongly con-
vex: If we set the step size ηs = 2

α(s+1) , then we
have the following excess risk bound:

F (w̄T )− F (w?) 6 4L2 ln(T+1)
4αT + ε

α
(23)

with probability at least 1− Tδ.

2. F is β smooth and α-strongly convex:
If we set the step size η = 1

α+β , then we have
the following excess risk bound:

F (wT )− F (w?) 6 β
2 exp

(
− αβT

(α+β)2

)
‖w1 − w?‖2

+ 2αβ+(α+β)2

4α2β · ε
(24)

with probability at least 1− Tδ.

Proof. In the case of L-Lipschitz and α-strongly
convex function, with updating rule ws+1 =
ws − ηs · g̃(ws) we have the following:

F (ws)− F (w?)
6 g(ws)T (ws − w?)− α

2 ‖ws − w
?‖2

= (g̃(ws) + g(ws)− g̃(ws))T (ws − w?)
−α2 ‖ws − w

?‖2

= 1
ηs

(ws − ws+1)T (ws − w?)
+(g(ws)− g̃(ws))T (ws − w?)

−α2 ‖ws − w
?‖2

6 1
2ηs

(‖ws − w?‖2 + η2
s‖g̃(ws)‖2

−‖ws+1 − w?‖2)
+α

4 ( 4
α2 ‖g(ws)− g̃(ws)‖2 + ‖ws − w?‖2)

−α2 ‖ws − w
?‖2
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= ( 1
2ηs
− α

4 )‖ws − w?‖2 − 1
2ηs
‖ws+1 − w?‖2

+ ηs
2 ‖g̃(ws)‖2 + 1

α
‖g(ws)− g̃(ws)‖2

6 αs
4 ‖ws − w

?‖2 − α(s+1)
4 ‖ws+1 − w?‖2

+ L2

α(s+1) + 1
α
‖g(ws)− g̃(ws)‖2.

(25)

Sum the above inequality over s = 0 to s = T ,
and apply Jensen’s inequality:

F (ŵn)− F (w?)

6 4L2 ln(T+1)
4αT +

∑s=T
s=0 ‖g(ws)−g̃(ws)‖2

(T+1)α .
(26)

Bringing the condition that

P{‖g̃(ws)− g(ws)‖2 ≥ ε} ≤ δ,

into Equation 26, then applying the union bound
over all s = 0, ..., T , we can complete the proof
in the case of L-Lipschitz and α-strongly convex
function.
Now we prove the Equation 24 in the case of the
β smooth and α-strongly convex function.
First note that by β-smoothness, for all ws, w? ∈
W, one has

F (ws)− F (w?) 6 β

2 ‖ws − w
?‖. (27)

Now using Lemma 3.11 in (Bubeck [2015]): For
β-smooth and α-strongly convex function F ,
w,w′ ∈ W, one has

(g(w)− g(w′))(w − w′) > αβ
α+β‖w − w

′‖2

+ 1
α+β‖g(w)− g(w′)‖2.

(28)
By this property, we obtain

‖ws+1 − w?‖
= ‖ws − ηg̃(ws)− w?‖
= ‖ws − w?‖2 − 2ηg̃(ws)T (ws − w?)

+η2‖g̃(ws)‖2

= ‖ws − w?‖2 − 2η(g(ws) + g̃(ws)
−g(ws))T (ws − w?)
+η2‖g(ws) + g̃(ws)− g(ws)‖2

6 ‖ws − w?‖2 − 2η(g(ws))T (ws − w?)
−2η

√
α+β
αβ

(g̃(ws)− g(ws))T
√

αβ
α+β (ws − w?)

+2η2‖g(ws)‖2 + 2η2‖g̃(ws)− g(ws)‖2

6 ‖ws − w?‖2 − 2ηαβ
α+β ‖ws − w

?‖2 − 2η
α+β ‖g(ws)‖2

+η α+β
αβ
‖g̃(ws)− g(ws)‖2 + η αβ

α+β ‖ws − w
?‖2

+2η2‖g(ws)‖2 + 2η2‖g̃(ws)− g(ws)‖2

= (1− ηαβ
α+β )‖ws − w?‖2 + (2η2 − 2η

α+β )‖g(ws)‖2

+(2η2 + η α+β
αβ

)‖g̃(ws)− g(ws)‖2

= (1− αβ
(α+β)2 )‖ws − w?‖2

+ 2αβ+(α+β)2

αβ(α+β)2 ‖g̃(ws)− g(ws)‖2.

(29)
Applying the condition in Theorem 6 that

P{‖g̃(ws)− g(ws)‖2 ≥ ε} ≤ δ,

into the above equation as well as the union
bound over all iterations we can complete the
proof.

Statement of Theorem 2: For L-Lipschitz
and α-strongly convex function F , given 2n
available samples, set noise parameter σ2 =
4G2ρn,d/

√
n, step size ηs = 2

α(s+1) and iter-
ation time T = ρn,d

√
n for StGD. Let ŵn =∑T

s=0ws/(T + 1), StGD achieves:

F (ŵn)− F (w?) 6 O
( ln(

√
nρn,d)√
nρn,d

)
+O

(
dρ3
n,d√
n

)
,

(30)
with probability at least 1−O(ρn,d√

n
)

Proof. First consider the gradient concentration
bound of achieve by StGD (Theorem 1). Then,
bringing the settings that the noise parameter
σ2 = 4G2(lnn + ln d)/

√
n, the step size ηs =

2
α(s+1) and the iteration time T = (lnn+ln d)

√
n

into the result in Theorem 1, Combining the
results with Equation 23 in Theorem 6, we can
complete the proof of this Theorem.

Statement of Theorem 3: For β-smooth and
α-strongly convex function F , given 2n available
samples, set noise parameter σ2 = ρn,d(4G2α+β)2

nαβ ,
step size η = 1

α+β and iteration time T = (κ +
1
κ + 2)ρn,d where κ = β/α. Let ŵn = wT be the
output of StGD, we have the following excess
risk bound:

F (ŵn)−F (w?) 6 O

(
‖w1 − w?‖2

n

)
+O

(
dρ3
n,d

n

)
(31)

with probability at least 1−O
(
ρn,d
n4d3

)
.
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Proof. First consider the gradient concentration
bound of achieve by StGD (Theorem 1). Then,
bringing the settings that the noise parameter
σ2 = (4G2α+β)2

nαβ (lnn + ln d), step size η = 1
α+β

and iteration time T = (κ+ 1
κ + 2)(lnn+ ln d)

into the result in Theorem 1. C combining the
results with Equation 24 in Theorem 6, we can
complete the proof of this Theorem.

C Proof of Theorem 4 and Theorem
5

Statement of Theorem 4: Given 2n avail-
able samples, mini-batch SGD can achieve the
following:

1. F is L-Lipschitz and α-strongly con-
vex: If we set the step size ηs = 2

α(s+1) , batch
size m =

√
n and iteration time T = 2n/m,

output ŵn =
∑T
s=1ws/T of mini-batch SGD

satisfies:

F (ŵn)− F (w?) 6 O
(

ln(
√
n+1)√
n

)
+O

(
d ln
√
n√

n

)
(32)

with probability at least 1− d/
√
n.

2. F is β smooth and α-strongly convex:
If we set the step size η = 1

α+β , m = αβn
(α+β)2 lnn ,

T = 2n/m, output ŵn = wT of StGD satisfies:

F (ŵn)− F (w?) 6 O
(
‖w1−w?‖2

n

)
+O

(
d ln2 n
n

)
(33)

with probability 1−O
(

lnn
n

)
.

Proof. By Hoeffding bound and union bound
for every coordinate, at each iteration s, for
batch size m and any µ > 0, the gradient ĝ(ws)
computed by mini-batch SGD enjoys

P{‖ĝ(ws)− g(ws)‖2 ≤ dµ2} ≥ 1− 2d exp(−2mµ2

4G2 ).
(34)

For L-Lipschitz and α-strongly convex function,
bringing the settings that batch size m =

√
n

and µ = 2G(ln
√
n/
√
n)1/2 into Equation 34,

then combining the result and settings that
ηs = 2

α(s+1) and iteration time T = 2n/m with
Equation 23 in Theorem 6, we can obtain Equa-
tion 32.

For β-smooth and α-strongly convex function
bringing the settings that m = αβn

(α+β)2 lnn into
Equation 34, then combining the result and
settings that η = 1

α+β , and iteration time
T = 2n/m with Equation 24 in Theorem 6, we
can obtain Equation 33.

Statement of Theorem 5: Given 2n
available samples, mini-batch StGD can achieve
the following:

1. F is L-Lipschitz and α-strongly con-
vex: If we set the step size ηs = 2

α(s+1) ,
batch size m =

√
n, T = 2n/m, noise param-

eter σ2 = 8G2 lnn/
√
n and T1 = lnn, output

ŵn =
∑T
s=1ws/T of mini-batch StGD satisfies:

F (ŵn)− F (w?) 6 O
(

ln(
√
n+1)√

n lnn

)
+O

(
ln3 n√
n

)
(35)

with probability at least 1− d/
√
n.

2. F is β smooth and α-strongly convex:
If we set the step size η = 1

α+β , m = αβn
(α+β)2 lnn ,

T = 2n/m, T1 = lnn , noise parameter σ2 =
4G2(α+β)2(lnn)2

αβn , output ŵn = wT of mini-batch
StGD satisfies:

F (ŵn)− F (w?) 6 O
(
‖w1−w?‖2

nlnn

)
+O

(
d ln4 n
n

)
(36)

with probability at least 1−O
(

ln2 n
n

)
.

Proof. When running StGD on each batch Ss,
where s ∈ 0, ..., T − 1, there are T1 gradient com-
putations to update ws+1: With w̃0 = ws being
the initial point, sub-algorithm StGD updates
w̃k+1 = w̃k + ηg̃(w̃k) for k = 0, ..., T1 − 1 and
ws+1 = w̃T1 . For every batch of size m, g̃(w̃k)
produced by StGD satisfy the gradient concen-
tration bound in Theorem 1

P{ ‖g̃(w̃k)− g(w̃k)‖2 6 (6t+ 1)2σ2}
6 1− 2d exp(−t)− 6

√
2d exp

(
−mσ2

4G2

)
.

(37)
Mini-batch StGD repeats StGD T times to go
through T batches, then, the total gradient14



computations is T · T1. For L-Lipschitz and α-
strongly convex function, bringing the settings
that batch size m =

√
n and σ2 = 8G2 lnn/

√
n

into Equation 37, then combining the result, the
settings that ηs = 2

α(s+1) and total gradient com-
putations T · T1 = 2

√
n lnn with Equation 23 in

Theorem 6, we can obtain Equation 35.
For β-smooth and α-strongly convex function
bringing the settings that m = αβn

(α+β)2 lnn and

σ2 = 4G2(α+β)2(lnn)2

αβn into Equation 37, then
combining the result and settings that η =

1
α+β , and total gradient computations T · T1 =
2(α+β)2(lnn)2

αβ with Equation 24 in Theorem 6, we
can obtain Equation 36.
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