
SUPPLEMENTARY MATERIAL

A PROOFS

A.1 PROOF OF THEOREM 1

Proof. We need to show that if ⇣Ii and ⇣0
Ii

are such that (⇣Ii)pa(i) = (⇣0
Ii
)pa(i) = ⌘pa(i), then ⌘i = ⌘0i. To see that this

is the case, observe that the system of equations for Ddo(XIi=⇣Ii )
is given by:

Ddo(XIi=⇣Ii )
:

8
<

:

Xj(t) = ⇣j(t) j 2 I \ (pa(i) [ {i}) ,
Xj(t) = ⌘j(t) j 2 pa(i) ,

fi(Xi,Xpa(i))(t) = 0 X(k)
i (0) = (X(k)

0 )i, 0  k  ni � 1 .

The equations for Ddo(XIi=⇣0
Ii
) are similar, except with Xj(t) = ⇣ 0j(t) for j 2 I \ (pa(i) [ {i}). In both cases, the

equations for all variables except Xi are solved already. The equation for Xi in both cases reduces to the same quantity
by substituting in the values of the parents, namely

fi(Xi,⌘pa(i))(t) = 0 .

The solution to this equation in Dyni must be unique and independent of initial conditions, else the dynamic stability of
the intervened systems Ddo(XIi=⇣Ii )

and Ddo(XIi=⇣0
Ii
) would not hold, contradicting the dynamic structural stability of

(D, Dyn). It follows that ⌘i = ⌘0i.

A.2 PROOF OF THEOREM 2

Proof. By construction of the SCM, ⌘ 2 DynI is a solution of M(Ddo(XI=⇣I )) if and only if the following two conditions
hold:

• for i 2 I \ I , Xi(t) = ⌘i(t) 8t is a solution to the differential equation fi(Xi,⌘pa(i))(t) = 0;
• for i 2 I , ⌘i(t) = ⇣i(t) for all t.

which is true if and only if X = ⌘ is a solution to Ddo(XI=⇣I) in DynI . Thus, by definition of dynamic stability,
Ddo(XI=⇣I) is dynamically stable with asymptotic dynamics describable by ⌘ 2 Dyn if and only if X = ⌘ uniquely
solves M(Ddo(XI=⇣I )).

A.3 PROOF OF THEOREM 3

Proof. We need to show that the structural equations of M(Ddo(XI=⇣I )) and (MD)do(XI=⇣I) are equal. Observe that
the equations for Ddo(XI=⇣I) are given by:

Ddo(XI=⇣I) :

⇢
Xi = ⇣i, i 2 I ,

fi(Xi,Xpa(i)) = 0, X(k)
i (0) = (X(k)

0 )i, 0  k  ni � 1, i 2 I \ I .

Therefore, when we perform the procedure to derive the structural equations for Ddo(XI=⇣I), we see that:

• if i 2 I , the ith structural equation will simply be Xi = ⇣i since intervening on Ii does not affect variable Xi.
• if i 2 I \ I , the ith structural equation will be the same as for MD, since the dependence of Xi on the other

variables is unchanged.

Hence the structural equations for M(Ddo(XI=⇣I )) are given by:

M(Ddo(XI=⇣I )) :

⇢
Xi = ⇣i, i 2 I ,
Xi = Fi(Xpa(i)), i 2 I \ I .

and therefore M(Ddo(XI=⇣I )) = (MD)do(XI=⇣I) .



A.4 PROOF OF COROLLARY 1

Proof. Corollary 1 follows very simply from the observation that if (D, Dyn) is structurally dynamically stable then so
is (Ddo(XI=⇣I), DynI\I). The result then follows by application of Theorem 3.

B DERIVING THE DSCM FOR THE MASS-SPRING SYSTEM

Consider the mass-spring system of Example 1, but with D � 1 an arbitrary integer. We repeat the setup:

We have D masses attached together on springs. The location of the ith mass at time t is Xi(t), and its mass is mi.
For notational ease, we denote by X0 = 0 and XD+1 = L the locations of where the ends of the springs attached to
the edge masses meet the walls to which they are affixed. X0 and XD+1 are constant. The natural length and spring
constant of the spring connecting masses i and i+ 1 are li and ki respectively. The ith mass undergoes linear damping
with coefficient bi, where bi is small to ensure that the system is underdamped. The equation of motion for the ith mass
(1  i  D) is given by:

miẌi(t) = ki[Xi+1(t)�Xi(t)� li]� ki�1[Xi(t)�Xi�1(t)� li�1]� biẊi(t)

so, defining

fi(Xi, Xi�1, Xi+1)(t) = miẌi(t)� ki[Xi+1(t)�Xi(t)� li] + ki�1[Xi(t)�Xi�1(t)� li�1] + biẊi(t)

we can write the system of equations D for our mass-spring system as

D :
�

fi(Xi, Xi�1, Xi+1)(t) = 0 i 2 I .

In the rest of this section we will explicitly calculate the structural equations for the DSCM derived from D with two
different sets of interventions. First, we will derive the structural equations for the case that Dyn consists of all constant
trajectories, corresponding to constant interventions that fix variables to constant values for all time. This illustrates the
correspondence between the theory in this paper and that of Mooij et al. (2013). Next, we will derive the structural
equations for the case that Dyn consists of interventions corresponding to sums of periodic forcing terms.

B.1 MASS-SPRING WITH CONSTANT INTERVENTIONS

In order to derive the structural equations we only need to consider, for each variable, the influence of its parents on
it. (Formally, this is because of Theorem 1). Consider variable i. If we intervene to fix its parents to have locations
Xi�1(t) = ⌘i�1 and Xi+1(t) = ⌘i+1 for all t, then the equation of motion for variable i is given by

miẌi(t) + biẊi(t) + (ki + ki�1)Xi(t) = ki[⌘i+1 � li] + ki�1[⌘i�1 + li�1] .

There may be some complicated transient dynamics that depend on the initial conditions Xi(0) and Ẋi(0) but provided
that bi > 0, we know that the Xi(t) will converge to a constant and therefore the asymptotic solution to this equation
can be found by setting Ẍi and Ẋi to zero. Note that in general, we could explicitly find the solution to this differential
equation (and indeed, in the next example we will) but for now there is a shortcut to deriving the structural equations.7
The asymptotic solution is:

Xi =
ki[⌘i+1 � li] + ki�1[⌘i�1 + li�1]

ki + ki�1
.

Therefore the ith structural equation is:

Fi(Xi�1, Xi+1) =
ki[Xi+1 � li] + ki�1[Xi�1 + li�1]

ki + ki�1
.

7This is analogous to the approach taken in Mooij et al. (2013) in which the authors first define the Labelled Equilibrium
Equations and from these derive the SCM.



Hence the SCM for (D, Dync) is:

MD :

⇢
Xi =

ki[Xi+1 � li] + ki�1[Xi�1 + li�1]

ki + ki�1
i 2 I .

We can thus use this model to reason about the effect of constant interventions on the asymptotic equilibrium states of
the system.

B.2 SUMS OF PERIODIC INTERVENTIONS

Suppose now we want to be able to make interventions of the form:

do
�
Xi(t) = A cos(!t+ �)

�
. (4)

Such interventions cannot be described by the DSCM derived in Section B.1. In this section we will explicitly derive
a DSCM capable of reasoning about the effects of such interventions. It will also illustrate why we need dynamic
structural stability.

By Theorem 1, to derive the structural equation for each variable we only need to consider the effect on the child of
intervening on the parents according to interventions of the form (4). Consider the following linear differential equation:

mẌ(t) + bẊ(t) + kX(t) = g(t) . (5)

In general, the solution to this equation will consist of two parts—the homogeneous solution and the particular solution.
The homogeneous solution is one of a family of solutions to the equation

mẌ(t) + bẊ(t) + kX(t) = 0 (6)

and this family of solutions is parametrised by the initial conditions. If b > 0 then all of the homogeneous solutions
decay to zero as t �! 1. The particular solution is any solution to the original equation with arbitrary initial conditions.
The particular solution captures the asymptotic dynamics due to the forcing term g. Equation 5 is a linear differential
equation. This means that if X = X1 is a particular solution for g = g1 and X = X2 is a particular solution for g = g2,
then X = X1 +X2 is a particular solution for g = g1 + g2.

In order to derive the structural equations, the final ingredient we need is an explicit representation for a particular
solution to (5) in the case that g(t) = A cos(!t+�). We state the solution for the case that the system is underdamped—
this is a standard result and can be verified by checking that the following satisfies (5):

X(t) = A0 cos(!t+ �0)

where

A0 =
Ap

[k �m!2]2 + bm!2
, �0 = �� arctan


b!

k �m!2

�
. (7)

Therefore if we go back to our original equation of motion for variable Xi

miẌi(t) + biẊi(t) + (ki + ki�1)Xi(t) = ki[Xi+1(t)� li] + ki�1[Xi�1(t) + li�1]

and perform the intervention

do(Xi�1(t) = Ai�1 cos(!i�1t+ �i�1), Xi+1(t) = Ai+1 cos(!i+1t+ �i+1))

we see that we can write the RHS of the above equation as the sum of the three terms

g1(t) = ki�1li�1 � kili ,

g2(t) = ki�1Ai�1 cos(!i�1t+ �i�1) ,

g3(t) = kiAi+1 cos(!i+1t+ �i+1) .



Using the fact that linear differential equation have superposable solutions and (7), we can write down the resulting
asymptotic dynamics of Xi:

Xi(t) =
ki�1li�1 � kili

ki + ki�1

+
ki�1Ai�1q

[ki + ki�1 �mi!2
i�1]

2 + bimi!2
i�1

cos

✓
!i�1t+ �i�1 � arctan


bi!i�1

ki + ki�1 �mi!2
i�1

�◆

+
kiAi+1q

[ki + ki�1 �mi!2
i+1]

2 + bimi!2
i+1

cos

✓
!i+1t+ �i+1 � arctan


bi!i+1

ki + ki�1 �mi!2
i+1

�◆
.

However, note that if we were using Dyn consisting of interventions of the form of equation (4), then we have just
shown that the mass-spring system would not be structurally dynamically stable with respect to this Dyn, since we need
two periodic terms and a constant term to describe the motion of a child under legal interventions of the parents.

This illustrates the fact that we may sometimes be only interested in a particular set of interventions that may not itself
satisfy structural dynamic stability, and that in this case we must consider a larger set of interventions that does. In this
case, we can consider the modular set of trajectories generated by trajectories of the following form for each variable:

Xi(t) =
1X

j=1

Aj
i cos(!

j
i t+ �j

i )

where for each i it holds that
P1

j=1 |A
j
i | < 1 (so that the series is absolutely convergent and thus does not depend on

the ordering of the terms in the sum). Call this set Dynqp (“quasi-periodic”). By equation (7), we can write down the
structural equations

Fi

0

@
1X

j=1

Aj
i�1 cos(!

j
i�1t+ �j

i�1),
1X

j=1

Aj
i+1 cos(!

j
i+1t+ �j

i+1)

1

A

=
ki�1li�1 � kili

ki + ki�1

+
1X

j=1

ki�1A
j
i�1q

[ki + ki�1 �mi(!
j
i�1)

2]2 + bimi(!
j
i�1)

2
cos

 
!j
i�1t+ �j

i�1 � arctan

"
bi!

j
i�1

ki + ki�1 �mi(!
j
i�1)

2

#!

+
1X

j=1

kiA
j
i+1q

[ki + ki+1 �mi(!
j
i+1)

2]2 + bimi(!
j
i+1)

2
cos

 
!j
i+1t+ �j

i+1 � arctan

"
bi!

j
i+1

ki + ki+1 �mi(!
j
i+1)

2

#!
.

Since this is also a member of Dynqp, the mass-spring system is dynamically structurally stable with respect to Dynqp
and so the equations Fi define the Dynamic Structural Causal Model for asymptotic dynamics.

C DYNAMIC BAYESIAN NETWORK REPRESENTATION

By using Euler’s method, we can obtain a (deterministic) Dynamic Bayesian Network representation of the mass-spring
system. For D = 2, this yields

DBN :

8
>>>>>>>>>>><

>>>>>>>>>>>:

X(t+1)�
1 = X1(t�) +�Ẋ1(t�)

Ẋ1
(t+1)�

= Ẋ1(t�) + �
m1

h
k1X2(t�)� b1Ẋ1(t�)� (k0 + k1)X1(t�) + k0l0 � k1l1

i

X(t+1)�
2 = X2(t�) +�Ẋ2(t�)

Ẋ2
(t+1)�

= Ẋ2(t�) + �
m2

h
k1X1(t�)� b2Ẋ2(t�)� (k1 + k2)X2(t�) + k1l1 � k2l2 + k2L

i

X(k)
i (0) = (X(k)

0 )i k 2 {0, 1}, i 2 {1, 2} .

(8)


