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1 Lemmas

We will start by proving Lemma 0, which will be used in
the proof of Lemma 2 .
Lemma 0. Given a function f(x, y), let
(x∗, y∗) be a maximizing assignment, i.e.,
(x∗, y∗) = argmaxx,y f(x, y). Then, ∀y′ s.t.
y

′
= argmaxy f(x

∗, y), (x∗, y
′
) is also a maximizing

assignment.

Proof. We can write the following (in)equality:

f(x∗, y∗) ≤ max
y
f(x∗, y) = f(x∗, y′)

But since (x∗,y∗) was the maximizing assignment for
f(x, y), it must be the case that f(x∗, y∗) = f(x∗, y′).
Hence, (x∗, y′) must also be a maximizing assignment.
Hence, proved.
Lemma 2. Consider the MMAP problem over MX̃ . Let
qp be an assignment to the propositional MAP predi-
cates. Let M ′

X̃
be an MLN obtained by substituting the

truth value in qp for propositional predicates. Then, if
M ′

X̃
has a solution at extreme for all possible assign-

ments of the form qp then, MX̃ also has a solution at
extreme.

Proof. The MMAP problem can be written as:

argmax
qp,qu

∑
sp,su

WMX̃
(qp, qu, sp, su) (1)

here, qp, qu denote an assignment to the propositional
and unary MAX predicate groundings in MX̃ , respec-
tively. Similarly, sp, su denote an assignment to the
propositional and unary SUM predicate groundings in
MX̃ , respectively. Let q∗p denote an optimal assign-
ment to the propositional MAX predicates. Then, using
Lemma 0, we can get the MMAP assignment q∗u as a so-
lution to the following problem:

argmax
qu

∑
sp,su

WM ′
X̃
(qu, su, sp) (2)

where M ′
X̃

is obtained by substituting the truth assign-
ment q∗p in MX̃ . Since, M ′

X̃
has a solution at extreme

∀qp, it must also be at extreme when qp = q∗p . Hence, q∗u
must be at extreme. Hence, proved.

Lemma 5. The solution to the MMAP formulation
argmaxqWMX̃

(q) lies at extreme iff solution to its
equivalent formulation:

argmax
N1,N2,··· ,NR

∑
s

R∏
l=1

fl(s)
Nl (3)

subject to the constraints ∀l, Nl ≥ 0, Nl ∈ Z and∑
lNl = m lies at extreme.

Proof. If argmaxN1,N2,··· ,NR

∑
s

∏R
l=1 fl(s)

Nl lies at
extreme then ∃l such that Nl = m and Nl′ = 0,∀l′ 6= l.
Let vl denote the value taken by the groundings of the
unary MAX predicates corresponding to index l. Since
Nl = m, it must be the case that all the ground-
ings get the identical value vl. Hence, the solution to
argmaxqWMX̃

(q) lies at extreme. Similar proof strat-
egy holds for the other way around as well.

Lemma. (Induction Base Case in Proof of Lemma 6):
Let f1(s), f2(s) and g(s) denote real-valued functions
of a vector valued input s 1. Further, let each of
f1(s), f2(s), g(s) be non-negative. Then, for N ∈ R, we
define a function h(N) =

∑
s f1(s)

N
f2(s)

m−N × g(s)
where the domain of h is further restricted to be in the
interval [0,m], i.e., 0 ≤ N ≤ m. The maxima of the
function h(N) lies at N = 0 or N = m.

Proof. First derivative of h(N) with respect to N is:

dh

dN
=
∑
s

(
f1(s)

N
f2(s)

m−N
g(s)×

[log(f1(s))− log(f2(s))]
)

1Recall that s was an assignment to all the propositional
SUM predicates in our original Lemma.



Second derivative of h(N) with respect to N is given as:

d2h

dN2
=
∑
s

(
f1(s)

N
f2(s)

m−N
g(s)×

[log(f1(s))− log(f2(s))]2
)
≥ 0

The inequality follows from the fact that each of f1, f2, g
is non-negative. Hence, the second derivative of h(N) is
non-negative which means the function is convex. There-
fore, the maximum value of this function must lie at
the end points of its domain, i.e, either at N = 0 or at
N = m.

Lemma 8. Let M be an MLN and Mr be the reduced
MLN with respect to the SOM-R equivalence class X̃ . Let
q and qr denote two corresponding extreme assignments
in M and Mr, respectively. Then, ∃ a monotonically in-
creasing function g such that WM (q) = g(WMr (qr)).

Proof. First, we note that if we multiply the weight wi

of a formula fi in an MLN by a factor k, then, the cor-
responding potential φij (i.e., potential corresponding to
the jth grounding of the ith formula) gets raised to the
power k. If wi gets replaced by k×wi, then, correspond-
ingly, φij gets replaced by (φij)

k ∀j. We will use this
fact in the following proof.

As in the case of Lemma 7, we will instead work with
the variablized MLNs MX̃ and Mr

X̃
, respectively. Let

q = (qp, qu) be the MMAP assignment for Q in MX̃

and similarly q = (qrp, q
r
u) be the MMAP assignment for

Q in Mr
X̃

.

For MLN MX̃ , the MMAP objective WM at (qp, qu) can
be written as WMX̃

(qp, qu) =:

∑
sp,su

( r∏
i=1

m∏
j=1

φij(qp, qu, sp, su)

t∏
k=1

φk(qp, sp)
)

(4)

where φij are potentials over formulas containing some
X ∈ X̃ and φk are potentials over formulas which do
not contain any X ∈ X̃ . In particular, note that we have
separated out the formulas which involve a variable from
the class X̃ from those which don’t. r denotes the count
of the formulas of the first type and t denotes the count
of the formulas of the second type. We will use this form
in the following proof.

Let the reduced domain of X̃ in Mr is given by {x1},
i.e., the only constant which remains in the domain is
corresponding to index j = 1. Next we prove the above
lemma for the two cases considered in Definition 5:

CASE 1: ∀P ∈ S,P contains a variable from X̃
In this case MX̃ and Mr

X̃
will not contain any proposi-

tional SUM predicate i.e. sp = ∅.

In this case, while constructing Mr
X̃

, for formulas not
containing some X ∈ X̃ we divided the weight by m.
This combined with the result stated in the beginning of
this proof, the MMAP objective for Mr

X̃
can be written

as:

WMr
X̃
(qp, qu) =

∑
su

( r∏
i=1

φi1(qp, qu1
, su1

)

t∏
k=1

φk(qp)
1
m

)
=
(∑

su1

r∏
i=1

φi1(qp, qu1 , su1)
) t∏

k=1

φk(qp)
1
m

Next for MLN MX̃ we have, WMX̃
(qp, qu) =

∑
su

( r∏
i=1

m∏
j=1

φij(qp, qu, su)

t∏
k=1

φk(qp)
)

=
(∑

su

m∏
j=1

r∏
i=1

φij(qp, qu, su)
) t∏

k=1

φk(qp)

=
(∑

suj

m∏
j=1

r∏
i=1

φij(qp, quj
, suj

)
) t∏

k=1

φk(qp)

=
( m∏

j=1

∑
suj

r∏
i=1

φij(qp, quj
, suj

)
) t∏

k=1

φk(qp)

=
( m∏

j=1

∑
suj

r∏
i=1

φij(qp, qu1
, suj

)
) t∏

k=1

φk(qp)

=
(∑

suj

r∏
i=1

φij(qp, qu1
, suj

)
)m t∏

k=1

φk(qp)

=
(∑

suj

r∏
i=1

φij(qp, qu1 , suj )
)m t∏

k=1

(
φk(qp)

1
m

)m

=
(∑

suj

r∏
i=1

φij(qp, qu1
, suj

)
)m( t∏

k=1

φk(qp)
1
m

)m

=
(∑

suj

r∏
i=1

φij(qp, qu1 , suj )

t∏
k=1

φk(qp)
1
m

)m
=
(
WMr

X̃
(qp, qu)

)m
First equality comes by removing sp from Equation 4.
In second equality we switch the order of two products.
In third equality we have made explicit the dependence
of φij on quj and suj i.e. groundings corresponding to
jth constant. In fourth equality we use inversion elimi-
nation (de Salvo Braz, Amir, and Roth 2005) to invert



the sum over suj and product over j. Next, since X̃ is
SOM-R, from Theorem 1 we know qu lies at extreme
i.e. ∀j, quj

= qu1
, so we replace all quj

by qu1
in fifth

equality. Next, after summing out suj
all φij will behave

identically 2, so we reduce
∏m

j=1 to exponent m. In the
next steps we do basic algebraic manipulations to show
WMX̃

(q) = g(WMr
X̃
(qr)) where g is function defined as

g(x) = xm, i.e., g is monotonically increasing. Hence,
proved.

CASE 2: ∀P ∈ S, P doesn’t contain a variable from X̃
In this caseMX̃ will not contain any unary SUM predicate
i.e. su = ∅.

In this case for the reduced MLN Mr
X̃

we multiply the
weight of formulas containing some X ∈ X̃ by m and
domain of X̃ is reduced to a single constant. Combining
this fact along with the result shown in the beginning of
this proof, MAP objective for Mr

X̃
is given by:

WMr
X̃
(qp, qu) =

∑
sp

( r∏
i=1

φi1(qp, qu1
, sp)

m
t∏

k=1

φk(qp, sp)
)

Next for MLN MX̃ we have, WMX̃
(qp, qu) =

∑
sp

( r∏
i=1

m∏
j=1

φij(qp, qu, sp)

t∏
k=1

φk(qp, sp)
)

=
∑
sp

( r∏
i=1

m∏
j=1

φij(qp, quj , sp)

t∏
k=1

φk(qp, sp)
)

=
∑
sp

( r∏
i=1

m∏
j=1

φij(qp, qu1
, sp)

t∏
k=1

φk(qp, sp)
)

=
∑
sp

( r∏
i=1

(φi1(qp, qu1
, sp))

m
t∏

k=1

φk(qp, sp)
)

=WMr
X̃
(qp, qu)

First equality comes by removing su from Equation 4. In
second equality we have made explicit the dependence of
φij on quj

i.e. groundings corresponding to jth constant.
Next, since X̃ is SOM-R, from Theorem 1 we know qu
lies at extreme i.e. ∀j, quj

= qu1
, so we replace all

quj
by qu1

in third equality. Last equality comes from
the fact that φij’s are identical to each other up to re-
naming of the index j as argued earlier. Hence we can
write

∏
j φij as (φi1)

m. Hence, in this case, we have
WMX̃

(q) = WMr
X̃
(qr) implying that the function g is

identity (and hence, monotonically increasing).

From proofs of Case 1 and Case 2 we conclude that ∃ a

2φij’s are identical to each other up to renaming of the index
j, due to the normal form assumption.

monotonically increasing function g such that WM (q) =
g(WMr (qr)).
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