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1 Lemmas

We will start by proving Lemma 0, which will be used in
the proof of Lemma 2 .

Lemma 0. Given a
(x*,y*) be a

Sfunction  f(z,y), let
maximizing  assignment, le.,

(z*,y*) = argmax,, f(v,y). Then, Vy' sit.
y = arg max, f(z*,y), (x*,y') is also a maximizing
assignment.

Proof. We can write the following (in)equality:
F@*,y") < maxf(e,y) = f(z",y)

But since (z*,y*) was the maximizing assignment for
f(z,y), it must be the case that f(z*,y*) = f(z*,y').
Hence, (2*,y’) must also be a maximizing assignment.
Hence, proved.

Lemma 2. Consider the MMAP problem over M 3. Let
gp be an assignment to the propositional MAP predi-
cates. Let M }( be an MLN obtained by substituting the
truth value in q, for propositional predicates. Then, if
M ;2 has a solution at extreme for all possible assign-
ments of the form q, then, M also has a solution at
extreme.

Proof. The MMAP problem can be written as:

arg max Z Wt (@ps Qus Sps Su) M

dp,9q
pdu g s,

here, g, g, denote an assignment to the propositional
and unary MAX predicate groundings in M, respec-
tively. Similarly, s,,s, denote an assignment to the
propositional and unary SUM predicate groundings in
My, respectively. Let g, denote an optimal assign-
ment to the propositional MAX predicates. Then, using
Lemma 0, we can get the MMAP assignment ¢, as a so-
lution to the following problem:

arg max Z WM;_( (Qu75u75p) 2

qu
SpySu

where M ;“c is obtained by substituting the truth assign-
ment q; in M. Since, M }( has a solution at extreme
Vgp, it must also be at extreme when ¢, = ¢,,. Hence, ¢,
must be at extreme. Hence, proved.

Lemma 5. The solution to the MMAP formulation
argmax, W, (q) lies at extreme iff solution to its
equivalent formulation:

R
argmax Y ] fi(s)™ 3)

N1,Na,--,Nr "o 1

subject to the constraints ¥YI,N; > 0,N; € 7Z and

> Ni = m lies at extreme.

Proof. If argmaxy, n, .. np Do Hil ()N lies at
extreme then 3/ such that N; = m and Ny = 0, VI’ # .
Let v; denote the value taken by the groundings of the
unary MAX predicates corresponding to index /. Since
N; = m, it must be the case that all the ground-
ings get the identical value v;. Hence, the solution to
argmax, Wiy, (q) lies at extreme. Similar proof strat-
egy holds for the other way around as well.

Lemma. (Induction Base Case in Proof of Lemma 6):
Let f1(s), f2(s) and g(s) denote real-valued functions
of a vector valued input s '. Further, let each of
f1(s), f2(s), g(s) be non-negative. Then, for N € R, we
define a function h(N) = F1()N f2()™ N x g(s)
where the domain of h is further restricted to be in the
interval [0,m], i.e, 0 < N < m. The maxima of the
Sunction h(N) liesat N =0 or N = m.

Proof. First derivative of h(N) with respect to NV is:

IS ()N fals)™ N gls)x
dN

S

llog(f1(5)) — log(f2(5))])

'Recall that s was an assignment to all the propositional
SUM predicates in our original Lemma.



Second derivative of h(N') with respect to N is given as:

&h_ = 3 (50" oot
dN?2

log(f1(s)) — log(fa(s))]*) = 0

The inequality follows from the fact that each of f1, fo, ¢
is non-negative. Hence, the second derivative of h(N) is
non-negative which means the function is convex. There-
fore, the maximum value of this function must lie at
the end points of its domain, i.e, either at N = 0 or at
N =m.

Lemma 8. Let M be an MLN and M" be the reduced
MLN with respect to the SOM-R equivalence class X. Let
q and q" denote two corresponding extreme assignments
in M and M", respectively. Then, 3 a monotonically in-
creasing function g such that Wy (q) = g(Wa-(q")).

Proof. First, we note that if we multiply the weight w;
of a formula f; in an MLN by a factor k, then, the cor-
responding potential ¢;; (i.e., potential corresponding to
the j* grounding of the i*" formula) gets raised to the
power k. If w; gets replaced by k x w;, then, correspond-
ingly, ¢;; gets replaced by (¢;;)* Vj. We will use this
fact in the following proof.

As in the case of Lemma 7, we will instead work with
the variablized MLNs Mg and M7, respectively. Let
¢ = (¢p,qu) be the MMAP assignment for Q in My
and similarly ¢ = (gj, ;,) be the MMAP assignment for
Qin M)f(

For MLN M ¢, the MMAP objective Wy at (g, ¢,) can
be written as Was_ (gp, qu) =:

t

Z (H H ®i5(ps Qus 5ps Su H

SpySu 1=1j=1 k=1

(@ sp)) ()

where ¢;; are potentials over formulas containing some
X € X and ¢y, are potentials over formulas which do
not contain any X € X.In particular, note that we have
separated out the formulas which involve a variable from
the class X from those which don’t. r denotes the count
of the formulas of the first type and ¢ denotes the count
of the formulas of the second type. We will use this form
in the following proof.

Let the reduced domain of X in M" is given by {z},
i.e., the only constant which remains in the domain is
corresponding to index 7 = 1. Next we prove the above
lemma for the two cases considered in Definition 5:

CASE 1: VP € S,P contains a variable from X
In this case M ¢ and M = will not contain any proposi-
tional SUM predlcate ie. sp = 0.

In this case, while constructing M~ , for formulas not

containing some X € X we divided the weight by m.
This combined with the result stated in the beginning of
this proof, the MMAP objective for M3 can be written
as:

t
WM’ (Q;mQu —Z (H(bzl QpaQuUSul H (bk >
=1 k=1

Su,

(3 TT o000 50)) TT a0

Sup i=1 =1
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Next for MLN M 3 we have, Wi (g, qu) =

3 (T oot 0 [ )
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First equality comes by removing s, from Equation 4.
In second equality we switch the order of two products.
In third equality we have made explicit the dependence
of ¢;; on q; and s,; i.e. groundings corresponding to
jt" constant. In fourth equality we use inversion elimi-
nation (de Salvo Braz, Amir, and Roth 2005) to invert



the sum over Su; and product over j. Next, since X is
SOM-R, from Theorem 1 we know g, lies at extreme
i.e. VJ, qu; = qu,» s0 we replace all g,; by gy, in fifth
equality. Next, after summing out s, all ¢;; will behave
identically 2, so we reduce H;nzl to exponent m. In the
next steps we do basic algebraic manipulations to show
Wiy (9) = 9(Warr (¢")) where g is function defined as
g(x) = ™, i.e., g is monotonically increasing. Hence,
proved.

CASE 2: VP € S, P doesn’t contain a variable from X
In this case M ¢ will not contain any unary SUM predicate
ie. s, = 0.

In this case for the reduced MLN M7 we multiply the

weight of formulas containing some X € X by m and
domain of X is reduced to a single constant. Combining
this fact along with the result shown in the beginning of
this proof, MAP objective for M;i( is given by:

t

WM;{ (vaCIu) :Z (H¢i1(Qquu175P H

Sp =1 k=1

Next for MLN M ¢ we have, Wi/ (¢p; qu) =

5 (IT T ootor e TT o1

sp i=1j=1 k=1

:Z(HH@J (Jp7(Zu]75p H(bk dp Sp) )

Sp i=1j=1

_Z(HH‘% dp» Qus » 5p) H¢k qp,sp)

Sp i=175=1

= Z (H ¢zl vaQulvsp m H ¢k(vaSp))
Sp = k=1

=W, (9p, qu)

vasp )

First equality comes by removing s,, from Equation 4. In
second equality we have made explicit the dependence of
¢ij on qy; i.e. groundings corresponding to 4" constant.
Next, since X is SOM-R, from Theorem 1 we know ¢,
lies at extreme i.e. VJj, qu; = qu,, SO we replace all
qu; by qu, in third equality. Last equality comes from
the fact that ¢;;’s are identical to each other up to re-
naming of the index j as argued earlier. Hence we can
write [, ¢i; as (¢:1)™. Hence, in this case, we have
Wi (@) = W (¢") implying that the function g is
identity (and hence, monotonically increasing).

From proofs of Case 1 and Case 2 we conclude that 3 a

2¢;;’s are identical to each other up to renaming of the index
J, due to the normal form assumption.

Qpasp )

monotonically increasing function g such that Wy, (q) =
9(War(q")).

References

de Salvo Braz, R.; Amir, E.; and Roth, D. 2005.
Lifted first-order probabilistic inference. In Proc. of
1JCAI-05, 1319-1325.



