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Abstract

We revisit the problem of linear regression un-
der a differential privacy constraint. By con-
solidating existing pieces in the literature, we
clarify the correct dependence of the feature, la-
bel and coefficient domains in the optimization
error and estimation error, hence revealing the
delicate price of differential privacy in statis-
tical estimation and statistical learning. More-
over, we propose simple modifications of two
existing DP algorithms: (a) posterior sampling,
(b) sufficient statistics perturbation, and show
that they can be upgraded into adaptive algo-
rithms that are able to exploit data-dependent
quantities and behave nearly optimally for every
instance. Extensive experiments are conducted
on both simulated data and real data, which
conclude that both ADAOPS and ADASSP out-
perform the existing techniques on nearly all
36 data sets that we test on.

1 INTRODUCTION

Linear regression is one of the oldest tools for data
analysis (Galton, 1886) and it remains one of the most
commonly-used as of today (Draper & Smith, 2014),
especially in social sciences (Agresti & Finlay, 1997),
econometics (Greene, 2003) and medical research (Ar-
mitage et al., 2008). Moreover, many nonlinear models
are either intrinsically linear in certain function spaces,
e.g., kernels methods, dynamical systems, or can be re-
duced to solving a sequence of linear regressions, e.g.,
iterative reweighted least square for generalized Linear
models, gradient boosting for additive models and so on
(see Friedman et al., 2001, for a detailed review).

In order to apply linear regression to sensitive data such
as those in social sciences and medical studies, it is of-
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ten needed to do so such that the privacy of individuals
in the data set is protected. Differential privacy (Dwork
et al., 2006b) is a commonly-accepted criterion that pro-
vides provable protection against identification and is
resilient to arbitrary auxiliary information that might be
available to attackers. In this paper, we focus on linear
regression with (ε, δ)-differentially privacy (Dwork et al.,
2006a).

Isn’t it a solved problem? It might be a bit surprising
why this is still a problem, since several general frame-
works of differential privacy have been proposed that
cover linear regression. Specifically, in the agnostic set-
ting (without a data model), linear regression is a special
case of differentially private empirical risk minimization
(ERM), and its theoretical properties have been quite well-
understood in a sense that the minimax lower bounds
are known (Bassily et al., 2014) and a number of algo-
rithms (Chaudhuri et al., 2011; Kifer et al., 2012) have
been shown to match the lower bounds under various
assumptions. In the statistical estimation setting where
we assume the data is generated from a linear Gaussian
model, linear regression is covered by the sufficient statis-
tics perturbation approach for exponential family models
(Dwork & Smith, 2010; Foulds et al., 2016), propose-test-
release framework (Dwork & Lei, 2009) as well as the
the subsample-and-aggregate framework (Smith, 2008),
with all three approaches achieving the asymptotic effi-
ciency in the fixed dimension (d = O(1)), large sample
(n→∞) regime.

Despite these theoretical advances, very few empirical
evaluations of these algorithms were conducted and we
are not aware of a commonly-accepted best practice. Prac-
titioners are often left puzzled about which algorithm to
use for the specific data set they have. The nature of differ-
ential privacy often requires them to set parameters of the
algorithm (e.g., how much noise to add) according to the
diameter of the parameter domain, as well as properties
of a hypothetical worst-case data set, which often leads to



an inefficient use of their valuable data.

The main contribution of this paper is threefold:

1. We consolidated many bits and pieces from the liter-
ature and clarified the price of differentially privacy
in statistical estimation and statistical learning.

2. We carefully analyzed One Posterior Sample (OPS)
and Sufficient Statistics Perturbation (SSP) for lin-
ear regression and proposed simple modifications
of them into adaptive versions: ADAOPS and
ADASSP. Both work near optimally for every prob-
lem instance without any hyperparameter tuning.

3. We conducted extensive real data experiments to
benchmark existing techniques and concluded that
the proposed techniques give rise to the more fa-
vorable privacy-utility tradeoff relative to existing
methods.

Outline of this paper. In Section 2 we will describe
the problem setup and explain differential privacy. In
Section 3, we will survey the literature and discuss exist-
ing algorithms. Then we will propose and analyze our
new method ADASSP and ADAOPS in Section 4 and
conclude the paper with experiments in Section 5.

2 NOTATIONS AND SETUP

Throughout the paper we will useX ∈ Rn×d and y ∈ Rn
to denote the design matrix and response vector. These are
collections of data points (x1, y1), ..., (xn, yn) ∈ X × Y .
We use ‖·‖ to denote Euclidean norm for vector inputs, `2-
operator norm for matrix inputs. In addition, for set inputs,
‖ · ‖ denotes the radius of the smallest Euclidean ball that
contains the set. For example, ‖Y‖ = supy∈Y |y| and
‖X‖ = supx∈X ‖x‖. Let Θ be the domain of coefficients.
Our results do not require Θ to be compact but existing
approaches often depend on ‖Θ‖. . and & denote greater
than or smaller to up to a universal multiplicative constant,
which is the same as the big O(·) and the big Ω(·). Õ(·)
hides at most a logarithmic term. ≺ and � denote the
standard semidefinite ordering of positive semi-definite
(psd) matrices. · ∨ · and · ∧ · denote the bigger or smaller
of the two inputs.

We now define a few data dependent quantities. We
use λmin(XTX) (abbv. λmin) to denote the smallest
eigenvalue of XTX , and to make the implicit depen-
dence in d and n clear from this quantity, we define
α := λmin

d
n‖X‖2 . One can think of α as a normalized

smallest eigenvalue of XTX such that 0 ≤ α ≤ 1.
Also, 1/α is closely related to the condition number of
XTX .

Define the least square solution θ∗ = (XTX)†XTy. It
is the optimal solution to minθ

1
2‖y − Xθ‖

2 =: F (θ).
Similarly, we use θ∗λ = (XTX+λI)−1XTy denotes the
optimal solution to the ridge regression objective Fλ(θ) =
F (θ) + λ‖θ‖2.

In addition, we denote the global Lipschitz constant of F
as L∗ := ‖X‖2‖Θ‖+ ‖X‖‖Y‖ and data-dependent local
Lipschitz constant at θ∗ as L := ‖X‖2‖θ∗‖+ ‖X‖‖Y‖.
Note that when Θ = Rd, L∗ = ∞, but L will remain
finite for every given data set.

Metric of success. We measure the performance of an
estimator θ̂ in two ways.

First, we consider the optimization error F (θ̂) − F (θ∗)
in expectation or with probability 1− %. This is related to
the prediction accuracy in the distribution-free statistical
learning setting.

Second, we consider how well the coefficients can be
estimated under the linear Gaussian model:

y = Xθ0 +N (0, σ2In)

in terms of E[‖θ̂−θ0‖2] or in some cases E[‖θ̂−θ0‖2|E]
where E is a high probability event.

The optimal error in either case will depend on the specific
design matrix X , optimal solution θ∗, the data domain
X ,Y , the parameter domain Θ as well as θ0, σ

2 in the
statistical estimation setting.

Differential privacy. We will focus on estimators that
are differential private, as defined below.
Definition 1 (Differential privacy (Dwork et al., 2006b)).
We say a randomized algorithmA satisfies (ε, δ)-DP if for
all fixed data set (X,y) and data set (X ′,y′) that can be
constructed by adding or removing one row (x, y) from
(X,y), and for any measurable set S over the probability
of the algorithm

P(A((X,y)) ∈ S) ≤ eεP(A((X ′,y′)) ∈ S) + δ,

Parameter ε represents the amount of privacy loss from
running the algorithm and δ denotes a small probability of
failure. These are user-specified targets to achieve and the
differential privacy guarantee is considered meaningful
if ε ≤ 1 and δ � 1/n (see, e.g., Section 2.3.3 of Dwork
et al., 2014a, for a comprehensive review).

The pursuit for adaptive estimators. Another impor-
tant design feature that we will mention repeatedly in this
paper is adaptivity. We call an estimator θ̂ adaptive if
it behaves optimally simultaneously for a wide range of
parameter choices. Being adaptive is of great practical



relevance because we do not need to specify the class
of problems or worry about whether our specification
is wrong (see examples of adaptive estimators in e.g.,
Donoho, 1995; Birgé & Massart, 2001). Adaptivity is par-
ticularly important for differentially private data analysis
because often we need to decide the amount of noise to
add by the size of the domain. For example, an adaptive al-
gorithm will not rely on conservative upper bounds of θ0,
or a worst case λmin (which would be 0 on any X ), and
it can take advantage of favorable properties when they
exist in the data set. We want to design an estimator that
does not take these parameters as inputs and behave nearly
optimally for every fixed data set X ∈ Xn,y ∈ Y under
a variety of configuration of ‖X‖, ‖Y‖, ‖Θ‖.

3 A SURVEY OF PRIOR WORK

In this section, we summarize existing theoretical results
in linear regression with and without differential privacy
constraints. We will start with lower bounds.

3.1 Information-theoretic lower bounds

Lower bounds under linear Gaussian model. Under
the statistical assumption of linear Gaussian model y =
Xθ0 + N (0, σ2), the minimax risk for both estimation
and prediction are crisply characterized for each fixed
design matrix X:

inf
θ̂

sup
θ0∈Rd

E[F (θ̂)− F (θ0)|X] =
dσ2

2
, (1)

and if we further assume that n ≥ d and XTX is invert-
ible (for identifiability), then

inf
θ̂

sup
θ0∈Rd

E[‖θ̂ − θ0‖22|X] = σ2tr[(XTX)−1]. (2)

In the above setup, θ̂ is any measurable function of ŷ
(note that X is fixed). These are classic results that can
be found in standard statistical decision theory textbooks
(See, e.g., Wasserman, 2013, Chapter 13).

Under the same assumptions, the Cramer-Rao lower
bound mandates that the covariance matrix of any un-
biased estimator θ̂ of θ0 to obey that

Cov(θ̂) � σ2(XTX)−1. (3)

This bound applies to every problem instance separately
and also implies a sharp lower bound on the predic-
tion variance on every data point x. More precisely,
Var(θ̂Tx) ≥ σ2xT (XTX)−1x for any x.

Minimax risk (1), (2) and the Cramer-Rao lower bound
(3) are simultaneously attained by θ∗.

Statistical learning lower bounds. Perhaps much less
well-known, linear regression is also thoroughly studied in
the distribution-free statistical learning setting, where the
only assumption is that the data are drawn iid from some
unknown distribution P defined on some compact domain
X × Y . Specifically, let the risk (E[loss]) be

R(θ) = E(x,y)∼P [ 1
2 (xT θ − y)2] = 1

nE(X,y)∼Pn [F (θ)].

Shamir (2015) showed that when Θ, X are Y are Eu-
clidean balls,

inf
θ̂

sup
P

[
E[n ·R(θ̂)]− inf

θ∈Θ
[n ·R(θ)]

]
&min{n‖Y‖2, ‖Θ‖2‖X‖2 + d‖Y‖2,

√
n‖Θ‖‖X‖‖Y‖}.

(4)
where θ̂ be any measurable function of the data set X,y
to Θ and the expectation is taken over the data generating
distribution X,y ∼ Pn. Note that to be compatible to
other bounds that appear in this paper, we multiplied the
R(·) by a factor of n. Informally, one can think of ‖Y‖ as
σ in (1) so both terms depend on dσ2 (or d‖Y‖2), but the
dependence on ‖Θ‖‖X‖ is new for the distribution-free
setting.

Koren & Levy (2015) later showed that this lower bound
is matched up to a constant by Ridge Regression with
λ = 1 and both Koren & Levy (2015) and Shamir (2015)
conjecture that ERM without additional regularization
should attain the lower bound (4). If the conjecture is true,
then the unconstrained OLS is simultaneously optimal
for all distributions supported on the smallest ball that
contains all data points in X,y for any Θ being an `2 ball
with radius larger than ‖θ∗‖.

Lower bounds with (ε, δ)-privacy constraints. Sup-
pose that we further require θ̂ to be (ε, δ)-differentially
private, then there is an additional price to pay in terms
of how accurately we can approximate the ERM solution.
Specifically, the lower bounds for the empirical excess
risk for differentially private ERM problem in (Bassily
et al., 2014) implies that for δ < 1/n and sufficiently
large n:

1. There exists a triplet of (X ,Y,Θ) ⊂ Rd × R× Rd,
such that

inf
θ̂ is (ε,δ)-DP

sup
X∈Xn,y∈Yn

[
F (θ̂)− inf

θ∈Θ
F (θ)

]
&min{n‖Y‖2,

√
d(‖X‖2‖Θ‖2 + ‖X‖‖Θ‖‖Y‖)

ε
}.

(5)

2. Consider the class of data set S where all data sets
X ∈ S ⊂ Xn obeys that the inverse condition num-
ber α ≥ α∗ ≥ d1.5(‖X‖‖Θ‖+‖Y‖)

n‖X‖‖Θ‖ε
1. There exists a

1This requires λmin ≥
√
dL/ε for all data sets X .



triplet of (X ,Y,Θ) ⊂ Rd × R× Rd such that

inf
θ̂ is (ε,δ)-DP

sup
X∈S,y∈Yn

[
F (θ̂)− inf

θ∈Θ
F (θ)

]
&min{n‖Y‖2, d

2(‖X‖‖Θ‖+ ‖Y‖)2

nα∗ε2
}.

(6)

These bounds are attained by a number of algorithms,
which we will go over in Section 3.2.

Comparing to the non-private minimax rates on prediction
accuracy, the bounds look different in several aspects.
First, neither rate for prediction error in (1) or (4) depends
on whether the design matrix X is well-conditioned or
not, while α∗ appears explicitly in (6). Secondly, the
dependence on ‖Θ‖‖X‖, ‖Y‖, d, n are different, which
makes it hard to tell whether the optimization error lower
bound due to privacy requirement is limiting. One may
ask the following question:

When is privacy for free in statistical learning?

Specifically, what is the smallest ε such that an
(ε, δ)-DP algorithm matches the minimax rate in
(4)? The answer really depends on the relative
scale of ‖X‖‖Θ‖ and ‖Y‖ and that of n, d. When
‖X‖‖Θ‖ � ‖Y‖, (5) says that (ε, δ)-DP algorithms
can achieve the nonconvex minimax rate provided that

ε & min

{
1√
d
∨
√

d
n ,
√

d2

n1.5α∗ ∨
√

d
nα∗

}
. On the other

hand, if ‖X‖‖Θ‖ �
√
d‖Y‖ 2 and n > d, then we need

ε & min
{√

d ∨ d3/2

n , d√
nα∗
∨ d3/2

n
√
α∗

}
.

The regions are illustrated graphically in Figure 1. In
the first case, there is a large region upon n & d, where
meaningful differential privacy (with ε ≤ 1 and δ =
o(1/n)) can be achieved without incurring a significant
toll relative to (4). In the second case, we need at least
n & d2 to achieve “privacy-for-free” in the most favorable
case where α∗ = 1. In the case when X could be rank-
deficient, then it is infeasible to achieve “privacy for free”
no matter how large n is.

It might be tempting to conclude that one should always
prefer Case 1 over Case 2. This is unfortunately not true
because the artificial restriction of the model class via a
bounded ‖Θ‖ also weakens our non-private baseline. In
other word, the best solution within a small Θ might be
significantly worse than the best solution in Rd.

In practice, it is hard to find a Θ with a small radius that
fits all purposes3 and it is unreasonable to assume α∗ > 0.

2This is arguably the more relevant setting. Note that if
x ∼ N (0, Id) and θ is fixed, then xT θ = OP (d−1/2‖x‖‖θ‖).

3If ‖Θ‖ � ‖θ∗‖ then the constraint becomes limiting. If
‖θ∗‖ � ‖Θ‖ instead, then calibrating the noise according to
‖Θ‖ will inject more noise than necessary.

n

DP-for-free region, * = 1
DP-for-free region, * = 0.1
DP-for-free region, * = 0
Largest acceptable 

n

DP-for-free region, * = 1
DP-for-free region, * = 0.1
DP-for-free region, * = 0
Trivial solution is optimal
Largest acceptable 

Figure 1: Illustration of the region of ε where DP can be
obtained without losing minimax rate (4).[Zoom to see!]

This motivates us to go beyond the worst-case and come
up with adaptive algorithms that work without knowing
‖θ∗‖ and α while achieving the minimax rate for the class
with ‖Θ‖ = ‖θ∗‖ and α∗ = α (in hindsight).

In Appendix B, we provide an alternative illustration of
the lower bounds and highlight the price of differential
privacy for different configuration of n, d, α, ε.

3.2 Existing algorithms and our
contribution

We now survey the following list of five popular algo-
rithms in differentially private learning and highlight the
novelty in our proposals 4.

1. Sufficient statistics perturbation (SSP) (Vu &
Slavkovic, 2009; Foulds et al., 2016): ReleaseXTX
and Xy differential privately and then output θ̂ =

(X̂TX)−1X̂y.

2. Objective perturbation (OBJPERT) (Kifer et al.,

4While we try to be as comprehensive as possible, the litera-
ture has grown massively and the choice of this list is limited by
our knowledge and opinions.



2012): θ̂ = argminF (θ) + 0.5λ‖θ‖2 + ZT θ with
an appropriate λ and Z is an appropriately chosen
iid Gaussian random vector.

3. Subsample and Aggregate (Sub-Agg) (Smith, 2008;
Dwork & Smith, 2010): Subsample many times, ap-
ply debiased MLE to each subset and then randomize
the way we aggregate the results.

4. Posterior sampling (OPS) (Mir, 2013; Dimitrakakis
et al., 2014; Wang et al., 2015; Minami et al., 2016):
Output θ̂ ∼ P (θ) ∝ e−γ(F (θ)+0.5λ‖θ‖2) with param-
eters γ, λ.

5. NOISYSGD (Bassily et al., 2014): Run SGD for a
fixed number of iterations with additional Gaussian
noise added to the stochastic gradient evaluated on
one randomly-chosen data point.

We omit detailed operational aspects of these algorithms
and focus our discussion on their theoretical guarantees.
Interested readers are encouraged to check out each paper
separately. These algorithms are proven under different
scalings and assumptions. To ensure fair comparison,
we make sure that all results are converted to our setting
under a subset of the following assumptions.

A.1 ‖X‖ is bounded, ‖Y‖ is bounded.

A.2 ‖Θ‖ is bounded.

A.3 All possible data sets X obey that the smallest eigen-
value λmin(XTX) is greater than n‖X‖2

d α∗.

Note that A.3 is a restriction on the domain of the data set,
rather than the domain of individual data points in the data
set of size n. While it is a little unconventional, it is valid
to define differential privacy within such a restricted space
of data sets. It is the same assumption that we needed to
assume for the lower bound in (6) to be meaningful. As
in Koren & Levy (2015), we simplify the expressions of
the bound by assuming ‖Y‖ ≤ ‖X‖‖Θ‖, and in addition,
we assume that ‖Y‖ . ‖X‖‖θ∗‖.

Table 1 summarizes the upper bounds of optimization
error the aforementioned algorithms in comparison to
our two proposals: ADAOPS and ADASSP. Comparing
the rates to the lower bounds in the previous section, it is
clear that NoisySGD, OBJPERT both achieve the minimax
rate in optimization error but their hyperparameter choice
depends on the unknown ‖Θ‖ and α∗. SSP is adaptive
to α and ‖θ∗‖ but has a completely different type of
issue — it can fail arbitrarily badly for regime covered
under (5), and even for well-conditioned problems, its
theoretical guarantees only kick in as n gets very large.
Our proposed algorithms ADAOPS and ADASSP are able
to simultaneously switch between the two regimes and
get the best of both worlds.

Table 2 summarizes the upper bounds for estimation. The
second row compares the approximation of θ∗ in MSE
and the third column summarizes the statistical efficiency
of the DP estimators relative to the MLE: θ∗ under the
linear Gaussian model. All algorithms except OPS are
asymptotically efficient. For the interest of (ε, δ)-DP, SSP
has the fastest convergence rate and does not explicitly
depend on the smallest eigenvalue, but again it behaves
differently when n is small, while ADAOPS and ADASSP
work optimally (up to a constant) for all n.

3.3 Other related work

The problem of adaptive estimation is closely related to
model selection (see, e.g., Birgé & Massart, 2001) and an
approach using Bayesian Information Criteria was care-
fully studied in the differential private setting for the prob-
lem of `1 constrained ridge regression by Lei et al. (2017).
Their focus is different to ours in that they care about infer-
ring the correct model, while we take the distribution-free
view. Linear regression is also studied in many more spe-
cialized setups, e.g., high dimensional linear regression
(Kifer et al., 2012; Talwar et al., 2014, 2015), statisti-
cal inference (Sheffet, 2017) and so on. For the interest
of this paper, we focus on the standard regime of linear
regression where d < n and do not use sparsity or `1 con-
straint set to achieve the log(d) dependence. That said,
we acknowledge that Sheffet (2017) analyzed SSP under
the linear Gaussian model (the third row in Table 2and
their techniques of adaptively adding regularization have
inspired ADASSP.

4 MAIN RESULTS

In this section, we present and analyze ADAOPS and
ADASSP that achieve the aforementioned adaptive rate.
The pseudo-code of these two algorithms are given in
Algorithm 1 and Algorithm 2.

The idea of both algorithms is to release key data-
dependent quantities differentially privately and then use
a high probability confidence interval of these quanti-
ties to calibrate the noise to privacy budget as well as
to choose the ridge regression’s hyperparameter λ for
achieving the smallest prediction error. Specifically,
ADAOPS requires us to release both the smallest eigen-
value λmin of XTX and the local Lipschitz constant
L := ‖X‖(‖X‖‖θ∗λ‖+‖Y‖), while ADASSP only needs
the smallest eigenvalue λmin.

In both ADASSP and ADAOPS, we choose λ by mini-
mizing an upper bound of F (θ̃)− F (θ∗) in the form of
“variance” and “bias”

Õ(
d‖X‖4‖θ∗‖2

λ+ λmin
) + λ‖θ∗‖2.



Table 1: Summary of optimization error bounds. This table compares the (expected or high probability ) additive
suboptimality of different differentially private linear regression procedures relative to the (non-private) empirical risk
minimizer θ∗. In particular, the results for NoisySGD holds in expectation and everything else with probability 1− %
(hiding at most a logarithmic factor in

√
1/%). Constant factors are dropped for readability.

F (θ̂)− F (θ∗) Assumptions Remarks

NoisySGD

√
d log(nδ )‖X‖2‖Θ‖2

ε A.1, A.2 Theorem 2.4 (Part 1) of (Bassily
et al., 2014).

d2 log(nδ )‖Θ‖2

α∗nε2 A.1, A.2, A.3 Theorem 2.4 (Part 2) of (Bassily
et al., 2014)

OBJPERT

√
d log( 1

δ )‖X‖2‖Θ‖‖θ∗‖
ε A.1, A.2 Theorem 4 (Part 2) of (Kifer et al.,

2012).
d2 log( 1

δ )‖Θ‖2

α∗nε2 A.1, A.2, A.3 Theorem 5 & Appendix E.2 of
(Kifer et al., 2012).

OPS d‖X‖2‖Θ‖2
ε A.1, A.2 Results for ε-DP (Wang et al., 2015)

SSP d2 log( 1
δ )‖X‖2‖θ∗‖2

αnε2 A.1 Adaptive to ‖θ∗‖, X, α, but requires
n = Ω(d

1.5 log(4/δ)
αε ) 5.

ADAOPS & ADASSP
√
d log( 1

δ )‖X‖2‖θ∗‖2

ε ∧ d2 log( 1
δ )‖θ∗‖2

αnε2 A.1 Adaptive in ‖θ∗‖, X, α.

Table 2: Summary or estimation error bounds under the linear Gaussian model. On the second column we compare
the approximation of MLE θ∗ in mean square error up to a universal constant. On the third column, we compare the
relative efficiency. The relative efficiency bounds are simplified with the assumption of α = Ω(1), which implies that
tr[(XTX)−1] = O(d2n−1‖X‖−2) and tr[(XTX)−2] = O(dn−1‖X‖−2tr[(XTX)−1]). Õ(·) hides polylog(1/δ)
terms.

Approxi. MLE: E‖θ̂ − θ∗‖2 Rel. efficiency: E‖θ̂−θ0‖2
E‖θ∗−θ0‖2 Remarks

Sub-Agg O
(

poly(d,‖Θ‖,‖X‖,α−1)
ε6/5n6/5

)
1 + Õ( poly(d,‖Θ‖,‖X‖)

n1/5ε6/5
) ε-DP, suboptimal in n,

possibly also in d(Dwork
& Smith, 2010).

OPS O(‖X‖
2‖Θ‖2
ε )tr[(XTX)−1] Õ(‖X‖

2‖Θ‖2
εσ2 ) ε-DP, adaptive in X , but

not asymptotically effi-
cient (Wang et al., 2015).

SSP O
(

log( 1
δ )‖X‖4‖θ∗‖2

ε2 tr[(XTX)−2]
)

1 + Õ(d‖X‖
2‖θ0‖2

nε2σ2 + d3

n2ε2 ) Adaptive in ‖θ∗‖, X , no
explicit dependence on
α, but requires large n.
(Sheffet, 2017, Theorem
5.1)

ADAOPS & ADASSP O
(
d log( 1

δ )‖X‖2‖θ∗‖2

αnε2 tr[(XTX)−1]
)

1 + Õ(d‖X‖
2‖θ0‖2

nε2σ2 + d3

n2ε2 ) Adaptive in ‖θ∗‖, X, α.



Algorithm 1 ADAOPS: One-Posterior Sample estimator
with adaptive regularization

input Data X , y. Privacy budget: ε, δ, Bounds:
‖X‖, ‖Y‖.
1. Calculate the minimum eigenvalue λmin(XTX).
2. Sample Z ∼ N (0, 1) and privately release

λ̃min = max

{
λmin +

√
log(6/δ)

ε/4 Z − log(6/δ)
ε/4 , 0

}
.

3. Set ε̄ as the positive solution of the quadratic equa-
tion

ε̄2/(2 log(6/δ)) + ε̄− ε/4 = 0.

4. Set % = 0.05, C1 =
(
d/2 +

√
d log(1/%) +

log(1/%)
)

log(6/δ)/ε̄2, C2 = log(6/δ)/(ε/4), tmin =

max{‖X‖
2(1+log(6/δ))

2ε − λ̃min, 0} and solve

λ = argmin
t≥tmin

‖X‖4C1[1 + ‖X‖2/(t+ λ̃min)]2C2

t+ λ̃min

+ t.

(7)
which has a unique solution.
5. Calculate θ̂ = (XTX + λI)−1XTy.
6. Sample Z ∼ N (0, 1) and privately release
∆ = log(‖Y‖+ ‖X‖‖θ̂‖) + log(1+‖X‖2/(λ+λ̃min))

ε/(4
√

log(6/δ))
Z +

log(1+‖X‖2/(λ+λ̃min))
ε/(4 log(6/δ)) . Set L̃ := ‖X‖e∆.

7. Calibrate noise by choosing ε̃ as the positive solution
of the quadratic equation

ε̃2

2

[
1

log(6/δ)

1 + log(6/δ)

log(6/δ)

]
+ ε̃− ε/2 = 0. (8)

and then set γ = (λ̃min+λ)ε̃2

log(6/δ)L̃2
.

output θ̃ ∼ p(θ|X,y) ∝ e−
γ
2 (‖y−Xθ‖2+λ‖θ‖2).

Note that while ‖θ∗‖2 cannot be privately released in
general due to unbounded sensitivity, it appears in both
terms and do not enter the decision process of finding the
optimal λ that minimizes the bound. This convenient fea-
ture follows from our assumption that ‖Y‖ . ‖X‖‖θ∗‖.
Dealing with the general case involving an arbitrary ‖Y‖
is an intriguing open problem.

A tricky situation for ADAOPS is that the choice of γ
depends on λ through L̃, which is the local Lipschitz
constant at the ridge regression solution θ∗λ. But the choice
of λ also depends on γ since the “variance” term above
is inversely proportional to γ. Our solution is to express
L̃ (hence γ) as a function of λ and solve the nonlinear
univariate optimization problem (7).

We are now ready to state the main results.
Theorem 2. Algorithm 1 outputs θ̃ which obeys that

(i) It satisfies (ε, δ)-DP.

Algorithm 2 ADASSP: Sufficient statistics perturbation
with adaptive damping

input Data X , y. Privacy budget: ε, δ, Bounds:
‖X‖, ‖Y‖.
1. Calculate the minimum eigenvalue λmin(XTX).
2. Privately release λ̃min =

max

{
λmin +

√
log(6/δ)

ε/3 ‖X‖2Z − log(6/δ)
ε/3 ‖X‖2, 0

}
,

where Z ∼ N (0, 1).

3. Set λ = max{0,
√
d log(6/δ) log(2d2/ρ)‖X‖2

ε/3 − λ̃min}

4. Privately release X̂TX = XTX+

√
log(6/δ)‖X‖2

ε/3 Z

for Z ∈ Rd×d is a symmetric matrix and every ele-
ment from the upper triangular matrix is sampled from
N (0, 1).

5. Privately release X̂y = Xy +

√
log(6/δ)‖X‖‖Y‖

ε/3 Z

for Z ∼ N (0, Id).
output θ̃ = (X̂TX + λI)−1X̂y

(ii) Assume ‖Y‖ . ‖X‖‖θ∗‖. With probability 1 − %,
F (θ̃)− F (θ∗) ≤

O

(√
d+log( 1

% )‖X‖2‖θ∗‖2

ε/
√

log( 1
δ )

∧ d[d+log( 1
% )]‖θ∗‖2

αnε2/ log( 1
δ )

)
.

(iii) Assume that y|X obeys a linear Gaussian model
and X is full-rank. Then there is an event E
satisfying P(E) ≥ 1 − δ/3 and E ⊥⊥ y|X , such
that E[θ̃|X,E] = θ0 and

Cov[θ̃|X,E] ≺
(

1 +O
(
C̃d log(6/δ)
σ2αnε2

))
σ2(XTX)−1

where constant
C̃ := ‖Y‖2 + ‖X‖2(‖θ0‖2 + σ2tr[(XTX)−1]).

The proof, deferred to Appendix D, makes use of a fine-
grained DP-analysis through the recent per instance DP
techniques (Wang, 2017) and then convert the results to
DP by releasing data dependent bounds of α and the mag-
nitude of a ridge-regression output θ∗λ with an adaptively
chosen λ. Note that ‖θ∗λ‖ does not have a bounded global
sensitivity. The method to release it differentially pri-
vately (described in Lemma 12) is part of our technical
contribution.

The ADASSP algorithm is simpler and enjoys slightly
stronger theoretical guarantees.
Theorem 3. Algorithm 2 outputs θ̃ which obeys that

(i) It satisfies (ε, δ)-DP.

(ii) Assume ‖Y‖ . ‖X‖‖θ∗‖. With probability 1 − %,
F (θ̃)− F (θ∗) ≤

O

(√
d log( d

2

% )‖X‖2‖θ∗‖2

ε/
√

log( 6
δ )

∧ ‖X‖
4‖θ∗‖2tr[(XTX)−1]

ε2/[log( 6
δ ) log( d

2

% )]

)



(iii) Assume that y|X obeys a linear Gaussian model
and X has a sufficiently large α. Then there is an
event E satisfying P(E) ≥ 1− δ/3 and E ⊥⊥ y|X ,
such that E[θ̃|X,E] = θ0 and

E[‖θ̃ − θ0‖2|X,E]

=σ2tr[(XTX)−1] +O

(
C̃‖X‖2tr[(XTX)−2]

ε2/ log( 6
δ )

)
,

with the same constant C̃ in Theorem 2 (iii).

The proof of Statement (1) is straightforward. Note that
we release the eigenvalue λmin(XTX),Xy andXTX dif-
ferentially privately each with parameter (ε/3, δ/3). For
the first two, we use Gaussian mechanism and for XTX ,
we use the Analyze-Gauss algorithm (Dwork et al., 2014b)
with a symmetric Gaussian random matrix. The result
then follows from the composition theorem of differential
privacy. The proof of the second and third statements is
provided in Appendix C. The main technical challenge
is to prove the concentration on the spectrum and the
Johnson-Lindenstrauss-like distance preserving proper-
ties for symmetric Gaussian random matrices (Lemma 6).
We note that while SSP is an old algorithm the analysis
of its theoretical properties is new to this paper.

Remarks. Both ADAOPS and ADASSP match the
smaller of the two lower bounds (5) and (6) for each
problem instance. They are slightly different in that
ADAOPS preserves the shape of the intrinsic geometry
while ADASSP’s bounds are slightly stronger as they do
not explicitly depend on the smallest eigenvalue.

5 EXPERIMENTS

In this section, we conduct synthetic and real data exper-
iments to benchmark the performance of ADAOPS and
ADASSP relative to existing algorithms we discussed in
Section 3. NOISYSGD and Sub-Agg are excluded be-
cause they are dominated by OBJPERT and an (ε, δ)-DP
version of OPS (see Appendix F for details)6.

Prediction accuracy in UCI data sets experiments.
The first set of experiments is on training linear regression
on a number of UCI regression data sets. Standard z-
scoring are performed and all data points are normalized
to having an Euclidean norm of 1 as a preprocessing
step. The results on four of the data sets are presented
in Figure 2. As we can see, SSP is unstable for small
data. OBJPERT suffers from a pre-defined bound ‖Θ‖ and

6The code to reproduce all experimental results are avail-
able at https://github.com/yuxiangw/optimal_
dp_linear_regression.
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Figure 2: Example of results of differentially private linear
regression algorithms on UCI data sets for a sequence of ε.
Reported on the y-axis is the cross-validation prediction error in
MSE and their confidence intervals.
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(a) Estimation MSE at ε = 0.1
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(b) Estimation MSE at ε = 1
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(c) Rel. efficiency at ε = 0.1
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(d) Rel. efficiency at ε = 1

Figure 3: Example of differentially private linear regression
under linear Gaussian model with an increasing data size n. We
simulate the data from d = 10, θ0 drawn from a uniform distri-
bution defined on [0, 1]d. We generateX ∈ Rn×d as a Gaussian
random matrix and then generate y ∼ N (Xθ0, Id). We used
ε = 1 and ε = 0.1, both with δ = 1/n2. The results clearly
illustrate the asymptotic efficiency of the proposed approaches.

does not converge to nonprivate solution even with a large
ε. OPS performs well but still does not take advantage
of the strong convexity that is intrinsic to the data set.
ADAOPS and ADASSP on the other hand are able to
nicely interpolate between the trivial solution and the non-
private baseline and performed as well as or better than
baselines for all ε. More detailed quantitative results on
all the 36 UCI data sets are presented in Table 3.

https://github.com/yuxiangw/optimal_dp_linear_regression
https://github.com/yuxiangw/optimal_dp_linear_regression


Table 3: Summary of UCI data experiments at ε = 0.1, δ = min{1e−6, 1/n2}. The boldface denotes the DP algorithm
where the standard deviation is smaller than the error (a positive quantity), and the 95% confidence interval covers the
observed best performance among benchmarked DP algorithms.

Trivial non-private OBJPERT OPS SSP ADAOPS ADASSP
3droad 0.0275±0.00014 0.0265±0.00012 0.0267±0.00013 0.027±0.00026 0.0265±0.00019 0.0265±0.00019 0.0265±0.00019
airfoil 0.103±0.0069 0.0533±0.0074 0.356±0.064 0.138±0.086 0.232±0.28 0.0914±0.015 0.0878±0.014
autompg 0.113±0.011 0.0221±0.0032 0.143±0.096 0.242±0.11 5.44±6.1 0.098±0.03 0.115±0.047
autos 0.13±0.042 0.0274±0.011 0.17±0.13 0.308±0.13 1.7e+03±2.5e+03 0.136±0.066 0.132±0.064
bike 0.107±0.0028 0.0279±0.00078 0.113±0.018 0.0484±0.005 0.0869±0.067 0.0471±0.004 0.0471±0.0026
breastcancer 0.194±0.027 0.139±0.025 0.212±0.078 0.269±0.13 9.54e+03±1.9e+04 0.204±0.037 0.196±0.051
buzz 0.0658±0.00015 0.0127±4.6e-05 0.0285±0.00071 0.0156±0.001 0.0272±0.0097 0.0151±0.00095 0.013±9.7e-05
challenger 0.141±0.084 0.138±0.088 0.323±0.28 0.338±0.13 3.07±3.9 0.159±0.13 0.146±0.093
concrete 0.127±0.0043 0.0445±0.0033 0.237±0.076 0.181±0.042 1.94±1.8 0.12±0.011 0.119±0.016
concreteslump 0.149±0.039 0.0245±0.0071 0.349±0.094 0.549±0.24 3.14±2.5 0.151±0.064 0.165±0.065
elevators 0.0367±0.0014 0.00861±0.00031 0.0647±0.015 0.0327±0.0042 0.645±0.98 0.0252±0.0026 0.0237±0.0022
energy 0.235±0.012 0.0232±0.0023 0.332±0.09 0.161±0.083 1.7e+03±3.4e+03 0.167±0.034 0.15±0.032
fertility 0.0977±0.024 0.0863±0.024 0.203±0.04 0.639±0.16 439±8.6e+02 0.108±0.048 0.115±0.032
forest 0.0564±0.0081 0.0571±0.0086 0.12±0.022 0.177±0.036 41.9±77 0.0622±0.017 0.0675±0.013
gas 0.112±0.0062 0.0214±0.0028 0.109±0.015 0.0546±0.012 0.923±0.63 0.0801±0.0078 0.0875±0.0073
houseelectric 0.122±0.00017 0.0136±1.4e-05 0.0409±0.00027 0.0144±0.00017 0.0136±2.2e-05 0.0136±2.2e-05 0.0136±2.2e-05
housing 0.112±0.019 0.0394±0.01 0.253±0.063 0.225±0.065 2.24±2.3 0.108±0.023 0.0997±0.035
keggdirected 0.117±0.00095 0.0188±0.0011 0.0637±0.0042 0.0266±0.0019 0.23±0.33 0.0227±0.0015 0.0212±0.0011
keggundirected 0.0694±0.00074 0.00475±8.9e-05 0.0365±0.0028 0.0166±0.0033 0.353±0.4 0.0107±0.0012 0.00912±0.00046
kin40k 0.0634±0.0012 0.0632±0.0013 0.0871±0.0092 0.0717±0.0026 0.0633±0.002 0.0639±0.0021 0.064±0.0021
machine 0.121±0.013 0.0395±0.0051 0.282±0.14 0.347±0.14 2.27e+03±4.5e+03 0.105±0.025 0.141±0.068
parkinsons 0.17±0.0026 0.128±0.0024 0.211±0.014 0.157±0.011 132±2.6e+02 0.159±0.0065 0.156±0.0064
pendulum 0.0226±0.0061 0.0181±0.0049 0.118±0.027 0.122±0.041 24.8±45 0.0276±0.011 0.0346±0.0069
pol 0.345±0.0028 0.135±0.0023 0.302±0.032 0.196±0.02 281±5.3e+02 0.214±0.0056 0.214±0.0061
protein 0.167±0.0011 0.119±0.0014 0.158±0.01 0.137±0.0044 0.149±0.06 0.129±0.0015 0.125±0.0026
pumadyn32nm 0.0935±0.0039 0.0941±0.0039 0.124±0.0046 0.111±0.005 8.92e+03±1.8e+04 0.0968±0.0065 0.0966±0.0063
servo 0.184±0.039 0.0752±0.022 0.366±0.077 0.574±0.26 2.03±1.5 0.195±0.065 0.198±0.081
skillcraft 0.0439±0.0021 0.0203±0.0017 0.0817±0.013 0.0519±0.0099 4.72±4.3 0.037±0.008 0.039±0.0056
slice 0.196±0.0021 0.0283±0.00051 0.174±0.0053 0.0924±0.0035 11.2±9.4 0.0992±0.0021 0.132±0.0015
sml 0.211±0.0089 0.0143±0.00066 0.23±0.03 0.0955±0.029 59.9±80 0.134±0.0075 0.147±0.013
solar 0.0118±0.0042 0.0106±0.0038 0.0994±0.023 0.0667±0.017 5.95±9.6 0.0165±0.0062 0.0204±0.0073
song 0.0917±0.0003 0.0636±0.00033 0.0838±0.0014 0.072±0.00035 0.0644±0.0005 0.0685±0.00045 0.0697±0.00029
stock 0.0583±0.0095 0.013±0.0023 0.122±0.026 0.157±0.055 46.8±66 0.0582±0.023 0.0651±0.024
tamielectric 0.334±0.002 0.334±0.0021 0.341±0.0021 0.343±0.0065 0.335±0.0033 0.337±0.0047 0.335±0.0033
wine 0.0566±0.0028 0.0202±0.00099 0.153±0.028 0.0911±0.016 11.7±17 0.058±0.011 0.0599±0.01
yacht 0.105±0.017 0.0176±0.0055 0.273±0.076 0.371±0.14 4.92±6.8 0.0967±0.035 0.109±0.03

Parameter estimation under linear Gaussian model.
To illustrate the performance of the algorithms under

standard statistical assumptions, we also benchmarked
the algorithms on synthetic data generated by a linear
Gaussian model. The results, shown in Figure 3 illustrates
that as n gets large, ADAOPS and ADASSP with ε = 0.1
and ε = 1 converge to the maximum likelihood estimator
at a rate faster than the optimal statistical rate that MLE
estimates θ∗, therefore at least for large n, differential
privacy comes for free. Note that there is a gap in SSP
and ADASSP for large n, this can be thought of as a cost
of adaptivity as ADASSP needs to spend some portion of
its privacy budget to release λmin, which SSP does not,
this can be fixed by using more careful splitting of the
privacy budget.

6 CONCLUSION

In this paper, we presented a detailed case-study of the
problem of differentially private linear regression. We
clarified the relationships between various quantities of
the problems as they appear in the private and non-private

information-theoretic lower bounds. We also surveyed the
existing algorithms and highlighted that the main draw-
back using these algorithms relative to their non-private
counterpart is that they cannot adapt to data-dependent
quantities. This is particularly true for linear regression
where the ordinary least square algorithm is able to work
optimally for a large class of different settings.

We proposed ADAOPS and ADASSP to address the issue
and showed that they both work in unbounded domain.
Moreover, they smoothly interpolate the two regimes stud-
ied in Bassily et al. (2014) and behave nearly optimally
for every instance. We tested the two algorithms on 36
real-life data sets from the UCI machine learning repos-
itory and we see significant improvement over popular
algorithms for almost all configurations of ε.

Acknowledgements

The author thanks the anonymous reviewers for helpful
feedbacks and Zichao Yang for sharing the 36 UCI regres-
sion data sets as was used in (Yang et al., 2015).



References
Agresti, A., & Finlay, B. (1997). Statistical methods for

the social sciences.

Armitage, P., Berry, G., & Matthews, J. N. S. (2008).
Statistical methods in medical research. John Wiley &
Sons.

Bassily, R., Smith, A., & Thakurta, A. (2014). Private
empirical risk minimization: Efficient algorithms and
tight error bounds. In Foundations of Computer Science
(FOCS-14), (pp. 464–473). IEEE.

Birgé, L., & Massart, P. (2001). Gaussian model selection.
Journal of the European Mathematical Society, 3(3),
203–268.

Chaudhuri, K., Monteleoni, C., & Sarwate, A. D. (2011).
Differentially private empirical risk minimization. The
Journal of Machine Learning Research, 12, 1069–
1109.

Dimitrakakis, C., Nelson, B., Mitrokotsa, A., & Rubin-
stein, B. I. (2014). Robust and private Bayesian infer-
ence. In Algorithmic Learning Theory, (pp. 291–305).
Springer.

Donoho, D. L. (1995). De-noising by soft-thresholding.
IEEE transactions on information theory, 41(3), 613–
627.

Draper, N. R., & Smith, H. (2014). Applied regression
analysis, vol. 326. John Wiley & Sons.

Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I.,
& Naor, M. (2006a). Our data, ourselves: Privacy via
distributed noise generation. In International Confer-
ence on the Theory and Applications of Cryptographic
Techniques, (pp. 486–503). Springer.

Dwork, C., & Lei, J. (2009). Differential privacy and
robust statistics. In Proceedings of the forty-first annual
ACM symposium on Theory of computing, (pp. 371–
380). ACM.

Dwork, C., McSherry, F., Nissim, K., & Smith, A.
(2006b). Calibrating noise to sensitivity in private data
analysis. In Theory of cryptography, (pp. 265–284).
Springer.

Dwork, C., Roth, A., et al. (2014a). The algorithmic
foundations of differential privacy. Foundations and
Trends R© in Theoretical Computer Science, 9(3–4),
211–407.

Dwork, C., & Smith, A. (2010). Differential privacy for
statistics: What we know and what we want to learn.
Journal of Privacy and Confidentiality, 1(2), 2.

Dwork, C., Talwar, K., Thakurta, A., & Zhang, L. (2014b).
Analyze gauss: optimal bounds for privacy-preserving
principal component analysis. In ACM symposium on
Theory of computing (STOC-14), (pp. 11–20). ACM.

Foulds, J., Geumlek, J., Welling, M., & Chaudhuri,
K. (2016). On the theory and practice of privacy-
preserving Bayesian data analysis. In Conference on
Uncertainty in Artificial Intelligence (UAI-16), (pp.
192–201). AUAI Press.

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The
elements of statistical learning, vol. 1. Springer series
in statistics Springer, Berlin.

Galton, F. (1886). Regression towards mediocrity in
hereditary stature. The Journal of the Anthropological
Institute of Great Britain and Ireland, 15, 246–263.

Greene, W. H. (2003). Econometric analysis. Pearson
Education India.

Kifer, D., Smith, A., & Thakurta, A. (2012). Private con-
vex empirical risk minimization and high-dimensional
regression. Journal of Machine Learning Research, 1,
41.

Koren, T., & Levy, K. (2015). Fast rates for exp-concave
empirical risk minimization. In Advances in Neural
Information Processing Systems, (pp. 1477–1485).

Laurent, B., & Massart, P. (2000). Adaptive estimation
of a quadratic functional by model selection. Annals of
Statistics, (pp. 1302–1338).

Lei, J., Charest, A.-S., Slavkovic, A., Smith, A., & Fien-
berg, S. (2017). Differentially private model selection
with penalized and constrained likelihood. Journal of
the Royal Statistical Society.

Minami, K., Arai, H., Sato, I., & Nakagawa, H. (2016).
Differential privacy without sensitivity. In Advances in
Neural Information Processing Systems, (pp. 956–964).

Mir, D. J. (2013). Differential privacy: an exploration
of the privacy-utility landscape. Ph.D. thesis, Rutgers
University.

Shamir, O. (2015). The sample complexity of learning
linear predictors with the squared loss. Journal of
Machine Learning Research, 16, 3475–3486.

Sheffet, O. (2017). Differentially private ordinary least
squares. In International Conference on Machine
Learning (ICML-17), (pp. 3105–3114).

Smith, A. (2008). Efficient, differentially private point
estimators. arXiv preprint arXiv:0809.4794.

Stewart, G. W. (1998). Perturbation theory for the singular
value decomposition. Tech. rep.

Talwar, K., Thakurta, A., & Zhang, L. (2014). Private
empirical risk minimization beyond the worst case: The
effect of the constraint set geometry. arXiv preprint
arXiv:1411.5417.

Talwar, K., Thakurta, A. G., & Zhang, L. (2015). Nearly
optimal private lasso. In Advances in Neural Informa-
tion Processing Systems, (pp. 3025–3033).



Vu, D., & Slavkovic, A. (2009). Differential privacy for
clinical trial data: Preliminary evaluations. In Data
Mining Workshops, 2009. ICDMW’09. IEEE Interna-
tional Conference on, (pp. 138–143). IEEE.

Wang, Y.-X. (2017). Per-instance differential privacy and
the adaptivity of posterior sampling in linear and ridge
regression. arXiv preprint arXiv:1707.07708.

Wang, Y.-X., Fienberg, S., & Smola, A. (2015). Privacy
for free: Posterior sampling and stochastic gradient
monte carlo. In International Conference on Machine
Learning (ICML-15), (pp. 2493–2502).

Wasserman, L. (2013). All of statistics: a concise course
in statistical inference. Springer Science & Business
Media.

Yang, Z., Wilson, A., Smola, A., & Song, L. (2015). A
la carte–learning fast kernels. In Artificial Intelligence
and Statistics (AISTATS-15), (pp. 1098–1106).



A Results on the 36 real regression data sets in UCI repository

The detailed results on the 36 UCI data sets are presented in Table 3 for ε = 0.1, δ = min{1e− 6, 1/n2} and Table 4
for ε = 1, δ = min{1e − 6, 1/n2}. The boldface denotes the DP algorithm where the standard deviation is smaller
than the error (a positive quantity), and the 95% confidence interval covers the observed best performance among
benchmarked DP algorithms.

Table 4: Summary of UCI data experiments at ε = 1

Trivial non-private OBJPERT OPS SSP ADAOPS ADASSP
3droad 0.0275±0.00014 0.0265±0.00012 0.0267±0.00013 0.0266±0.00012 0.0265±0.00019 0.0265±0.00019 0.0265±0.00019
airfoil 0.103±0.0069 0.0533±0.0074 0.0681±0.0074 0.0674±0.011 0.0535±0.013 0.0686±0.006 0.0585±0.012
autompg 0.113±0.011 0.0221±0.0032 0.0651±0.0072 0.0783±0.027 0.169±0.1 0.0522±0.0074 0.044±0.016
autos 0.13±0.042 0.0274±0.011 0.0868±0.044 0.0761±0.038 2.07±1.6 0.108±0.076 0.0971±0.053
bike 0.107±0.0028 0.0279±0.00078 0.0484±0.0017 0.0328±0.0011 0.0305±0.0045 0.031±0.0012 0.0288±0.0015
breastcancer 0.194±0.027 0.139±0.025 0.181±0.047 0.198±0.083 25.1±37 0.186±0.036 0.184±0.038
buzz 0.0658±0.00015 0.0127±4.6e-05 0.026±8e-05 0.015±0.0011 0.0541±0.069 0.0135±0.00038 0.0127±7.1e-05
challenger 0.141±0.084 0.138±0.088 0.181±0.13 0.529±0.35 5.27±8.1 0.142±0.13 0.145±0.14
concrete 0.127±0.0043 0.0445±0.0033 0.0759±0.0077 0.084±0.013 0.0569±0.03 0.0811±0.0044 0.0658±0.0051
concreteslump 0.149±0.039 0.0245±0.0071 0.197±0.18 0.177±0.076 0.27±0.11 0.143±0.053 0.138±0.027
elevators 0.0367±0.0014 0.00861±0.00031 0.0165±0.00057 0.0187±0.0024 0.0255±0.021 0.0161±0.00091 0.0132±0.0011
energy 0.235±0.012 0.0232±0.0023 0.086±0.0061 0.0596±0.025 0.0983±0.065 0.0675±0.0084 0.051±0.0094
fertility 0.0977±0.024 0.0863±0.024 0.182±0.058 0.185±0.055 2.81±3 0.102±0.043 0.112±0.055
forest 0.0564±0.0081 0.0571±0.0086 0.0774±0.0092 0.0802±0.0099 0.13±0.041 0.0593±0.012 0.0585±0.0094
gas 0.112±0.0062 0.0214±0.0028 0.0593±0.0044 0.0432±0.0033 5.64±9 0.0471±0.0068 0.047±0.0063
houseelectric 0.122±0.00017 0.0136±1.4e-05 0.0406±6.3e-05 0.0138±7e-05 0.0136±2.2e-05 0.0136±2.2e-05 0.0136±2.2e-05
housing 0.112±0.019 0.0394±0.01 0.0805±0.042 0.0877±0.017 1.89±2.4 0.0835±0.031 0.0705±0.026
keggdirected 0.117±0.00095 0.0188±0.0011 0.0435±0.00054 0.0234±0.0022 0.0289±0.019 0.0215±0.0018 0.0192±0.00064
keggundirected 0.0694±0.00074 0.00475±8.9e-05 0.0213±0.00023 0.00942±0.0016 0.0195±0.023 0.00633±0.00027 0.00552±0.00014
kin40k 0.0634±0.0012 0.0632±0.0013 0.0633±0.002 0.065±0.0012 0.0632±0.002 0.0632±0.002 0.0633±0.002
machine 0.121±0.013 0.0395±0.0051 0.104±0.016 0.0825±0.027 0.77±1.3 0.0809±0.013 0.0671±0.016
parkinsons 0.17±0.0026 0.128±0.0024 0.14±0.0019 0.142±0.004 4.21±8.1 0.134±0.0026 0.133±0.0036
pendulum 0.0226±0.0061 0.0181±0.0049 0.0426±0.01 0.0473±0.012 0.0233±0.0066 0.0247±0.011 0.0233±0.0089
pol 0.345±0.0028 0.135±0.0023 0.19±0.0026 0.145±0.0028 0.338±0.32 0.144±0.0031 0.14±0.0033
protein 0.167±0.0011 0.119±0.0014 0.131±0.0012 0.128±0.0047 0.119±0.0022 0.124±0.0036 0.12±0.0021
pumadyn32nm 0.0935±0.0039 0.0941±0.0039 0.0948±0.0061 0.101±0.0038 0.0944±0.0065 0.0957±0.0065 0.0952±0.0066
servo 0.184±0.039 0.0752±0.022 0.152±0.077 0.209±0.079 0.126±0.072 0.149±0.051 0.124±0.06
skillcraft 0.0439±0.0021 0.0203±0.0017 0.0298±0.0018 0.0325±0.0024 0.0303±0.012 0.0268±0.0033 0.0247±0.0029
slice 0.196±0.0021 0.0283±0.00051 0.0875±0.00082 0.0518±0.00099 100±1.8e+02 0.0483±0.0013 0.0556±0.00059
sml 0.211±0.0089 0.0143±0.00066 0.0751±0.0037 0.0391±0.0042 52.6±1e+02 0.0502±0.0034 0.0405±0.0029
solar 0.0118±0.0042 0.0106±0.0038 0.0174±0.0069 0.031±0.0084 0.0182±0.0099 0.0137±0.0076 0.014±0.0054
song 0.0917±0.0003 0.0636±0.00033 0.0706±0.00029 0.0657±0.00039 0.0636±0.00052 0.0641±0.00029 0.0637±0.00052
stock 0.0583±0.0095 0.013±0.0023 0.06±0.016 0.051±0.0088 0.53±0.41 0.0399±0.014 0.0364±0.0076
tamielectric 0.334±0.002 0.334±0.0021 0.334±0.0032 0.338±0.0028 0.334±0.0033 0.335±0.0027 0.334±0.0032
wine 0.0566±0.0028 0.0202±0.00099 0.0327±0.0031 0.0423±0.0064 0.023±0.0016 0.039±0.0023 0.0348±0.0028
yacht 0.105±0.017 0.0176±0.0055 0.0588±0.024 0.0736±0.021 0.133±0.2 0.0676±0.0096 0.0469±0.018

B Alternative illustration of the private and nonprivate lower bounds

In Section 3 we discuss the relationships of lower bounds for statistical learning minimax rate of linear regression
problems due to Shamir (2015) and the lower bounds on optimization error due to Bassily et al. (2014). In particular,
we addressed the question of “when is differential privacy for free in statistical learning?”. In this section, we provide an
alternative view of the same question which allows us to more easily quantify the “price of differential privacy” really
is, even if it is not “for free”.

In particular, we plot Shamir’s lower bound (4) and the smaller of Bassily et. al.’s differential privacy lower bounds (5)
and (6) for all configurations of d, n graphically in Figure 4. We also use multiple lines to illustrate the shifts in these
lower bounds when parameters such as ε and α∗ change. In all figures δ is assumed to be o(1/n) and all logarithmic
terms are ignored. The price of differential privacy is highlighted as a shaded area in the figures. Interestingly, in the
first case when ‖Θ‖ is small, then substantial price only occurs in the non-standard region where n < d. Arguably
this is OK because in that regime, people should use Ridge regression or Lasso anyways rather than OLS. In the case
when ‖Θ‖ is large, the price is more substantial and it applies to all n > d unless we can exploit the strong convexity
in the data set. When we do, then the cost only occur for a interval in n and eventually differential privacy becomes
completely free.
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Figure 4: Illustration of the lower bounds for non-private and private linear regression.

C Proof of the results for SSP and ADASSP

In this section, we first derive the rate for the optimization and parameter estimation error of the sufficient statistics
perturbation (SuffPert) approach as was shown in Table 1 and Table 2. This will build intuition towards ADASSP,
which we will present the proof of it towards the end of the section.

C.1 Analysis of SSP for linear regression

Recall that SSP is the naive approach that uses Gaussian mechanism to release XTX and Xy then estimate θ∗ using
the plug-in estimator.
Lemma 4. Let θ∗ = (XTX)−1Xy, and θ̂ = (XTX + E1)−1(Xy + E2) for any E1 ∈ Rd×d, E2 ∈ Rd such that
XTX + E1 is invertible, then

θ̂ − θ∗ = −(XTX + E1)−1E1θ
∗ + (XTX + E1)−1E2.

In SSP, E1 is a symmetric Gaussian random matrix where each element in the upper triangular part of this matrix is iid
N (0, 4‖X‖4 log(4/δ)

ε2 ), and E2 is an iid Gaussian vector drawn from N (0, 4‖X‖2‖Y‖2 log(4/δ)
ε2 ).



By Lemma 4, and Cauchy-Schwartz, we can write

‖θ̂ − θ∗‖2 ≤2[θ∗]TET1 [(XTX + E1)−1]T (XTX + E1)−1E1θ
∗

+ 2ET2 [(XTX + E1)−1]T (XTX + E1)−1E2.

This equation highlights the key artifact of this method, as when XTX has a small eigenvalue, there is a non-trivial
probability that XTX + E1 will be nearly singular and that could potentially blow up the variance.

We could however analyze the high probability error bound, which becomes meaningful when ‖E1‖ < λmin(XTX) =
αn‖X‖2

d as then we can show that with high probability, XTX + E1 has a smallest singular value that is bounded away
from zero. In particular if ‖E1‖ ≤ λmin(XTX)/2 with high probability, then we can derive an error bound using
Lemma 4:

‖θ̂ − θ∗‖2 = O(
d3‖θ∗‖2

α2n2ε2
)

under the simplifying assumption that ‖Y‖ = O(‖X‖‖θ∗‖).

The eigenvalue condition suggests that such reasonable error bound only starts to apply when

n = Ω̃(
d1.5

√
log(4/δ)

αε
).

Now, using the following lemma, we can convert the optimization error into estimation in a different norm.
Lemma 5. Let θ∗ = (XTX)−1Xy, for any θ,

‖y −Xθ‖2 − ‖y −Xθ∗‖2 = (θ − θ∗)TXTX(θ − θ∗) = ‖θ − θ∗‖2XTX .

Proof. The result follows directly by the second order Taylor expansion of ‖y − Xθ‖2 at θ∗ and the fact that the
gradient at θ∗ is 0.

A direct calculation leads to the following bound

‖θ̂ − θ∗‖2XTX ≤2[θ∗]TET1 [(XTX + E1)−1]T (XTX)(XTX + E1)−1E1θ
∗

+ 2ET2 [(XTX + E1)−1]T (XTX)(XTX + E1)−1E2

The idea is that by random matrix theory, we get ‖E1‖ ≤ Õ(
√
d‖X‖2

√
log 12δ/ε) with high probability. For large

enough n, XTX has a smallest eigenvalue on that order, which allows us to prove:

0.5XTX ≺ XTX + E1 ≺ 2XTX.

with high probability. It follows that under this high probability event

‖θ̂ − θ∗‖2XTX ≤ 8‖E1θ
∗‖2(XTX)−1 + 8‖E2‖2(XTX)−1 . (9)

We first prove the following Johnson-Lindenstrauss type lemma for symmetric Gaussian random matrices and ellipsoid
distance.
Lemma 6. Let θ ∈ Rd be a fixed and E be a symmetric random Gaussian matrix where the upper triangular region is
iid Gaussian with N (0, w2) With probability 1− %, and let A be a positive semi-definite matrix,

‖Eθ‖2A ≤ w2tr(A)‖θ‖2 log(2d2/ρ)

Proof. Take the eigenvalue decomposition A = UΛUT , we can write

‖Eθ‖2A = [θ]TETUΛUTEθ =

d∑
i=1

λi

d∑
j=1

[UTE]2i,j [θ]
2
i . (10)



Note [UTE]i,j =
∑d
k=1 Ui,k[E]j,k where [E]j,· is an independent Gaussian vector, despite that E itself is constrained

to be a symmetric matrix. Using that U is orthogonal, we have that marginally for each i, j ∈ [d]2,

[UTE]i,j ∼ N (0, w2).

Using the Gaussian tail bound and a union bound over all (i, j) ∈ [d]2, we get that

P( max
(i,j)∈[d]2

|[UTE]i,j | ≥
√
w2 log(2d2/%)) ≤ %.

Substitute this into (10), we have

‖Eθ‖2(XTX)−1 = O
(
w2‖θ‖2tr[A] log(2d2/%)

)
.

Apply the above lemma with A := (XTX)−1, E = E1 (hence w2 = log(6/δ)‖X‖4
ε2/9 ) we get

‖E1θ
∗‖2(XTX)−1 = O

(
‖θ∗‖2‖X‖4tr[(XTX)−1] log(6/δ) log(2d2/%)

ε2/9

)
.

Similarly, note that E2 ∼ UE2 for any unitary transformation, we can bound the tail of every eigendirection separately
and that gives:

‖E2‖2(XTX)−1 = O

(
‖X‖2‖Y‖2tr[(XTX)−1] log(6/δ) log(d/%)

ε2/9

)
. (11)

Substitute the above two inequalities into (9), and take union bound with the small probability event that ‖E1‖ ≤
0.5λmin(XTX) we get that with high probability

‖θ̂ − θ∗‖2XTX ≤ O
(
‖X‖2(‖Y‖2 + ‖X‖2‖θ∗‖2)tr[(XTX)−1] log(6/δ) log(2d2/ρ)

ε2/9

)
.

In other word, a naive SSP can perform arbitrarily poorly as λmin gets close to 0.

A natural idea to address this problem is to use regularization and do ridge regression instead. We now analyze the
modified case for a fixed Ridge regression parameter λ.

C.2 Analysis of SSP for ridge regression

First note that SSP for ridge regression is nothing but the case when we replace E1 with λI + E1. This view allows us
to reuse the lemmas we derived above. In particular, Lemma 4 implies the following corollary.
Corollary 7. Let θ̂λ = (XTX + λI + E1)−1(Xy + E2) for λ > 0, then

θ̂λ − θ∗ = −(XTX + λI + E1)−1E1θ
∗ − λ(XTX + λI + E1)−1θ∗ + (XTX + λI + E1)−1E2.

For any psd matrix A

‖θ̂λ − θ∗‖2A ≤3‖(XTX + λI + E1)−1E1θ
∗‖2A

+ 3‖(XTX + λI + E1)−1‖2A
+ 3λ2‖(XTX + λI + E1)−1θ∗‖2A.

Under the high probability event such that ‖E1‖ ≤ (λmin(XTX)+λ)/2, we haveXTX+λI+E1 ≺ 0.5(XTX+λI)
and it implies that

‖θ̂λ − θ∗‖2 = O
(
‖E1θ

∗‖2(XTX+λI)−2 + ‖E2‖2(XTX+λI)−2 + λ2‖θ∗‖2(XTX+λI)−2

)
.



Similarly by Lemma 5

F (θ̂λ)− F (θ∗) =
1

2
‖θ̂λ − θ∗‖2(XTX)−1

= O
(
‖E1θ

∗‖2(XTX+λI)−1 + ‖E2‖2(XTX+λI)−1 + λ2‖θ∗‖2(XTX+λI)−1

)
.

Apply the distance preserving results in Lemma 6 to the first term above with A = (XTX + λI)−2 and A =
(XTX + λI)−1 respectively, we can write

‖θ̂λ − θ∗‖2 = O

(
‖X‖2(‖Y‖2 + ‖X‖2‖θ∗‖2) log(6/δ) log(2d2/ρ)

ε2
tr[(XTX + λI)−2] + λ2‖θ∗‖2(XTX+λI)−2

)
,

(12)

F (θ̂λ)− F (θ∗) = O

(
‖X‖2(‖Y‖2 + ‖X‖2‖θ∗‖2) log(6/δ) log(2d2/ρ)

ε2
tr[(XTX + λI)−1] + λ2‖θ∗‖2(XTX+λI)−1

)
= O

(
d‖X‖2(‖Y‖2 + ‖X‖2‖θ∗‖2) log(6/δ) log(2d2/ρ)

(λ+ λmin)ε2
+ λ‖θ∗‖2

)
. (13)

Note that when λmin = 0, choosing

λ = Θ

(√
d log(6/δ) log(2d2/ρ)

(‖X‖‖Y‖
‖θ∗‖

+ ‖X‖2
)
/ε

)
(14)

balances the two terms and results in a bound that is on the order of
√
d/ε which matches the lower bound for the

Lipschitz private ERM (5). Similarly, when λmin is larger than the above quantity, the optimal choice of λ is 0 and we
get a rate of d/(λminε

2) which matches the lower bound for the private strongly convex ERM (6).

It remains to check whether such choices are feasible, because recall that the entire analysis hinges upon the event
that

‖E1‖ ≤ (λmin + λ)/2. (15)

Recall that ‖E1‖ ≤ 2
√
d log(6/δ) log(d2/ρ)‖X‖2/(ε/3) with high probability, so the a choice of λ that satisfies (14)

with appropriate constant automatically obeys (15).

C.3 Analysis of ADASSP. Proof of Theorem 3.

The proof of Statement (i) is a straightforward application of the composition theorem over standard releases of XTX ,
XTy and λmin(XTX).

The extension from SSP to ADASSP involves choosing λ adaptively. By our analysis above, the desired choice is (14)
but it depends on unknown quantities of the data λmin and ‖θ∗‖.

Our choice of λ in Algorithm 2 is that

λ = max

{
0,

√
d log(6/δ) log(2d2/ρ)‖X‖2

ε/3
− λ∗min.

}
where λ∗min is a differentially private high probability lower bound of λmin. Check that the choice obeys (15) so the
error analysis above is valid. Substitute this choice of λ into (13) and (12), we get the results in Theorem 3(ii) and
Theorem 3(iii).

Note that because we do not know ‖θ∗‖, we cannot set the ‖X‖‖Y‖‖θ∗‖ as part of the oracle λ choice in (14). As
a result, the final optimization error is proportional to the constant of ‖Y‖2 + ‖X‖2‖θ∗‖2 instead of the optimal
‖Y‖‖X‖‖θ∗‖+ ‖X‖2‖θ∗‖2. They are on the same order under our assumption that ‖Y‖ � ‖X‖‖θ∗‖.

D Proofs related to ADAOPS

The proof uses the pDP technique that first analyzes OPS for fixed set of tuning parameters and then do pDP to DP
conversion with differential privately chosen tuning parameters.



D.1 Utility of OPS with fixed (γ, λ)

Lemma 8 (Parameter estimation error). Let X be fixed and θ∗λ be the maximum a posteriori estimator (MLE if λ = 0),
and θ̃ be the output of OPS with parameter γ, λ, then:

1. for all 0 < % < 1, with probability 1− %

‖θ̃ − θ∗λ‖2XTX+λI ≤
d+ 2

√
d log(1/%) + 2 log(1/%)

γ
≤ 5d log(1/%)

γ
.

2. It holds that
E[θ̃|X,y] = θ∗λ and Cov[θ̃|X,y] = γ−1(XTX + λI)−1.

3. If we assume that y ∼ N (Xθ0, σ
2I) and λ = 0, then

E[θ̃|X] = θ0 and Cov[θ̃|X] = (σ2 + γ−1)(XTX)−1.

Proof. Let H := XTX + λI = QΛQT , and let Z ∼ N (0, γ−1Id)

‖θ̃ − θ∗λ‖2H = (θ̃ − θ∗λ)TH(θ̃ − θ∗λ) = ZTΛ−1/2QTQΛQTQΛ−1/2Z = ‖Z‖22

Note that γ‖Z‖22 has a χ2-distribution with degree of freedom d, by the standard right tail bound inequality of χ2

R.V., we get the results as claimed. The second statement is trivial and it follows directly from the algorithm. For the
third statement, note that the MLE θ∗ is unbiased for linear regression, also, it has covariance matrix σ2(XTX)−1.
The second part of the randomness comes from sampling from the posterior distribution which has covariance matrix
γ−1(XTX)−1 by the algorithm. The results follows after noting that the we are adding independent noise.

Lemma 9 (Optimization error / regret bound). Let θ∗ be a local minimum of a convex quadratic function F and

θ̃ ∼ N (θ∗, γ−1[∇2F (θ∗)]−1),

then for all 0 < % < 1, with probability 1− %

F (θ̃)− F (θ∗) ≤
d+ 2

√
d log(1/%) + 2 log(1/%)

2γ
≤ 2.5d log(1/%)

γ
.

Proof. Since F is quadratic,∇2F ≡ H for some fixed matrix H (independent to location). By Taylor’s theorem

F (θ̃)− F (θ∗) = 〈∇F (θ∗), θ̃ − θ∗〉+
1

2
‖θ̃ − θ∗‖2H .

Substitute Lemma 8 into the above we get the result as claimed.

D.2 pDP analysis of OPS for fixed (γ, λ)

We now cite the per-instance differential privacy of OPS for a fixed set of parameters from (Wang, 2017).
Theorem 10 (Theorem 15 of Wang (2017) ). Consider the algorithm that samples from

p(θ|X,y) ∝ e−
γ
2 (‖y−Xθ‖2+λ‖θ‖2).

Let θ̂ and θ̂′ be the ridge regression estimate with data set X × y and [X,x] × [y, y] and defined the out of sample
leverage score µ := xT (XTX + λI)−1x = xTH−1x and in-sample leverage score µ′ := xT [(X ′)TX ′ + λI]−1x =
xT (H ′)−1x. Then for every δ > 0, privacy target (x, y), the algorithm is (ε, δ)-pDP with

ε(Z, z) ≤ 1

2

∣∣∣∣− log(1 + µ) +
γµ

(1 + µ)
(y − xT θ̂)2

∣∣∣∣+
µ

2
log(2/δ) +

√
γµ log(2/δ)|y − xT θ̂| (16)

=
1

2

∣∣∣∣− log(1− µ′)− γµ′

1− µ′
(y − xT θ̂′)2

∣∣∣∣+
µ′

2
log(2/δ) +

√
γµ′ log(2/δ)|y − xT θ̂′|. (17)



Remark 11. Let L := ‖X‖(‖X‖‖θ∗λ‖+ ‖Y‖), The OPS algorithm for ridge regression with parameter (λ, γ) obeys
(ε, δ)-pDP for each data set (X, y) and all target (x, y) with

ε =

√
γL2 log(2/δ)

λ+ λmin
+

γL2

2(λ+ λmin + ‖X‖2)
+

(1 + log(2/δ))‖X‖2

2(λ+ λmin)
.

D.3 pDP to DP conversion

The hallmark of DP algorithm design is that one needs to calibrate the amount of noise so that no matter what data set is
sent into the algorithm, the algorithm meets a prescribed privacy budget (ε, δ). The pDP guarantees of OPS says that
for a fixed randomized algorithm, if the data set is nice, then the privacy guarantee is strong, while if the data set is
poorly-conditioned, then the privacy loss is big. What is more, the pDP analysis illustrates that the key ingradients
of that appears in the pDP bound is the smallest eigenvalue of XTX and the local Lipschitz constant L (given as a
function of ‖X‖ and ‖Y‖ and the magnitude of the solution ‖θ∗λ‖).

The approach used in Wang (2017) is to differentially privately release λmin and an adaptive amount of regularization
λ is added so that a pre-specified strong convexity parameter α∗ is met with high probability. Then a crude upper
bound of ‖θ∗λ‖ is used based on λ∗ or λmin (if larger than λ∗) to calibrate γ. The outcome is an asymptotically efficient
differentially private estimator of linear regression coefficients when the data set is well-conditioned. However, there are
two issues. First, it is unclear how λ∗ is chosen; second, the crude upper bound of ‖θ∗λ‖ leads to unnecessary dimension
dependence in the bound.

In this section, we further extend the idea by proposing a novel way of releasing the ‖θ∗λ‖ differential privately by
injecting a multiplicative noise, which allows us to design a DP algorithm that adapts to small local Lipschitz constant
near the optimal solution and also a principled approach of choosing the regularization parameter λ, such that (1) the
algorithm is (ε, δ)-DP for all input data, (2) it is statistically efficient with an improved dimension-dependence when the
data follows a linear Gaussian model (3) the optimization error is optimal up to a logarithmic term for each (unknown)
strong convexity parameter and local Lipschitz constant separately.

The algorithm basically looks like the following:

1. Differentially privately release λmin using (ε/4, δ/3), and choose regularization parameter λ accordingly.

2. Condition on a high probability event of λmin, and choose λ.

3. Differentially privately release ‖θ∗λ‖ using (ε/4, δ/3), where θ∗λ = (XTX + λI)−1XTy.

4. Condition on a high probability event of both λmin and ‖θ∗λ‖, calibrate the noise to meet the (ε/2, δ/3) requirement.

We start by showing how we can release λmin and ‖θ∗λ‖. By Weyl’s lemma, λmin has a global sensitivity of ‖X‖2.
It turns out that while ‖θ∗λ‖ does not have a well-behaved global or local sensitivity, a logarithmic transformation
log(‖Y‖+ ‖X‖‖θ∗λ‖) has a very stable local sensitivity that is parameterized only by the smallest eigenvalue, which
we can easily construct a differentially private upper bound.
Lemma 12. Let θ∗λ be the ridge regression estimate with parameter λ and the smallest eigenvalue of XTX be λmin,
then the function log(‖Y‖+ ‖X‖‖θ∗λ‖) has a local sensitivity of log(1 + ‖X‖2

λmin+λ ).

Proof. Denote ‖Y‖ =: α and ‖X‖ =: β. Let the data point being added to the data set be (x, y). For a fixed λ, denote
θ̂ and θ̂′ as the ridge regression estimate with parameter λ on data set X,y and [X,x], [y, y] respectively.

By Lemma 17, we have∣∣∣‖θ̂‖ − ‖θ̂′‖∣∣∣ ≤ ‖θ̂ − θ̂′‖ = |y − xT θ̂|
√
xT ([X,x]T [X,x] + λI)−2x ≤ β

λmin + λ
(α+ βmin{‖θ̂′‖, ‖θ̂‖}).

Multiplying β on both sides and use triangular inequality, we have{
(α+ β‖θ̂‖)− (α+ β‖θ̂′‖) ≤ β2

λmin+λ (α+ β‖θ̂′‖)
((α+ β‖θ̂′‖)− (α+ β‖θ̂‖) ≤ β2

λmin+λ (α+ β‖θ̂‖)



Rearrange the terms and take log on both sides, we get∣∣∣∣∣log
α+ β‖θ̂‖
α+ β‖θ̂′‖

∣∣∣∣∣ ≤ log(1 +
β2

λmin + λ
).

D.4 Automatically choosing λ

We will do this by minimizing an upper bound of the empirical risk. Note that this is a somewhat circular problem
because the empirical risk is a function of ‖θ∗λ‖, but in order to release it differential privately, we need to choose λ to
begin with. The main idea is to express the DP upper bound of the Lipschitz constant analytically as a function of λ and
also take the additional noise from differential privacy into account.

Let a differentially private lower bound of λmin be λ̃min, and L̄ be a high-probability upper bound of the local
Lipschitz constant L = ‖X‖(‖Y‖ + ‖X‖‖θ∗λ‖). Consider the fixed OPS algorithm with the parameter choice of
γ−1 = log(2/δ)L2

(λ̃min+λ)ε2
. Define

C1(ε, δ, %, d) :=
[d/2 +

√
d log(1/%) + log(1/%)] log(2/δ)

ε2
(18)

C2(ε, δ) :=
log(2/δ)

ε
(19)

We know from Lemma 12, that we can construct a high probability upper bound L from a differentially private release
of log(‖Y‖+ ‖θ∗λ‖‖X‖) satisfying that with probability 1− δ

‖X‖(‖Y‖+ ‖X‖‖θ∗λ‖) := L ≤ L̄ ≤ L(1 + ‖X‖2/(λ̃min + λ))C2

Recall that θ∗ is the least square solution argminθ F (θ). The optimization error obeys that

F (θ̃)− F (θ∗) =F (θ̃) + λ‖θ̃‖2 − F (θ∗λ)− λ‖θ∗λ‖2

+ F (θ∗λ) + λ‖θ∗λ‖2 − F (θ∗)− λ‖θ∗‖2 + λ‖θ∗‖2

≤
[d/2 +

√
d log(1/%) + log(1/%)]

γ
+ 0 + λ‖θ∗‖2

=
C1(ε, δ, %, d)‖X‖2(‖Y‖+ ‖X‖‖θ∗λ‖)2(1 + ‖X‖2

λ+λ̃min
)2C2(ε,δ)

λ+ λ̃min

+ λ‖θ∗‖2

≤
C1(ε, δ, %, d)‖X‖4(‖Y‖/‖X‖+ ‖θ∗‖)2(1 + ‖X‖2

λ+λ̃min
)2C2(ε,δ)

λ+ λ̃min

+ λ(‖Y‖/‖X‖+ ‖θ∗‖)2

The first inequality uses Lemma 5, Lemma 8 and used the optimality of θ∗λ for the regularized objective. In the last line,
we used the monotonicity of ridge regression which says that for all λ > 0, we have ‖θ∗λ‖ ≤ ‖θ∗‖. We also ‖θ∗‖ into
‖Y‖/‖X‖+ ‖θ∗‖.

This relaxation allows us to choose λ that is independent to ‖θ∗‖, by minimizing the second part of the upper
bound

F (θ̃)− F (θ∗) ≤ (‖Y‖/‖X‖+ ‖θ∗‖)2

C1(ε, δ, %, d)‖X‖4(1 + ‖X‖2

λ+λ̃min
)2C2(ε,δ)

λ+ λ̃min

+ λ

 . (20)

The only thing that we need to privately release to choose λ is λ̃min which has a fixed global sensitivity. The detailed
procedure was summarized in Algorithm 1.



D.5 Proof of Theorem 2

We will now formally prove the theoretical guarantees of ADAOPS that we stated in Theorem 2.

Proof of Theorem 2 (i). First of all, λ̃min has global sensitivity ‖X‖2 by Weyl’s lemma (Lemma 16). Using Gaussian
mechanism, λ̃min is an (ε/4, δ/3)-DP release. Now, by the standard Gaussian tail bound, under the same probability
event that holds with probability 1− δ/3, we know that∣∣∣λ̃min − λmin

∣∣∣ ≤ log(6/δ)

ε/4
.

Condition on this event, and apply Lemma 12, we know log(‖Y‖ + ‖X‖‖θ∗λ‖) has (conditional) global sensitivity
of log(1 + ‖X‖2

λ̃min+λ
). So for any choice of λ (that uses only privately released information), the algorithm release

log(‖Y‖+ ‖X‖‖θ∗λ‖) using Gaussian mechanism. Again by Gaussian tail bound, we know that ∆ (in Algorithm 2)
is a high probability upper bound of log(‖Y‖ + ‖X‖‖θ∗λ‖) and the event is the same as the event of success in this
(ε/4, δ/3)-DP. In other word, we have that conditioning on the event with probability 1− 2δ/3, for any data set (X,y)
and any target (x, y).

|y − xT θ∗λ| ≤ ‖Y‖+ ‖X‖‖θ∗λ‖ ≤ e∆ ≤ (‖Y‖+ ‖X‖‖θ∗λ‖)(1 +
‖X‖2

λ+ λ̃min

)
log(6/δ)
ε/4 .

Denote L := ‖X‖e∆ and choose γ according to the Step 7 of the algorithm block. Condition on the high probability
event on the eigenvalue and and local Lipschitz constant, the results in Theorem 10 (and the remark underneath it)
implies that θ̃ is an (ε/2, δ/3)-pDP for all pairs of adjacent data sets that differs by adding or removing one data point.
This by definition implies that we have converted the pDP guarantee to (ε/2, δ/3)-DP.

Finally, by the adaptive simple composition of the three DP mechanisms, we conclude that ADAOPS is (ε, δ)-DP.

We now move on the analyze the utility of ADAOPS in terms of optimization error and estimation error (Statement (ii)
and (iii) in Theorem 2).

Proof of Theorem 2 (ii). The key idea of the proof is to establish that the way λ is chosen according to (7) is effectively
minimizing an upper bound of the optimization error, according to our derivation to that leads to (20). To start, note that
C1 and C2 in (7) are both positive for any parameters that are passed into them, so the first term in the upper bound is
monotonically decreasing in λ and the second term is monotonically increasing in λ so there is a unique λ minimizing
the criterion.

Let C̃1 be an arbitrary upper bound of C1. Also recall that tmin = max
{
‖X‖2(1+log(6/δ))

2ε − λ̃min, 0
}

min
t≥tmin

C1‖X‖4(1 + ‖X‖2

t+λ̃min
)2C2

t+ λ̃min

+ t ≤ min
t≥max{tmin,‖X‖2C2−λ̃min}

C̃1‖X‖4(1 + 1
λ+λ̃min

)2C2

t+ λ̃min

+ t

≤ min
t≥max{tmin,‖X‖2C2−λ̃min}

e2C̃1‖X‖4

t+ λ̃min

+ t

. min

{
e2C̃1‖X‖4

λ̃min

, e‖X‖2
√
C̃1

}
. (21)

The first inequality follows because we are increasing C1 and also restricting the domain we optimize over, the second
inequality uses that (1 + 1/x)x ≤ e for all x > 0.

The third inequality is true when

e

√
C̃1 ≥ max

{
C2,

1 + log(6/δ)

2ε

}
.

To check this, discuss two cases of λ̃. In the first case, if λ̃min ≤ e
√
C̃1‖X‖2 we can take the feasible t = e‖X‖2

√
C̃1

and obtain the second expression. In the second case, we know that taking t = 0 is feasible, which gives rise to the first
bound.



Take C̃1 = C1 ∨ e−2C2
2 ∨ e−2 (1+log(6/δ))2

4ε2 .

We now look closer into parameters in C1 and C2 of (7).

First of all, since ε̃ < ε/2,

ε̄ = ε/2− ε2

8

[
1

log(6/δ)
+

1 + log(6/δ)

log(6/δ)

]
≤ ε/2− ε̃2

2

[
1

log(6/δ)
+

1 + log(6/δ)

log(6/δ)

]
≤ ε̃.

This implies that ε̄ < ε/2. On the other hand, by the assumption that ε < 2 log(6/δ)/(1 + log(6/δ)), ε̄ > ε/2− ε/4 =
ε/4.

It follows that

C̃1 = max{C1(ε̄, δ/3, %, d), C2(ε/4, δ/3)2e−2, e−2 (1 + log(6/δ))2

4ε2
}

= max

{
[d/2 +

√
d log(1/%) + log 1/%] log(6/δ)}

ε̄2
,

16 log(6/δ)2

e2ε2
,

(1 + log(6/δ))2

4ε2ε2

}

≤
16 log(6/δ) max{[d/2 +

√
d log(1/%) + log 1/%], log(6/δ)

e2 }
ε2

= O

(
max{d, log(1/%)} log(6/δ) + log2(6/δ)

ε2

)
.

Apply the above upper bound to (21) and then to (20), we get that with probability 1− 2δ/3− %, then simultaneously,

F (θ̃)− F (θ∗) ≤ O
(

(‖Y‖2 + ‖X‖2‖θ∗‖2)‖X‖2 (d+ log(1/%)) log(6/δ) + log2(6/δ)

ε2λ̃min

)
,

F (θ̃)− F (θ∗) ≤ O

(‖Y‖2 + ‖X‖2‖θ∗‖2)

√
(d+ log(1/%)) log(6/δ) + log2(6/δ)

ε

 .

The first bound is the smaller of the two only when λ̃min ≥
√
C̃1 and in such cases

1

λmin
≤ 1

λ̃min − ‖X‖2 log(6/δ)
ε/4

= O(
1

‖X‖2
√
C̃1

).

The proof is complete by converting λmin into the alternative normalized representation with α = dλmin

n‖X‖2 .

It remains to prove the results about the estimation error under the linear Gaussian model.

Proof of Theorem 2 (iii). Note that λmin ≥ αn/d. As we’ve seen in the proof of Statement (ii), with probability
1− δ/3,

λ̃min ≥ λmin − ‖X‖2
4 log(6/δ)

ε
.

Let this be event E. Event E ensures that (under the stated assumption on ε, δ) we have 4 log(6/δ)
ε < αn

2d , this implies
that λ̃min > 0.5λmin and in addition, the automatic choice of λ using (7) will be λ = 0.

E(θ̃|X,E) = E
[
E
[
θ̃
∣∣X,E,y, L, λ̃]∣∣∣X,E] =

↑
Lemma 8

E [θ∗λ|X,E] =
↑

λ=0 underE

E [θ∗|X,E] = θ0

Cov(θ̃|X,E) = E
[
Cov

[
θ̃
∣∣X,E,y, L, λ̃]∣∣∣X,E]+ Cov

[
E
[
θ̃
∣∣X,E,y, L, λ̃]∣∣∣X,E]

= E
[
L2 log(6/δ)

λ̃minε̃2

∣∣∣∣X,E] (XTX)−1 + Cov [θ∗|X,E]

≺
E
[
L2
∣∣X,E] log(6/δ)

(λmin/2)(ε/4)2
(XTX)−1 + σ2(XTX)−1 (22)



Plugging in the consequence of E into the expression of L in the Algorithm 1, we have

L = ‖X‖e∆ = elog(‖Y‖+‖X‖‖θ∗‖)+ log(1+‖X‖2/λ̃min)

ε/4

√
log(6/δ)Z+

log(1+‖X‖2/λ̃min)

ε/4
log(6/δ)

= ‖X‖(‖Y‖+ ‖X‖‖θ∗‖)(1 + ‖X‖2/λ̃min)
log(6/δ)
ε/4 (1 + ‖X‖2/λ̃min)

√
log(6/δ)

ε/4
Z

≤ ‖X‖(‖Y‖+ ‖X‖‖θ∗‖)e
‖X‖2 log(6/δ)
λminε/8 e

‖X‖2
√

log(6/δ)

λminε/8
Z

≤ ‖X‖(‖Y‖+ ‖X‖‖θ∗‖)e · eZ

Take expectation of L2, use the independence of Z and y we get

E[L2|X,E] = E[‖X‖2(‖Y‖+ ‖X‖‖θ∗‖)2]e2E[e2Z ]

= e4(2‖X‖2‖Y‖2 + 2‖X‖4E[‖θ∗‖2|X])

= 2e4‖X‖2(‖Y‖2 + ‖X‖2‖θ0‖2 + σ2‖X‖2tr[(XTX)−1])

where in the second line, we used the formula for the moment generating function of standard normal distribution, and
then in the third line, we used that θ∗ ∼ N (θ0, σ

2(XTX)−1). Substitute into (22) and replace λmin with n‖X‖2α/d
we get

Cov(θ̃|X,E) ≺

1 +
64e4

[
‖Y‖2 + ‖X‖2‖θ0‖2 + σ2‖X‖2tr[(XTX)−1]

]
d log(6/δ)

ασ2nε2

σ2(XTX)−1

as claimed.

E Utility lemmas

Lemma 13 (Gaussian tail bound). Let X ∼ N (0, 1). Then

P(|X| > ε) ≤ 2e−ε
2/2

ε
.

Lemma 14 (χ2-distribution tail bound (Laurent & Massart, 2000, Lemma 1)). Let X follows a χ2 distribution with k
degree of freedom, then for all t > 0, we have

P(X − k ≥ 2
√
kt+ 2t) ≤ e−t,

P(k −X > 2
√
kt) ≤ e−t.

Lemma 15 (Tail bound to (ε, δ)-DP conversion). Let ε(θ) = log( p(θ)p′(θ) ) where p and p′ are densities of θ. If

P(|ε(θ)| > t) ≤ δ

then for any measurable set S
Pp(θ ∈ S) ≤ etPp′(θ ∈ S) + δ.

and
Pp′(θ ∈ S) ≤ etPp(θ ∈ S) + δ

Proof. Since log( p(θ)p′(θ) ) = − log(p
′(θ)
p(θ) ) and the tail bound is two-sided. It suffices for us to prove just one direction.

Let E be the event that |ε(θ)| > t.

Pp(θ ∈ S) = Pp(θ ∈ S ∪ Ec) + Pp(θ ∈ S ∪ E) ≤ Pp′(θ ∈ S ∪ E)et + Pp(θ ∈ E) ≤ etPp′(θ ∈ S) + δ.



Lemma 16 (Weyl’s eigenvalue bound (Stewart, 1998, Theorem 1)). Let X,Y,E ∈ Rm×n, w.l.o.g., m ≥ n. If
X − Y = E, then |σi(X)− σi(Y )| ≤ ‖E‖ for all i = 1, ..., n.
Lemma 17 (Stability of smooth learning problems, Lemma 14 of (Wang, 2017)). Assume ` and r be differentiable
and their gradients be absolute continuous. Let θ̂ be a stationary point of

∑
i `(θ, zi) + r(θ), θ̂′ be a stationary point∑

i `(θ, zi) + `(θ, z) + r(θ) and in addition, let ηt = tθ̂ + (1− t)θ̂′ denotes the interpolation of θ̂ and θ̂′. Then the
following identity holds:

θ̂ − θ̂′ =

[∫ 1

0

(∑
i

∇2`(ηt, zi) +∇2`(ηt, z) +∇2r(ηt)

)
dt

]−1

∇`(θ̂, z)

= −

[∫ 1

0

(∑
i

∇2`(ηt, zi) +∇2r(ηt)

)
dt

]−1

∇`(θ̂′, z).

F (ε, δ)-DP calibration of OPS for linear regression.

This appendix describes the details of how we implement the non-adaptive version of OPS as a baseline.

OPS was proposed as a ε-pure-DP mechanism via the use of the exponential mechanism. In this paper, we are working
with (ε, δ)-DP and it is only fair to compare to a version of OPS with (ε, δ)-DP. Such guarantees are studied by Mir
(2013, Chapter 5) and later by Minami et al. (2016), but neither can be straightforwardly and satisfactorily applied to
the linear regression problem.

Minami et al. (2016) requires that the loss function is Lipschitz. Linear regression is not Lipschitz unless we constraint
|Θ| as in Assumption A2 just like for OBJPERT then it becomes Lipschitz. With appropriate choice of λ and γ and
using ideas in Section D.4. Unfortunately, unlike OBJPERT, OPS is not an optimization based method. Sampling from
the posterior distribution subject to the additional constraint requires techniques such as rejection sampling, which we
find very costly, and prone to numerical issues.

Mir (2013) does not require an explicit constraint on the parameter space. Instead, they use a large regularization
parameter λ, so that with probability 1− δ over the distribution of the OPSmechanism, the output is not too much larger
than Ridge regression solution, which effectively produces a constraint on the domain. Then they apply an exponential
mechanism-based argument after conditioning on this high-probability event. See Section 5.4.1 of (Mir, 2013) for
details. Unfortunately, this approach yields a suboptimal rate under (ε, δ)-DP, which depends linearly in d rather than
the optimal

√
d dependence.

The pDP analysis of linear regression of Wang (2017) suggests that we do not actually need global Lipschitz constant,
instead the local Lipschitz constant at θ∗λ is sufficient for us to obtain differential privacy. For any data set (X,y), we
can show that

‖θ∗λ‖ ≤ ‖(XTX + λI)−1XT ‖2
√
n‖Y‖ ≤ min

{√
n‖Y‖√

2λ
,
n‖X‖‖Y‖

λ

}
. (23)

The local Lipschitz constant at θ∗λ is therefore smaller than
√
n‖X‖2‖Y‖√

2λ
+ ‖X‖‖Y‖ = ‖X‖‖Y‖(

√
n‖X‖√

2λ
+ 1) =: L(λ).

Apply Remark 11 with the above Lipschitz constant upper bound and also take λmin = 0, we get a pDP guarantee for
any pairs of adjacent data sets, which by definition, upgrades into a DP guarantee. In other word, we can achieve a
prescribed (ε, δ)-DP by choosing choose any (λ, γ) such that they obey

ε ≤
√
γL(λ)2 log(2/δ)

λ
+

γL(λ)2

2(λ+ ‖X‖2)
+

(1 + log(2/δ))‖X‖2

2λ
.

There are many ways of doing it. If we fix λ > (1+log(2/δ))‖X‖2
2ε , then we can calibrate γ to achieve any (ε, δ)-DP

guarantee for any (ε, δ). If we instead fix γ so that we have a comfortable level of variance, then similarly we can
calibrate λ to achieve any (ε, δ)-DP guarantee for any (ε, δ).

Specifically, we will experiment with the following three approaches:
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Figure 5: Comparison of the utility of (ε, δ)-DP OPS using four different ways of calibrating noise to privacy. The
results show that how we calibrate noise plays an important role in the utility of the algorithms.

1. OPS-Diffuse: Take λ = (1+log(2/δ))‖X‖2
ε and calibrate γ.

2. OPS-Concentrated: Take γ = 1 and calibrate λ.

3. OPS-Balanced: Choose λ to minimize the prediction accuracy upper bound that we have from Section D.4

F ((̂θ))− F (θ∗) ≤ C1(min(ε,
√
ε), δ, %, d)L(λ)2

λ
+ λB2 (24)

subject to λ ≥ (1+log(2/δ))‖X‖2
ε

7. Once λ is chosen, we then calculate γ properly using the “diffused” approach
given this λ. In (24), the function C1 is defined in (18) and we choose % = 0.05. B is a more delicate
hyperparameter since there isn’t an upper bound of ‖theta∗‖ that holds uniformly for all data sets. We will be
using B = 1 as we are being optimistic.

4. OPS-Conservative: An alternative approach that avoids choosing B is to use ‖θ∗λ‖ ≤ ‖θ∗‖ so that the minimizer
of the upper bound λ does not depend on ‖θ∗‖.

In our experiments, we find that no single approach dominates the others. In general, we find that the “concentrated”
approach and the “balanced” approach with B = 1 work significantly better than the “diffused” and the “conservative”
approaches (see Figure 5 for details). The experimental results with legend label “OPS” in Figure 2, Table 3 and Table 4
are for the “balanced’ approach.

Below, we provide an error bound of the balanced approach.
Proposition 18. Assume ‖θ∗‖ � B on this specific data set. Then OPS in unbounded domain with γ = ε2λ

4 log(2/δ)L(λ)2

and λ =
(
C1(ε,δ,%,d)‖X‖4‖Y‖2n

B2

)1/3

. obeys (ε, δ)-DP, and also

F (θ̂)− F (θ∗) ≤ O
(
d1/3n1/3 log(2/δ)1/3‖X‖4/3‖Y‖2/3‖θ∗‖4/3

ε2/3

)
.

Proof. The result follows straightforwardly by substituting the L(λ) and our choice of λ, γ into (24) checking that λ’s
choice balances the two terms.

7Note that this upper bound is obtained for γ = λmin(ε2,ε)

4 log(2/δ)L(λ)2
and assuming ‖θ∗‖ ≤ B.
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