Appendix

Appendix A Proof Details of the Theoretical Analysis

A.1 Generalization Error

In this section, we analyze the generalization error on the model learning task. We denote F and G as the function
spaces of f and g, respectively, and the D as the function space of the {D;}7_, where T stands for the number of steps,
and g°(z,&) = ((I+g)o(I+g)o...o(I+g))(x)+ & with & ~ N (0, At). We define
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Without the loss of generality, we assume in each timestamp the number of the observations is N. Given the samples
y {(yHE O}Z 1» where yo.7 = (yi)_, are sampled i.i.d. from the underline stochastic processes, and X = {z{} Y ;,
= {&8.7 ¥, are also i.i.d. sampled, we have the empirical loss function as
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With the notations defined above, we provide the proof for Theorem 1 as below.

Proof. Denote the f and g are the solutions provided by the algorithm, and f* and g* be the optimal solutions, we have
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Assume D € Ly, where L, denotes the k-Lipschitz function space, and | V|- = Cy, we have,
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where the R(F o G°%) denotes the Rademacher complexity of the function space F o G°. Therefore, we have
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A.2 Convergence Analysis

Inspired by (Dai et al., 2017), we can see that once we obtain the Dy, the Algorithm 1 can be understood as a special
case of stochastic gradient descent for non-convex problem. We prove the Theorem 2 as below.

Proof. We compute the gradient of /(f, g) w.r.t. f, the same argument is also for gradient w.r.t. gb.
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The second term in the last second line is zero due to the optimality of D*. Therefore, we achieve the unbiasedness of
the gradient estimators.

As long as the gradient estimator for f and g are unbiased, the convergence rate in Theorem 2 will be automatically
hold from (Ghadimi & Lan, 2013). O



