
The Variational Homoencoder:
Learning to learn high capacity generative models from few examples
SUPPLEMENTARY MATERIAL

1 Constrained Posterior Approximation

In a VAE, use of a recognition network encourages learning of generative models whose structure permits accurate
amortised inference. In a VHE, this recognition network takes only a small subsample as input, which additionally
encourages that the true posterior p(c|X) can be well approximated from only a few examples of X . For a subsample
D ⊂ X , q(c;D) is implicitly trained to minimise the KL divergence from this posterior in expectation over possible
sets X consistent with D. For a data distribution pd we may equivalently describe the VHE objective (Equation ??) as

E
pd(D)

E
pd(X|D)

[
E
x∈X

[
log p(x)

]
− 1

|X|
DKL

[
q(c;D) ‖ p(c|X)

]]
(1)

Note that the variational gap on the right side of this equation is itself bounded by:

E
pd(X|D)

DKL
[
q(c;D) ‖ p(c|X)

]
≥ DKL

[
q(c;D) ‖ E

pd(X|D)
p(c|X)

]
≥ 0 (2)

The left inequality is tightest when p(c|X) matches p(c|D) well across all X consistent with D, and exact only
when these are equal. We view this aspect of the VHE loss as regulariser for constrained posterior approximation,
encouraging models for which the posterior p(c|X) can be well determined by sampled subsets D ⊂ X . This reflects
how we expect the model to be used at test time, and in practice we have found this ‘loose’ bound to perform well
in our experiments. In principle, the bound may also be tightened by introducing an auxiliary inference network (see
Supplementary Material 2) which we leave as a direction for future research.

2 Tightened variational bound

The likelihood lower bound in the VHE objective may also be tightened by introduction of an auxiliary network
r(D; c,X), trained to infer which subset D ⊂ X was used in q. This meta-inference approach was introduced in
Salimans et al. (2015) to develop stochastic variational posteriors using MCMC inference. Applied to Equation ??,
this yields a modified bound for the VHE objective

log p(X) ≥
∑
x∈X

E
q′(D;X(x))

q(c;D)

[
log p(x|c)− 1

|X(x)|
log

p(c)r(D; c,X(x))

q′(D;X(x))q(c;D)

]
(3)

where q′(D;X) describes the stochastic sampling procedure for samplingD ⊂ X , which indeed may itself be learned
using policy gradients.

We have conducted preliminary experiments using fixed q′ and a simple functional form r(D; c,X) =∏
i r(di; c,X) ∝

∏
i

[
fψ(c) · ξdi

]
, learning parameters ψ and embeddings {ξd : d ∈ X}; however, on the Om-

niglot dataset we found no additional benefit over the strictly loose bound (Equation ??). We attribute this to the
already high similarity between elements of the same Omniglot character class, allowing the approximate posterior
q(c;D) to be relatively robust to different choices of D. However, we expect that the gain from using such a tightened
objective may be much greater for domains with lower intra-class similarity (e.g. natural images), and thus suggest
the tightened bound of Equation 3 as a direction for future research.

3 Variational Bound for Hierarchical Models

The resampling trick may be applied iteratively, to construct likelihood bounds over hierarchically organised data.
Expanding on Equation ??, suppose that we have collection of datasets

X = X1 t X2 t . . . t XN (4)

For example, each X might be a different alphabet whose latent description a generates many character classes Xi,
and for each of these a corresponding latent ci is used to generate many images xij . From this perspective, we would
like to learn a generative model for alphabets X of the form

p(X) =
∫
p(a)

∏
Xi⊂X

∫
p(c|a)

∏
x∈Xi

p(x|c, a)dcda (5)

Reapplying the same trick as before yields a bound taken over all elements x:

log p(X) ≥
∑
x∈X

E
Da⊂X(x)

Dc⊂X(x)

[
E

qa(a|D1)
qc(c|D2,a)

log p(x|c)

− 1

|X(x)|
DKL

(
qa(a|Da) ‖ p(a)

)
− 1

|X(x)|
DKL

(
qc(c|Dc, a) ‖ p(c|a)

)]

This suggests an analogous hierarchical resampling procedure: Summing over every element x, we can bound the log
likelihood of the full hierarchy by resampling subsets Dc, Da, etc. at each level to construct an approximate posterior.
All networks are trained together by this single objective, sampling x, Da and Dc for each gradient step. Note that
this procedure need only require passing sampled elements, rather than full classes, into the upper-level encoder qa.

4 Results for Simple 1D Distributions

With a Neural Statistician model, under-utilisation of latent variables is expected to pose the greatest difficulty either
when |D| is too small, or the inference network q is insufficiently expressive. We demonstrate on simple 1D distri-
butions that a Variational Homoencoder can bring improvements under these circumstances. For this we created five
datasets as follows, each containing 100 classes from a particular parametric family, and with 100 elements sampled
from each class.

1. Gaussian: Each class is Gaussian with µ drawn from a Gaussian hyperprior (fixed σ2).

2. Mixture of Gaussians: Each class is an even mixture of two Gaussian distributions with location drawn from a
Gaussian hyperprior (fixed σ2 and separation).

3. von Mises: Each class is von Mises with µ drawn from a Uniform hyperprior (fixed κ).

4. Gamma: Each class is Gamma with fixed β, and with α drawn from a Uniform hyperprior.

5. Discrete: Each class is Uniform on a subset of {1,. . . ,8}, either 1-4, 5-8, odd or even.

For each dataset, we then trained models using a variety of values for |D|, restricting the inference network q(c;D) to
a simple linear map with Gaussian output. In each case the generative model p(x|c) was set to the correct parametric
family, with parameters learned as a linear function of c. All models were built in Torch 7 (?) and optimised using
Adam (?) for 200 epochs. To aid optimisation we used an additional 50 epochs for KL annealing, and used training
error to select the best parameters from 3 independent training runs.

Our results show that, when |D| is small, the Neural Statistician often places little to no information in q(c;D) (Figure
1, top row). Our careful training suggests that this is not an optimisation difficulty, but is core to the objective as
in ?. In these cases a VHE better utilises the latent space, leading to improvements in both few-shot generation (by
conditional NLL) and classification. Importantly, this is achieved while retaining good likelihood of test-set classes,
typically matching or improving upon that achieved by a Neural Statistician (including a standard VAE, corresponding
to |D| = 1).

Figure 1: Comparison of models trained simple 1D distributions using various alternate objectives, including the
Neural Statistician. |D| is the number of encoder inputs during training. Top row: Mean encoded information
DKL[q(c;D) ‖ p(c)]; Second row: |D|-shot generation loss −Ec∼q(c;D) log p(x′|c); Third row: |D|-shot binary
classification error, by minimising conditional NLL Bottom row: Joint NLL (per element) of full test set, calculated
by importance weighting on 200 samples from q(c;X);

5 PixelCNN Omniglot Architecture

5.1 Methodology

Our architecture uses a 8x28x28 latent variable c, with a full architecture detailed below. For our classification experi-
ments, we trained 5 models on each of the objectives (VHE, Rescale only, Resample only, NS). Occasionally we found
instability in optimisation, causing sudden large increases in the training objective. When this happened, we halted
and restarted training. All models were trained for 100 epochs on 1000 characters from the training set (the remaining
200 have been used as validation data for model selection). Finally, for each objective we selected the parameters
achieving the best training error.

Note that we did not optimise or select models based on classification performance, other than through our develop-
ment of our model’s architecture. However, we find that classification performance is well correlated the generative
training objective, as can be seen in the full table of results.

We perform classification by calculating the expected conditional likelihood under the variational posterior:
Eq(c;D) p(x|c). This is approximated using 20 samples for the outer expectation, and importance sampling with
k = 10 for the inner integral p(x|c) = Eq(t|x) p(t)

q(t|x)p(x|c, t)

To evaluate and compare log likelihood, we trained 5 more models with the same architecture, this time on the canon-
ical 30-20 alphabet split of Lake et al. We did not augment our training data. Again, we split the background set into
training data (25 alphabets) and validation data (5) but do not use the validation set in training or evaluation for our
final results. We estimate the total class log likelihood by importance weighting, using k=20 importance samples of
the class latent c and k=10 importance samples of the transformation latent t for each instance.

5.2 Conditional Samples on Omniglot

5.3 Model Specification

[d] denotes a dimension d tensor. {t} denotes a set with elements of type t. Posteriors q are Gaussian.

p(c)

A PixelCNN with autoregressive weights along only the spatial (not depth) dimensions of c. We use 2 layers of masked
64x3x3 convolutions, followed by a ReLU and two 8x1x1 convolutions corresponding to the mean and log variance
of a Gaussian posterior for the following pixel.

p(t)

t: [16] Normal(0, 1)

p(x—c,t)

c: [8x28x28], t: [16] 7→ x: [1x28x28]
PixelCNN is gated by y, and is autoregressive along only the spatial (not depth) dimensions of c. We use 2 layers of
masked 64x3x3 convolutions, followed by a ReLU, a 2x1x1 convolution and a softmax, corresponding to a Bernoulli
distribution on the following pixel.

q(c;D)

D: {[1x28x28]} 7→ c: [8x28x28]
Input Operation Output
D STNq Y: {[1x28x28]}
Y Mean y: [1x28x28]
y 16x28x28 Conv mu: [8x28x28], logvar: [8x28x28]

q(t;x)

x: [1x28x28] 7→ t: [16]
[H]

Spatial Transformer STNq

x: [1x28x28] 7→ y: [1x28x28]

6 Hierarchical Omniglot Architecture

We extend the same architecture described in Appendix B of (?), with only a simple modification: we introduce a new
latent layer containing a 64-dimensional variable a, with a Gaussian prior. We give p(c|a) the same functional form
as p(z|c), and give q(a|Da) the same functional form as q(c;Dc) using the shared encoder.

Figure 2: 10-shot alphabet generation samples from the hierarchical model.

7 Conditional Samples on Faces Dataset

Figure 3: 5-shot samples of YouTube faces generated using PixelCNN architectures

8 Conditional Samples on Silhouettes Dataset

We created a VHE using the same deconvolutional architecture as applied to omniglot, and trained it on the Caltech-
101 Silhouettes dataset. 10 object classes were held out as test data, which we use to generate both 1-shot and 5-shot
conditional samples.

	Constrained Posterior Approximation
	Tightened variational bound
	Variational Bound for Hierarchical Models
	Results for Simple 1D Distributions
	PixelCNN Omniglot Architecture
	Methodology
	Conditional Samples on Omniglot
	Model Specification

	Hierarchical Omniglot Architecture
	Conditional Samples on Faces Dataset
	Conditional Samples on Silhouettes Dataset

