Supplementary Information

Hydrodynamic simulations

The fluid flow around an object is theoretically described
by the Navier-Stokes equations,

ov

pgp TP Vv ==Vp+nVo, ©)

where p denotes the pressure and 7 the viscosity coef-
ficient. Equation [/|describes a second order non-linear
partial differential equation and is except for a few special
cases only numerically solvable. Here we consider the
laminar (i.e. non-turbulent) flow of an incompressible
fluid that obeys

V-v=0. ®)

The resistance of an object in fluid dynamics is character-
ized by the drag coefficient ¢,

2F,
=5 ©)

In the reference frame of the object, F; is the component
of the force caused by the fluid in flow direction which
represents drag. p is the density of the fluid, v the flow
velocity and A is the size of the object, such as area or
diameter in flow direction. Strictly speaking, Equation 9]
does not hold true for laminar flow but ¢ still provides
a quantitative account of the drag in laminar flow if v is
kept constant throughout all simulations.

Figure 4 shows example simulations from the dataset
generation. We generate random shapes by picking radii
from a uniform distribution at different polar angles. Sub-
sequently we use a set of Fourier descriptors to obtain
a smooth shape which facilitates the geometry meshing.
The discretized space allows us to solve the Navier-Stokes
equations (Eq[7) with a standard finite element solver
(QuickerSim, MATLAB). The left wall is defined as fluid
inlet with constant flow profile directed in positive x-
direction. Furthermore we apply slip boundary conditions
to the upper and lower wall (i.e. v, = 0) and consider
slip at the object boundaries. In analogy to the three di-
mensional case we define size A as the maximum object
extension perpendicular to the flow direction. All simu-
lations are performed with a scalar viscosity v = 0.02.
Generated shapes are resized to 42 x 56 pixels to reduce
memory requirements.

Shape dataset: Implementation details

We map the input images of size 42 x 56 to the latent
space (25 dimensions) and back via a convolutional au-
toencoder. The encoder consists of two convolutional and

one dense layer (200 units, ReL.u) and we model mean
and variance of the latent Gaussian distribution with two
separate networks. The decoder consists of two dense
layers (200 units each, ReLu) followed by two decon-
volutional layers. The final deconvolution network uses
sigmoid activation. We use a simple rounding operation
to extract binary shape masks which we can then use as
input for the hydrodynamic simulation. The discrimina-
tive network mapping z to a 20-dimensional feature space
consists of two fully-connected layers (250 units each,
ReLu). From here a linear output layer maps to the scalar
y. The adversarial network consists of one hidden layer
(100 units, ReLu activation). The size of the training set
varies across experiments. For training in the drag opti-
mization experiment we consider 2500 labeled and 2000
unlabeled shapes, respectively. Validation and test set
consist of 300 samples each. We use early stopping with
regret 2 based on the validation-set loss. The models are
trained in TensorFlow with a learning rate of 0.0001 for
all experiments. We use the package GPflow (Matthews
et al., 2017) to fit Gaussian process models.

Protein dataset: Implementation details

Encoder and decoder are parametrized as fully-connected
networks with one hidden layer, ReLu activation func-
tion and 200 hidden units. The discriminative network
mapping z (60 dimensions) to a 20-dimensional feature
space consists of two fully-connected layers (250 units
each). From here a linear output layer maps to the scalar
y. The size of the training set varies across experiments.
Validation and test set consist of 2,000 labeled sequences
each and we use early stopping with regret 2 based on
the validation-set loss. For training in the Bayesian op-
timization experiment we use the entire dataset except
for the validation and test set. We ensure that generated
designs are valid, discrete structures by choosing the near-
est neighbor. The learning rate is set to 0.0001 for all
experiments. Computations are performed in TensorFlow
and using the software package GPflow (Matthews et al.,
2017).



