Supplementary Material: Lifted Marginal MAP Inference

Vishal Sharma¹, Noman Ahmed Sheikh², Happy Mittal¹, Vibhav Gogate³ and Parag Singla¹

¹IIT Delhi, {vishal.sharma, happy.mittal, parags}@cse.iitd.ac.in ²IIT Delhi, nomanahmedsheikh@outlook.com

³UT Dallas, vgogate@hlt.utdallas.edu

1 Lemmas

We will start by proving Lemma 0, which will be used in the proof of Lemma 2.

Lemma 0. Given a function f(x, y), let (x^*, y^*) be a maximizing assignment, i.e., $(x^*, y^*) = \arg \max_{x,y} f(x, y)$. Then, $\forall y'$ s.t. $y' = \arg \max_y f(x^*, y)$, (x^*, y') is also a maximizing assignment.

Proof. We can write the following (in)equality:

$$f(x^*, y^*) \le \max f(x^*, y) = f(x^*, y')$$

But since (x^*, y^*) was the maximizing assignment for f(x, y), it must be the case that $f(x^*, y^*) = f(x^*, y')$. Hence, (x^*, y') must also be a maximizing assignment. Hence, proved.

Lemma 2. Consider the MMAP problem over $M_{\tilde{X}}$. Let q_p be an assignment to the propositional MAP predicates. Let $M'_{\tilde{X}}$ be an MLN obtained by substituting the truth value in q_p for propositional predicates. Then, if $M'_{\tilde{X}}$ has a solution at extreme for all possible assignments of the form q_p then, $M_{\tilde{X}}$ also has a solution at extreme.

Proof. The MMAP problem can be written as:

$$\arg\max_{q_p,q_u} \sum_{s_p,s_u} W_{M_{\tilde{X}}}(q_p,q_u,s_p,s_u) \tag{1}$$

here, q_p, q_u denote an assignment to the propositional and unary MAX predicate groundings in $M_{\tilde{X}}$, respectively. Similarly, s_p, s_u denote an assignment to the propositional and unary SUM predicate groundings in $M_{\tilde{X}}$, respectively. Let q_p^* denote an optimal assignment to the propositional MAX predicates. Then, using Lemma 0, we can get the MMAP assignment q_u^* as a solution to the following problem:

$$\arg\max_{q_u} \sum_{s_p, s_u} W_{M'_{\tilde{X}}}(q_u, s_u, s_p) \tag{2}$$

where $M'_{\tilde{X}}$ is obtained by substituting the truth assignment q_p^* in $M_{\tilde{X}}$. Since, $M'_{\tilde{X}}$ has a solution at extreme $\forall q_p$, it must also be at extreme when $q_p = q_p^*$. Hence, q_u^* must be at extreme. Hence, proved.

Lemma 5. The solution to the MMAP formulation arg $\max_{q} W_{M_{\tilde{X}}}(q)$ lies at extreme iff solution to its equivalent formulation:

$$\underset{N_1,N_2,\cdots,N_R}{\operatorname{arg\,max}} \sum_{s} \prod_{l=1}^{R} f_l(s)^{N_l} \tag{3}$$

subject to the constraints $\forall l, N_l \geq 0, N_l \in \mathbb{Z}$ and $\sum_l N_l = m$ lies at extreme.

1

Proof. If $\arg \max_{N_1,N_2,\cdots,N_R} \sum_s \prod_{l=1}^R f_l(s)^{N_l}$ lies at extreme then $\exists l$ such that $N_l = m$ and $N_{l'} = 0, \forall l' \neq l$. Let v_l denote the value taken by the groundings of the unary MAX predicates corresponding to index l. Since $N_l = m$, it must be the case that all the groundings get the identical value v_l . Hence, the solution to $\arg \max_q W_{M_{\tilde{X}}}(q)$ lies at extreme. Similar proof strategy holds for the other way around as well.

Lemma. (Induction Base Case in Proof of Lemma 6): Let $f_1(s), f_2(s)$ and g(s) denote real-valued functions of a vector valued input s^{-1} . Further, let each of $f_1(s), f_2(s), g(s)$ be non-negative. Then, for $N \in \mathcal{R}$, we define a function $h(N) = \sum_s f_1(s)^N f_2(s)^{m-N} \times g(s)$ where the domain of h is further restricted to be in the interval [0, m], i.e., $0 \le N \le m$. The maxima of the function h(N) lies at N = 0 or N = m.

Proof. First derivative of h(N) with respect to N is:

$$\frac{dh}{dN} = \sum_{s} \left(f_1(s)^N f_2(s)^{m-N} g(s) \times \left[log(f_1(s)) - log(f_2(s)) \right] \right)$$

¹Recall that s was an assignment to all the propositional SUM predicates in our original Lemma.

Second derivative of h(N) with respect to N is given as:

$$\frac{d^2h}{dN^2} = \sum_{s} \left(f_1(s)^N f_2(s)^{m-N} g(s) \times [\log(f_1(s)) - \log(f_2(s))]^2 \right) \ge 0$$

The inequality follows from the fact that each of f_1, f_2, g is non-negative. Hence, the second derivative of h(N) is non-negative which means the function is convex. Therefore, the maximum value of this function must lie at the end points of its domain, i.e, either at N = 0 or at N = m.

Lemma 8. Let M be an MLN and M^r be the reduced MLN with respect to the SOM-R equivalence class \tilde{X} . Let q and q^r denote two corresponding extreme assignments in M and M^r , respectively. Then, \exists a monotonically increasing function g such that $W_M(q) = g(W_{M^r}(q^r))$.

Proof. First, we note that if we multiply the weight w_i of a formula f_i in an MLN by a factor k, then, the corresponding potential ϕ_{ij} (i.e., potential corresponding to the j^{th} grounding of the i^{th} formula) gets raised to the power k. If w_i gets replaced by $k \times w_i$, then, correspondingly, ϕ_{ij} gets replaced by $(\phi_{ij})^k \forall j$. We will use this fact in the following proof.

As in the case of Lemma 7, we will instead work with the variablized MLNs $M_{\tilde{X}}$ and $M_{\tilde{X}}^r$, respectively. Let $q = (q_p, q_u)$ be the MMAP assignment for Q in $M_{\tilde{X}}$ and similarly $q = (q_p^r, q_u^r)$ be the MMAP assignment for Q in $M_{\tilde{Y}}^r$.

For MLN $M_{\tilde{X}}$, the MMAP objective W_M at (q_p, q_u) can be written as $W_{M_{\tilde{X}}}(q_p, q_u) =:$

$$\sum_{s_p, s_u} \left(\prod_{i=1}^r \prod_{j=1}^m \phi_{ij}(q_p, q_u, s_p, s_u) \prod_{k=1}^t \phi_k(q_p, s_p) \right) \quad (4)$$

where ϕ_{ij} are potentials over formulas containing some $X \in \tilde{X}$ and ϕ_k are potentials over formulas which do not contain any $X \in \tilde{X}$. In particular, note that we have separated out the formulas which involve a variable from the class \tilde{X} from those which don't. r denotes the count of the formulas of the first type and t denotes the count of the formulas of the second type. We will use this form in the following proof.

Let the reduced domain of \hat{X} in M^r is given by $\{x_1\}$, i.e., the only constant which remains in the domain is corresponding to index j = 1. Next we prove the above lemma for the two cases considered in Definition 5: **CASE 1**: $\forall P \in S, P$ contains a variable from \tilde{X} In this case $M_{\tilde{X}}$ and $M_{\tilde{X}}^r$ will not contain any propositional SUM predicate i.e. $s_p = \emptyset$.

In this case, while constructing $M_{\tilde{X}}^r$, for formulas not containing some $X \in \tilde{X}$ we divided the weight by m. This combined with the result stated in the beginning of this proof, the MMAP objective for $M_{\tilde{X}}^r$ can be written as:

$$W_{M_{\tilde{X}}^{r}}(q_{p}, q_{u}) = \sum_{s_{u}} \left(\prod_{i=1}^{r} \phi_{i1}(q_{p}, q_{u_{1}}, s_{u_{1}}) \prod_{k=1}^{t} \phi_{k}(q_{p})^{\frac{1}{m}} \right)$$
$$= \left(\sum_{s_{u_{1}}} \prod_{i=1}^{r} \phi_{i1}(q_{p}, q_{u_{1}}, s_{u_{1}}) \right) \prod_{k=1}^{t} \phi_{k}(q_{p})^{\frac{1}{m}}$$

Next for MLN $M_{\tilde{X}}$ we have, $W_{M_{\tilde{X}}}(q_p,q_u) =$

$$\sum_{s_{u}} \left(\prod_{i=1}^{r} \prod_{j=1}^{m} \phi_{ij}(q_{p}, q_{u}, s_{u}) \prod_{k=1}^{t} \phi_{k}(q_{p}) \right)$$

$$= \left(\sum_{s_{u}} \prod_{j=1}^{m} \prod_{i=1}^{r} \phi_{ij}(q_{p}, q_{u}, s_{u}) \right) \prod_{k=1}^{t} \phi_{k}(q_{p})$$

$$= \left(\sum_{s_{u_{j}}} \prod_{j=1}^{m} \prod_{i=1}^{r} \phi_{ij}(q_{p}, q_{u_{j}}, s_{u_{j}}) \right) \prod_{k=1}^{t} \phi_{k}(q_{p})$$

$$= \left(\prod_{j=1}^{m} \sum_{s_{u_{j}}} \prod_{i=1}^{r} \phi_{ij}(q_{p}, q_{u_{1}}, s_{u_{j}}) \right) \prod_{k=1}^{t} \phi_{k}(q_{p})$$

$$= \left(\sum_{s_{u_{j}}} \prod_{i=1}^{r} \phi_{ij}(q_{p}, q_{u_{1}}, s_{u_{j}}) \right)^{m} \prod_{k=1}^{t} \phi_{k}(q_{p})$$

$$= \left(\sum_{s_{u_{j}}} \prod_{i=1}^{r} \phi_{ij}(q_{p}, q_{u_{1}}, s_{u_{j}}) \right)^{m} \prod_{k=1}^{t} \phi_{k}(q_{p})$$

$$= \left(\sum_{s_{u_{j}}} \prod_{i=1}^{r} \phi_{ij}(q_{p}, q_{u_{1}}, s_{u_{j}}) \right)^{m} \prod_{k=1}^{t} \left(\phi_{k}(q_{p})^{\frac{1}{m}} \right)^{m}$$

$$= \left(\sum_{s_{u_{j}}} \prod_{i=1}^{r} \phi_{ij}(q_{p}, q_{u_{1}}, s_{u_{j}}) \right)^{m} \left(\prod_{k=1}^{t} \phi_{k}(q_{p})^{\frac{1}{m}} \right)^{m}$$

$$= \left(\sum_{s_{u_{j}}} \prod_{i=1}^{r} \phi_{ij}(q_{p}, q_{u_{1}}, s_{u_{j}}) \prod_{k=1}^{t} \phi_{k}(q_{p})^{\frac{1}{m}} \right)^{m}$$

First equality comes by removing s_p from Equation 4. In second equality we switch the order of two products. In third equality we have made explicit the dependence of ϕ_{ij} on q_{u_j} and s_{u_j} i.e. groundings corresponding to j^{th} constant. In fourth equality we use inversion elimination (de Salvo Braz, Amir, and Roth 2005) to invert the sum over s_{u_j} and product over j. Next, since \hat{X} is SOM-R, from Theorem 1 we know q_u lies at extreme i.e. $\forall j, q_{u_j} = q_{u_1}$, so we replace all q_{u_j} by q_{u_1} in fifth equality. Next, after summing out s_{u_j} all ϕ_{ij} will behave identically ², so we reduce $\prod_{j=1}^m$ to exponent m. In the next steps we do basic algebraic manipulations to show $W_{M_{\tilde{X}}}(q) = g(W_{M_{\tilde{X}}^r}(q^r))$ where g is function defined as $g(x) = x^m$, i.e., g is monotonically increasing. Hence, proved.

CASE 2: $\forall P \in S$, P doesn't contain a variable from \hat{X} In this case $M_{\hat{X}}$ will not contain any unary SUM predicate i.e. $s_u = \emptyset$.

In this case for the reduced MLN $M_{\tilde{X}}^r$ we multiply the weight of formulas containing some $X \in \tilde{X}$ by m and domain of \tilde{X} is reduced to a single constant. Combining this fact along with the result shown in the beginning of this proof, MAP objective for $M_{\tilde{X}}^r$ is given by:

$$W_{M_{\tilde{X}}^{r}}(q_{p}, q_{u}) = \sum_{s_{p}} \left(\prod_{i=1}^{r} \phi_{i1}(q_{p}, q_{u_{1}}, s_{p})^{m} \prod_{k=1}^{t} \phi_{k}(q_{p}, s_{p}) \right)$$

Next for MLN $M_{\tilde{X}}$ we have, $W_{M_{\tilde{X}}}(q_p, q_u) =$

$$\begin{split} &\sum_{s_p} \left(\prod_{i=1}^r \prod_{j=1}^m \phi_{ij}(q_p, q_u, s_p) \prod_{k=1}^t \phi_k(q_p, s_p) \right) \\ &= \sum_{s_p} \left(\prod_{i=1}^r \prod_{j=1}^m \phi_{ij}(q_p, q_{u_j}, s_p) \prod_{k=1}^t \phi_k(q_p, s_p) \right) \\ &= \sum_{s_p} \left(\prod_{i=1}^r \prod_{j=1}^m \phi_{ij}(q_p, q_{u_1}, s_p) \prod_{k=1}^t \phi_k(q_p, s_p) \right) \\ &= \sum_{s_p} \left(\prod_{i=1}^r (\phi_{i1}(q_p, q_{u_1}, s_p))^m \prod_{k=1}^t \phi_k(q_p, s_p) \right) \\ &= W_{M_{\tilde{X}}^r}(q_p, q_u) \end{split}$$

First equality comes by removing s_u from Equation 4. In second equality we have made explicit the dependence of ϕ_{ij} on q_{u_j} i.e. groundings corresponding to j^{th} constant. Next, since \tilde{X} is SOM-R, from Theorem 1 we know q_u lies at extreme i.e. $\forall j, q_{u_j} = q_{u_1}$, so we replace all q_{u_j} by q_{u_1} in third equality. Last equality comes from the fact that ϕ_{ij} 's are identical to each other up to renaming of the index j as argued earlier. Hence we can write $\prod_j \phi_{ij}$ as $(\phi_{i1})^m$. Hence, in this case, we have $W_{M_{\tilde{X}}}(q) = W_{M_{\tilde{X}}^r}(q^r)$ implying that the function g is identity (and hence, monotonically increasing).

From proofs of Case 1 and Case 2 we conclude that \exists a

monotonically increasing function g such that $W_M(q) = g(W_{M^r}(q^r))$.

References

de Salvo Braz, R.; Amir, E.; and Roth, D. 2005. Lifted first-order probabilistic inference. In *Proc. of IJCAI-05*, 1319–1325.

 $^{{}^{2}\}phi_{ij}$'s are identical to each other up to renaming of the index *j*, due to the normal form assumption.