
Supplementary: Battle of Bandits

A Proof of Lemma 1

Proof. We start by noting that
P(X = i) = P(X = i, i ∈ {U, V })
= P(i ∈ {U, V }) P(X = i|i ∈ {U, V })

=
(k − 1)(

k
2

) P(X = i|i ∈ {U, V })

=
(k − 1)(

k
2

) k∑
j=1,j 6=i

P(X = i, {U, V } = {i, j}|i ∈ {U, V })

=
(k − 1)(

k
2

) k∑
j=1,j 6=i

P({U, V } = {i, j}|i ∈ {U, V })×

P(X = i|{U, V } = {i, j})

=
(k − 1)(

k
2

) k∑
j=1,j 6=i

1

(k − 1)
×Qaiaj =

k∑
j=1,j 6=i

2Qaiaj
k(k − 1)

,

where the penultimate equality is by appealing to sam-
pling without replacement and the definition of the win
probability for i in the pairwise preference model.

B Regret analysis of Battling-Doubler

We will be using the following regret guarantee of UCB
algorithm for classical MAB problem in order to proof
the regret bounds of Battling-Doubler:
Theorem 12. UCB Regret [5]. Assume [n] denotes the
set of arms. µi denotes the expected reward associated
with arm i ∈ [n], such that µ1 > µ2 ≥ · · · ≥ µn and
H =

∑n
i=2

1
∆i

, where ∆i = µ1 − µi, then the expected
regret of the UCB algorithm with confidence parameter
ζ > 0 is of O(ζH lnT ).

Proof of Theorem 3

Proof. For any time horizon T ∈ Z+, let B(T ) denotes
the supremum of the expected regret of the SBM S after
T steps, over all possible reward distributions on the arm
set [n]. Clearly, length of epoch ` in the algorithm is
exactly 2`, ∀`. We denote this by T` = 2`. Note that
for all time steps t inside this epoch, the first k − 1 arms
at1, a

t
2, · · · , atk−1 are chosen uniformly from L, and thus

the observed reward of the kth arm also comes from a
fixed distribution, as argued below:

Let θ′ = Ea∼Unif(L)[θa] denote the expected utility
score value for each of the first k − 1 arms in all steps

t within epoch `. Clearly, E[θat1 ] = E[θat2 ] = · · · =
E[θatk−1

] = θ′, since each of the first (k − 1) arms were
drawn uniformly from L. Now, the SBM S is playing a
standard MAB game over the set of arms [n] with binary
rewards. Let bt denote the binary reward of the kth arm
atk in the tth step. Clearly for all t within epoch `,

E[bt|(at1, at2, · · · , atk)] =
1

k
+

∑k−1
j=1 (θatk − θatj )
k(k − 1)

Thus at round t, if atk = x, for any x ∈ [n],

E[bt|atk = x] = E

[
1

k
+

∑k−1
j=1 (θax − θatj )
k(k − 1)

]

=

[
1

k
+

(k − 1)(θax − θ′)
k(k − 1)

]
=

[
1

k
+

(θax − θ′)
k

]
.

Now for SBM S, the best arm with highest expected
reward is still arm-1, where

E[bt|atk = 1] =

[
1

k
+

(θ1 − θ′)
k

]
(5)

By the definition of the bound function B(T), the total
expected regret (in the traditional MAB sense) of the
SBM S , in the epoch ` is at most B(T`) = B(2`), which
implies that

Ex

[(
1

k
+

(θ1 − θ′)
k

)
−
(

1

k
+

(θax − θ′)
k

)]
≤ B(2`)

Thus,

Ex

[(
θ1 − θax

k

)]
≤ B(2`)

This in other words says that the expected contribution of
the kth arm to the regret in phase i is at most B(2`). It
only remains to bound the expected contribution of the
remaining (k − 1) arms to the regret, which are drawn
from a distribution that assigns to all arms a ∈ [n] a
probability proportional to the frequency in which a is
played as the kth arm in the previous epoch (`− 1).

The interesting thing to note is that, at any round t of
epoch `, the expected regret incurred by any of the first
k − 1 arms, i.e. atj such that j ∈ [k − 1], is exactly
same as the average expected regret contributed by the
set of arms drawn as the kth arm in epoch ` − 1 (since
Line 7 selects at1, a

t
2, · · · , atk−1 uniformly from L at any

epoch ` of length 2`), and thus it is at mostB(2`−1)/2`−1.
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Hence the total expected regret incurred by any of the first
k − 1 arms, atj , j ∈ [k − 1] in epoch ` is bounded by
2`(B(2`−1)/2`−1) = 2B(2`−1). Since any finite time
horizon of T can be uniquely decomposed as 2 + 4 +
8 + · · · + 2s + Z, for some integer s ≥ 1 and 0 ≤
Z ≤ 2s+1 − 1. Thus the total expected regret of Battling-
Doubler is given by the following function of T :

k − 1

k
+ 3(k − 1)

(
B(2) +B(22) + · · ·B(2s) +B(Z)

)
(6)

Now by our assumption, B(t) = O(ln t)β , for any
t ∈ Z+, the theorem claim follows by simplifying and
bounding the above expression.

Proof of corollary 4 Note that if the SBM S in Battling-
Doubler is UCB that operates on the set of n arms, with
expected reward of arm i ∈ [n] being

(
1
k + (θ1−θ′)

k

)
(from equation 5). Thus for SBM S , the complexity of the
total gap of the suboptimal arms become

∑n
i=2

1
∆i

= kH .
Now from Theorem 12, we have thatB(t) = O(ζkH ln t)
for any t ∈ Z+. Thus we get

E[RT ] = E

[
T∑
t=1

(∑
j∈St(θ1 − θj)

2k

)]

≤ 1

2k

(
k − 1

k
+ 3(k − 1)

(
B(2) +B(22) +

· · ·B(2s) +B(Z)
))

≤ 1

2k

(
O(ζk2H ln2 T )

)
=
(
O(ζkH ln2 T )

)
.

Proof of Corollary 5 The claim simply follows from the
above theorem and the fact that the worst possible gap

for UCB algorithm can be at most ∆ = O(
√

n lnT
T ), as

argued in [18] or [14] (see Corollary 1.1). The claim now

follows by substituting H = (n− 1)
1

∆
= O(

√
nT
lnT ) in

Corollary 4.

C Regret analysis of Battling-MultiSBM

Proof of Theorem 6.

Proof. We start by noting that in Battling-MultiSBM,
only one SBM advances at each round. Denote by ρx(t)
the total number of times Sx was advanced after t itera-
tions of the algorithm, for any arm x ∈ [n].

Then at any round twhere x is played as the (k−1)th arm,
Sx internally sees a world in which the rewards are binary,
and the expected reward of any arm a ∈ [n] is exactly

1
k +

∑k−1
j=1

(
θa−θat

j

)
k(k−1) = 1

k +

∑t−1
j=t−k+1

(
θa−θ

a
j
k

)
k(k−1) (from (2)

and Line 5 of Battling-MultiSBM). Note that for all SBMs
Sy, y ∈ [n], the best arm (the one with highest expected
reward) to play is arm 1. Thus at round t, the reward

corresponding to the best arm is 1
k +

∑t−1
j=t−k+1

(
θ1−θ

a
j
k

)
k(k−1) .

Now it is easy to see that for all SBMs S(y), y ∈ [n],
the suboptimalities of the arms are the same: the subop-

timality (regret) associated to a is
(
θ1−θa

)
k , for all arm

a ∈ [n].

Following is the key observation in this proof, the total
regret incurred by Battling-MultiSBM can be written as:

RT =

T∑
t=1

(∑
j∈St(θ1 − θj)

k

)

=

T∑
t=1

(∑k
j=1(θ1 − θatj )

k

)

=
(θ1 − θa02)

k
+ 2

(θ1 − θa03)

k
+ · · ·

+ (k − 1)
(θ1 − θa0k)

k
+ k

T−k+1∑
t=1

(θ1 − θatk)

k

+ (k − 1)
(θ1 − θaT−k+2

k
)

k
+ (k − 2)

(θ1 − θaT−k+3
k

)

k

+ · · · +
(θ1 − θaTk )

k

≤ k

T∑
t=1

(θ1 − θatk)

k
+ (k − 1) (7)(

as, max
a∈[n]

(θ1 − θa) ≤ 1

)
This essentially conveys that bounding the above regret is
equivalent to bounding regret of each SBM Sy, y ∈ [k].
In other words, this equivalently says that any suboptimal
SBM Sy, y ∈ [n] \ {1} can not be played to many times,
and any SBM can not play a suboptimal arm a ∈ [n]\{1}
too many times. The rest of the proof justifies the above
claim.

Let us denote by ρx, the total number of times SBM Sx
is called, clearly ρx =

∑T−1
t=1 1(atk−1 outputs x) and by

ρxy the total number of times SBM Sx played arm y, i.e.
ρxy =

∑T−1
t=1 1(atk−1 = x and atk = y).

We also denote by Rx(T ′) =
1
k

∑
{t | ρx≤T ′, atk−1=x}

(
θ1 − θx

)
, the regret in-

curred due to advancing SBM Sx, till time T ′. In
words, this is the contribution of the kth bandit
choices to the regret at all times t for which the
(k − 1)th arm is chosen to be x, and Sx’s internal
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counter has not surpassed T ′. Similarly we denote by
Rxy(T ′) = 1

k

∑
{t | ρx≤T ′, atk−1=x, atk=y}

(
θ1 − θy

)
the

regret incurred due to SBM Sx for playing the arm
y ∈ [n], upto time T ′. Clearly Rxy(T ′) = ρxy(T ′)

∆y

k .

From equation 7 it is now easy to see that, in order to
bound the expected regret RT , it suffices to bound the
expressions E[Rxy(ρx(T ))], ∀x, y ∈ [n].

Note that here we assume that each SBM policy used in
Battling-MultiSBM is α-robust which would be crucially
used in the proof. The main insight is to exploit the
fact that due to α-robustness of the SBMs used, ρx(T )
is order of lnT for any suboptimal x. We begin with
the observation that for any fixed x, y ∈ [n], (x being a
suboptimal arm), if we choose α > 2, and s ≥ 4α, from
the α-robustness property of the SBM we get,

P

[
Rxy(T ) ≥ (s lnT )

∆y

]
= P

[
Rxy(T ) ≥ ((s/k) lnT )

(∆y)/k

]
= P

[
ρxy ≥

((s/k) lnT )

((∆y)/k)2

]
≤ 2

α

[
((s/k) lnT )

((∆y)/k)2

]−α
=

2

α

[
((sk) lnT )

((∆y))2

]−α
≤ (sk lnT )

−α
, (8)

where the last inequality follows due to the fact that ∆y ≤
1, ∀y ∈ [n] and α ≥ 2. Then under the same assumption
on s and x, y, using union bound we get,

P
[
∃p ∈ {0, . . . , dln lnT e} : Rxy(ee

p

) ≥ sp/∆y

]
≤ 2s−α

We now bound the quantity ρx(T ) for any non-optimal
fixed x using the fact that all z ∈ [n] satisfy ρz(T ) ≤ T ,
and any SBM Sx is advanced in an iteration only if x was
the kth bandit arm in the previous round. Thus we have
that for all suboptimal x ∈ [n] \ {1},

P[ρx(T ) ≥ (sn lnT )/∆2
x]

= P

∑
z∈[n]

ρzx(T ) ≥ (sn lnT )/∆2
x


≤

∑
z∈[n]

P

[
Rzx(T ) ≥

(
s
k lnT

)
∆x

]
≤ n(s lnT )−α, (9)

where the rightmost inequality is by union bound and
(8). Now fix some x, y ∈ [n], such that is x suboptimal.
The last two inequalities give rise to a random variable Z
defined as the minimal scalar for which we have for all
T ′ ∈ [e, ee, ee

2

, · · · , eedln lnTe
],

ρx(T ) ≤ Zn lnT

∆2
x

, and Rxy(T ′) ≤ Z lnT ′

∆y
.

By (8) and (9), we have that for all s ≥ 4kα, P[Z ≥
s] ≤ 2s−α + n(s lnT )−α. Also, conditioned on the
event that {Z ≤ s}, we have Rxy(ρx(T )) ≤ Rsxy :=
se ln((sn lnT )/∆2

x)
∆y

= (se∆−1
y (ln lnT + lnn + ln s −

2 ln ∆x)). Combining above we get,

E[Rxy(ρx(T ))]

= O(R8α−1
xy +

∞∑
i=1

R8α+i
xy

(2(4kα+ i)−α + n((4kα+ i) lnT )−α).

Now since α = max{3, 2 + lnn
ln lnT }, it can be verified

that the last expression converges to O(R8α
xy ), hence

E[Rxy(ρx(T ))] = O(α∆−1
y (ln lnT + lnn− 2 ln ∆x)).

(10)

Combining above and using (7) we get, the total ex-
pected regret E[RT ] is at most

(
k − 1+kE[R1(ρ1(T ))+∑

x,y∈[n]\{1}Rxy(ρx(T ))]
)
. The desired regret bound

now follows from (10).

Proof of Corollary 7 Similar to the case of Battling-
Doubler (Corollary 5), the current claim simply follows
from the regret guarantee of Battling-MultiSBM and the

fact that the worst case gap can be at mostO(
√

n lnT
T ), as

argued in [18] or [14] (see Corollary 1.1). The claim now

follows by substituting H = (n− 1)
1

∆
= O(

√
nT
lnT ) in

Theorem 6.

D Regret analysis of Battling-Duel

Proof of Theorem 8

Proof. Without loss of generality we will assume that the
Condorcet arm a∗ = 1 throughout the proof.

Our goal is to analyse the regret of Battling-Duel in terms
of its underlying dueling bandit algorithm. Considering
Q′ to be the pairwise preference matrix perceived by
dueling bandit algorithm D, i.e. upon playing any pair of
item (xt, yt) ∈ [n]× [n], it receives feedback according
to the pairwise preference P (xt beats yt) = Q′xt,yt , we
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know that the regret seen by the underlying dueling bandit

algorithm is given by RDBT =
∑T
t=1

Q′1,xt+Q
′
1,yt
−1

2 . We
now start by analysing the relation between Q′ and Q.

Case 1. k is even. This is the easy case, since note that
at any round t both xt and yt are replicated exactly for k2
times. Thus at any round t:

Q′(xt, yt) =

k/2∑
i=1

P (i|St)

=

(
k

2

)
2

(
k
2 − 1

)
Qxt,xt +

(
k
2

)
Qxt,yt

k(k − 1)

=
k

2(k − 1)
Qxt,yt +

1

4

(k − 2)

(k − 1)
,

where the second equality follows from the definition of
pairwise-subset choice model (see Lemma 1 for details)
and the last equality follows from the fact that Qi,i =
1
2 , ∀i ∈ [n]. Similarly we get,

Q′(yt, xt) =

k∑
l= k

2 +1

P (l|St)

=

(
k

2

)
2

(
k
2 − 1

)
Qyt,yt +

(
k
2

)
Qyt,xt

k(k − 1)

=
k

2(k − 1)
Qyt,xt +

1

4

(k − 2)

(k − 1)
.

Note the above expressions hold true for any pair of items
(xt, yt) ∈ [n]×[n]. Also, its also worth noting that indeed
these give Q′i,j + Q′j,i = 1, and Q′i,i = 1

2 , ∀i, j ∈ [n].
Thus for any pair of items (i, j), we have

Q′i,j =
k

2(k − 1)
Qi,j +

1

4

(k − 2)

(k − 1)
. (11)

Now let us analyse the instantaneous regret of Battling-
Duel at round t, rBBt (BD); using our definition of regret
as defined in (3), gives:

rBBt (BD) =
1

k

∑
j∈St

(
Q1,j −

1

2

)
=

1

k

∑
j∈St

(Q1,j)−
1

2

=
1

k

(
k

2
(Q1,xt +Q1,xt)

)
− 1

2

=
2(k − 1)

k

((
Q′1,xt −

1
2

)
+
(
Q′1,yt −

1
2

)
2

)

=
2(k − 1)

k
rDBt (D),

where the second last equality follows from Equation 11.
Thus summing over t = 1, 2, . . . T , the cumulative regret
of Battling-Duel (BD) over T rounds become:

RBBT (BD) =

T∑
t=1

rBBt (BD)

=
2(k − 1)

k

T∑
t=1

(
rDBt (D)

)
=

2(k − 1)

k
RDBT (D),

and the claim follows. Now let us consider the case when
k is odd.

Case 2. k is odd.

Note that, similar to the case before, we again have that
at any round t,

Q′(xt, yt) =
1

2

(k−1)/2∑
i=1

P (i|St) +
1

2

(k+1)/2∑
i=1

P (i|St)

=

(
k − 1

2

)(
1

2

(
k−1

2 − 1
)
Qxt,xt +

(
k+1

2

)
Qxt,yt

k(k − 1)/2

)

+

(
k + 1

2

)(
1

2

(
k+1

2 − 1
)
Qxt,xt +

(
k−1

2

)
Qxt,yt

k(k − 1)/2

)

=
k + 1

2k
Qxt,yt +

k − 1

4k

Similarly one can show that Q′yt,xt = k+1
2k Qyt,xt + k−1

4k .
It is easy to verify that as desired Q′xt,yt + Q′yt,xt = 1.
Furthermore above relation also gives that

Qxt,yt −
1

2
=

2k

k + 1

(
Q′xt,yt −

1

2

)
. (12)

Then similar to Case 1, analysing the instantaneous re-
gret of Battling-Duel at round t, rBBt (BD); using our
definition of regret as defined in (3), gives:

rBBt (BD) =
1

k

∑
j∈St

(
Q1,j −

1

2

)
=

1

k

∑
j∈St

(Q1,j)−
1

2
14



=
1

k

(
1

2

(
k − 1

2
Q1,xt +

k + 1

2
Q1,yt

)

+
1

2

(
k + 1

2
Q1,xt +

k − 1

2
Q1,yt

))
− 1

2

=

(
Q1,xt − 1

2

)
+
(
Q1,yt − 1

2

)
2

=
2k

k + 1

(
Q′1,xt −

1
2

)
+
(
Q′1,yt −

1
2

)
2

=
2k

k + 1
rDBt (D),

where the second last equality follows from Equation 12.
Now summing over t = 1, 2, . . . T , the cumulative regret
of Battling-Duel (BD) over T rounds become:

RBBT (BD) =

T∑
t=1

rBBt (BD)

=
2k

k + 1

T∑
t=1

(
rDBt (D)

)
=

2k

k + 1
RDBT (D),

and the claim for Case 2 follows.

Proof of Corollary 9

Proof. The result is immediate from Theorem 8 along
with the expected regret guarantee of the RUCB algorithm
as derived in Theorem 5 of [24].

Proof of Corollary 11

Proof. The proof immediately follows from Theorem 10
along with the regret lower bound for any DB problem as
derived in Theorem 2 of [13]. This is because any smaller
regret for ABB would violate the best achievable regret
for DB, which is a logical contradiction.

E Datasets for experiments

E.1 Parameters for linear-subset choice model

For synthetic experiments with linear-subset choice
model, we use the following four different utility score
vectors θ ∈ [0, 1]n: 1. arith 2. geom 3. g1 and 4. g3.

Both arith and geom utility score vector has n = 8 items,
with item 1 as the ‘best’ (Condorcet) item with highest

score, i.e. θ1 > max8
i=2 θi and rest of the θis are in an

arithmetic or geometric progression respectively, as their
name suggests. The two score vectors are described in
Table 2.

arith 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
geom 0.8 0.7 0.512 0.374 0.274 0.2 0.147 0.108

Table 2: Parameters for linear-subset choice model

The next two utility score vectors has n = 15 items in
each. Similarly as before, item 1 is the Condorcet winner
here as well, with θ1 > max8

i=2 θi. More specifically for
g1, the individual score vectors are of the form:

θi =

{
0.8, if i = 1

0.2, ∀i ∈ [15] \ {1}

For g3 the individual score vectors are of the form:

θi =


0.8, if i = 1

0.7, ∀i ∈ [8] \ {1}
0.6, otherwise

We also used a bigger version of the g1 dataset with
n = 50 items to run experiments with varying subset size
k as shown in Figure 5 (Section 5.3). The individual score
vectors of g3 are the form:

θi =

{
0.8, if i = 1

0.2, ∀i ∈ [50] \ {1}

E.2 Pairwise preference matrices used in synthetic
experiments with pairwise-subset choice model

We run experiments on two synthetic preference matri-
ces arith-pref and arxiv-pref for pairwise-subset choice
model. The datasets are shown in Table 3 and 4 respec-
tively.
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Arith preference dataset

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Table 3: arith-pref: Arith preference matrix

Arxiv preference dataset

0.5 0.55 0.55 0.54 0.61 0.61
0.45 0.5 0.55 0.55 0.58 0.6
0.45 0.45 0.5 0.54 0.51 0.56
0.46 0.45 0.46 0.5 0.54 0.5
0.39 0.42 0.49 0.46 0.5 0.51
0.39 0.4 0.44 0.5 0.49 0.5

Table 4: arxiv-pref: Arxiv preference matrix

E.3 Pairwise preference matrices used in real world
experiments with pairwise-subset choice model

Hurdy dataset

The Hudry tournament data is a well-studied tournament
on 13 items and which actually has a special property
of being the smallest tournament dataset for which the
Banks and Copeland sets are different as shown in [16].
Although the original dataset does not contain a Con-
dorcet item. Hence we delete three of the 13 items so
that the resulting preference matrix contains a Condorcet
winner. The preference matrix is shown in Table 5.

Car dataset

This dataset contains pairwise preferences of 10 cars
given by 60 users, where each car has 4 features. From
the user preferences, we compute the underlying pairwise
preference matrix Q, where Qij is computed by taking
the empirical average of number of times a car i is pre-
ferred over item j by the users. The preference matrix
obtained in this way for Car is given in Table 6.

Sushi Dataset

This dataset contains over 100 sushis rated according to
their preferences, where each sushi is represented by 7

features. Similar to Car, we construct the underlying
pairwise preference matrix Q such that Qij is computed
by taking the empirical average of number of times a sushi
type i is preferred over j. We further sample 16 sushis out
of these 100 such that the underlying preference matrix
contains a Condorcet winner. The dataset obtained is
given in Table 7.

Tennis dataset

The tennis preference matrix compiles the all-time win-
loss results of tennis matches among 8 international tennis
players as recorded by the Association of Tennis Profes-
sionals (ATP). For each pair of players (arms), say i and
j, Qij is set to be the fraction of matches between i and
j that were won by i. The dataset is adopted from the
Tennis data used by [16] which has the item (player) 1 as
its Condorcet winner. This resulted pairwise preference
matrix is given below in Table 8.

0.5 0.53 0.67 0.53 0.57 0.83 0.55 0.73
0.47 0.5 0.57 0.71 0.67 0.48 0.43 0.6
0.33 0.43 0.5 0.37 0.41 0.38 0.4 0.2
0.47 0.29 0.63 0.5 0.71 0.52 0.17 0.14
0.43 0.33 0.59 0.29 0.5 0.75 0.32 0.58
0.17 0.52 0.62 0.48 0.25 0.5 0.29 0
0.45 0.57 0.6 0.83 0.68 0.71 0.5 0.52
0.27 0.4 0.8 0.86 0.42 1 0.48 0.5

Table 8: Tennis Dataset
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0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
0.4 0.5 0.9 0.9 0.9 0.9 0.9 0.1 0.1 0.1
0.4 0.1 0.5 0.9 0.9 0.9 0.9 0.1 0.1 0.1
0.4 0.1 0.1 0.5 0.9 0.9 0.9 0.1 0.1 0.1
0.4 0.1 0.1 0.1 0.5 0.9 0.9 0.9 0.9 0.9
0.4 0.1 0.1 0.1 0.1 0.5 0.9 0.9 0.9 0.9
0.4 0.1 0.1 0.1 0.1 0.1 0.5 0.9 0.9 0.9
0.4 0.9 0.9 0.9 0.1 0.1 0.1 0.5 0.9 0.9
0.4 0.9 0.9 0.9 0.1 0.1 0.1 0.1 0.5 0.9
0.4 0.9 0.9 0.9 0.1 0.1 0.1 0.1 0.1 0.5

Table 5: Hurdy Dataset

0.5 0.5833 0.45 0.4333 0.6102 0.7833 0.75 0.7667 0.7119 0.7883
0.4167 0.5 0.3 0.2542 0.3051 0.5254 0.3667 0.5333 0.3729 0.5167
0.55 0.7 0.5 0.5167 0.5833 0.7627 0.7458 0.7288 0.6833 0.8136

0.5667 0.7458 0.4833 0.5 0.6333 0.7167 0.7167 0.6441 0.6724 0.7333
0.3898 0.6949 0.4167 0.3667 0.5 0.7018 0.667 0.7167 0.5763 0.7119
0.2167 0.4746 0.2373 0.2833 0.2982 0.5 0.3966 0.2881 0.35 0.4407
0.25 0.6333 0.2542 0.2833 0.333 0.6034 0.5 0.5333 0.333 0.5085

0.2333 0.4667 0.2712 0.3559 0.2833 0.7119 0.4667 0.5 0.3729 0.4576
0.2881 0.6271 0.3167 0.3276 0.4237 0.65 0.667 0.6271 0.5 0.6167
0.2117 0.4833 0.1864 0.2667 0.2881 0.5593 0.4915 0.5424 0.3833 0.5

Table 6: Car Dataset

0.5 0.705 0.534 0.72 0.533 0.429 0.591 0.398 0.683 0.626 0.528 0.554 0.66 0.573 0.534 0.575
0.295 0.5 0.392 0.643 0.299 0.32 0.42 0.198 0.489 0.416 0.304 0.39 0.493 0.458 0.393 0.376
0.466 0.608 0.5 0.729 0.5 0.451 0.522 0.295 0.62 0.503 0.383 0.52 0.634 0.572 0.485 0.53
0.28 0.357 0.271 0.5 0.262 0.268 0.255 0.191 0.432 0.373 0.222 0.305 0.425 0.346 0.312 0.259

0.467 0.701 0.5 0.738 0.5 0.462 0.559 0.224 0.68 0.556 0.381 0.487 0.676 0.575 0.513 0.56
0.571 0.68 0.549 0.732 0.538 0.5 0.635 0.336 0.728 0.605 0.508 0.545 0.703 0.666 0.515 0.603
0.409 0.58 0.478 0.745 0.441 0.365 0.5 0.317 0.615 0.481 0.359 0.482 0.637 0.556 0.441 0.419
0.602 0.802 0.705 0.809 0.776 0.664 0.683 0.5 0.794 0.683 0.683 0.652 0.743 0.738 0.663 0.697
0.317 0.511 0.38 0.568 0.32 0.272 0.385 0.206 0.5 0.453 0.299 0.36 0.437 0.371 0.343 0.306
0.374 0.584 0.497 0.627 0.444 0.395 0.519 0.317 0.547 0.5 0.476 0.478 0.558 0.517 0.466 0.476
0.472 0.696 0.617 0.778 0.619 0.492 0.641 0.317 0.701 0.524 0.5 0.553 0.739 0.675 0.566 0.627
0.446 0.61 0.48 0.695 0.513 0.455 0.518 0.348 0.64 0.522 0.447 0.5 0.621 0.608 0.524 0.553
0.34 0.507 0.366 0.575 0.324 0.297 0.363 0.257 0.563 0.442 0.261 0.379 0.5 0.347 0.335 0.273

0.427 0.542 0.428 0.654 0.425 0.334 0.444 0.262 0.629 0.483 0.325 0.392 0.653 0.5 0.447 0.419
0.466 0.607 0.515 0.688 0.487 0.485 0.559 0.337 0.657 0.534 0.434 0.476 0.665 0.553 0.5 0.504
0.425 0.624 0.47 0.741 0.44 0.397 0.581 0.303 0.694 0.524 0.372 0.447 0.727 0.581 0.496 0.5

Table 7: Sushi Dataset
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