
1 PROOFS OMITTED FROM THE
MAIN TEXT

Proof of Theorem 11. First we define two auxiliary es-
timators Ã

(q)
Υ and Ã

(q)
Γ . Let Y(q) be a vector of

bn/kc · q size-k subsets of CΥ where the subsets of CΥ
in each of the q non-overlapping size-bn/kc segments
Y

(q)
1 ,Y

(q)
2 , . . . ,Y

(q)
q of Y(q) are sampled in the same

way as the elements of the vector Y in Lemma 3, all with
the same CΥ (i.e. Y(q) is the concatenation of the vec-
tors Y

(q)
1 ,Y

(q)
2 , . . . ,Y

(q)
q ). Another vector Z(q) which

contains bu/kc · q size-k subsets of CΓ is sampled in the
same way. Note that Z(q) is independent of Y(q). Let us
define

Ã
(q)
Υ =

1

q · bn/kc
∑
S∈Y(q)

1(Υ〈S〉 |= α) and,

Ã
(q)
Γ =

1

q · bu/kc
∑
S∈Z(q)

1(Γ〈S〉 |= α).

We can rewrite them as

Ã
(q)
Υ =

1

q

q∑
i=1

1

bn/kc
∑
S∈Y(q)

i

1(Υ〈S〉 |= α),

Ã
(q)
Γ =

1

q

q∑
i=1

1

bu/kc
∑
S∈Z(q)

i

1(Γ〈S〉 |= α).

Let us denote m1 = bn/kc, m2 = bu/kc
and Ti := 1

bn/kc
∑
S∈Y(q)

i
(1(Υ〈S〉 |= α)−Aℵ) −

1
bu/kc

∑
S∈Z(q)

i
(1(Γ〈S〉 |= α)−Aℵ) (we note that

E [Ti] = 0). Using the same arguments as in the proof of
Theorem 10, we obtain the following:

P [Ã
(q)
Υ − Ã

(q)
Γ ≥ ε]

≤
q∑

i=1

1

q
· E [exp (h(Ti − ε))]

≤ e−hε exp

(
h2

8m1

)
exp

(
h2

8m2

)
= exp

(
−hε+

m1 +m2

8m1m2
· h2

)
The bound achieves its minimum at h = 4εm1m2

m1+m2
.

Thus, we get

P [Ã
(q)
Υ − Ã

(q)
Γ ≥ ε] ≤ exp

(
−2ε2

1/bn/kc+ 1/bu/kc

)
,

symmetrically also P [Ã
(q)
Γ − Ã

(q)
Υ ≥ ε] ≤

exp
(

−2ε2

1/bn/kc+1/bu/kc

)
, and, using union bound, we get

P [|Ã(q)
Υ − Ã

(q)
Γ | ≥ ε] ≤ 2 exp

(
−2ε2

1/bn/kc+ 1/bu/kc

)
.

It follows from the strong law of large numbers
(which holds for any Υ and Γ) that P [limq→∞ Ã

(q)
Υ =

ÂΥ and Ã(q)
Γ = ÂΓ] = 1. Since q was arbitrary, the

statement of the proposition follows.

2 REPRESENTING CONSTANTS
USING AUXILIARY PREDICATES

In this paper we restricted ourselves to reasoning with
theories that do not contain any constants. It is straight-
forward to extend our results to provide PAC-type bounds
also for theories with constants by introducing auxiliary
predicates. For instance, in the smokers domain, if we
want to express that friends of Alice do not smoke, i.e.
∀X : fr(alice,X)⇒ ¬sm(X), then we may introduce an
auxiliary predicate friendOfAlice/1 and the rule becomes
∀X : friendOfAlice(X) ⇒ ¬sm(X). We note here that
it is not necessary to add auxiliary predicates explicitly in
practice. We use auxiliary predicates just for theoretical
purposes to explain how the results about PAC-reasoning
derived in this paper can be applied when constants are
allowed.

This also reveals interesting properties of the problem.
For instance, in order to do non-trivial reasoning based
on k-entailment with a theory consisting only of the rule

∀X,Y : sm(X) ∧ fr(X,Y )⇒ sm(Y )

we need k ≥ 2. However, for the rule

∀X : friendOfAlice(X)⇒ ¬sm(X)

we only need k ≥ 1. Hence, for the derived PAC bounds,
we can see that the expected number of errors made when
using only the second rule grows as in the attribute-value
case whereas the expected number of errors for the first
rule may grow more quickly with the increasing size of
the test examples (cf. Theorem 14).
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