Multi-Target Optimisation via Bayesian Optimisation and Linear Programming - Supplementary Material

Alistair Shilton Santu Rana Sunil Gupta Svetha Venkatesh Deakin University, Geelong, Australia, Centre for Pattern Recognition and Data Analytics {alistair.shilton.santu.rana.sunil.gupta.svetha.venkatesh}@deakin.edu.au

The following proofs relate to theorems presented in section 5 of the paper.

Theorem 1 (Non-triviality) Let α^t be the solution to the score-function optimisation problem (9). Then $\alpha^t \neq 0$.

Proof: The constraints in the score-function optimisation problem ensure that $g_t(\mathbf{y}) < 0 \ \forall \mathbf{y} \in \mathcal{Y}_{t-1}$. Moreover as $g_t(\mathbf{y}) = 1$ if $\boldsymbol{\alpha}^t = \mathbf{0}$ it may be seen that to satisfy the constraints of the score-function optimisation problem it must be true that $\boldsymbol{\alpha}^t \neq \mathbf{0}$.

Theorem 2 (Margin Minimisation) Let α^t be the solution to the score-function optimisation problem (9). Let \mathbb{Y}^{g_t*} be the estimated Pareto front defined by g_t . The minimum distance between \mathcal{Y}_{t-1} and the estimated Pareto front \mathbb{Y}^{g_t*} is zero:

$$\min_{\mathbf{y}\in\mathcal{Y}_{t-1},\mathbf{y}'\in\mathbb{Y}^{g_t\star}}\|\mathbf{y}-\mathbf{y}'\|=0$$

Proof: Suppose the theorem is false. Then by definition of the estimated Pareto front $\mathbb{Y}^{g_t \star}$ and observational consistency it must be true that $g_t(\mathbf{y}) < 0$ $\forall \mathbf{y} \in \mathcal{Y}_{t-1}$. Let $\delta = \min_{\mathbf{y} \in \mathcal{Y}_{t-1}} g_t(\mathbf{y}) < 0$. Defining $\bar{\alpha}^t = (1+\delta)^{-1} \alpha^t$ we see that $\bar{\alpha}^t$ is a feasible solution to the score-function optimisation problem, and moreover $\|\bar{\alpha}^t\|_1 < \|\alpha^t\|_1$, so α^t cannot be the optimal solution, which is a contradiction. It follows that the theorem must be true.

Theorem 3 (Sparsity) Let α^t be the solution to the score-function optimisation problem (9). Then $\alpha_i^t = 0$ $\forall i : \mathbf{y}_i \notin \mathcal{Y}_{t-1}^*$ (ie. points not in the estimated Pareto front cannot be support vectors).

Proof: Let α^t be the optimal solution of the score function optimisation problem with the additional constraint

 $\alpha_i^t = 0 \ \forall i : \mathbf{y}_i \notin \mathcal{Y}_{t-1}^{\star}$. It follows from Theorem 1 that $\sum_j \alpha_j^t L(\mathbf{y}_i, \mathbf{y}_j) > \frac{1}{2} \ \forall i : \mathbf{y}_i \notin \mathcal{Y}_{t-1}^{\star}$. Hence we see that α^t is also the optimal solution to the score-function optimisation problem without the additional constraint, proving the theorem.

Theorem 4 (Heaviside Limit) Let $\kappa = \kappa_{\perp}$, where

$$\kappa_{\perp}\left(y\right) = \lim_{\eta \to \infty} \frac{1}{1 + \exp(-\eta y)} = \frac{1}{2} \left(1 + \operatorname{sgn}\left(y\right)\right),$$

and $\nexists i \neq j$: $\mathbf{y}_i = \mathbf{y}_j$. Then $\alpha_i^t = 1 \quad \forall i : \mathbf{y}_i \in \mathcal{Y}_{t-1}^{\star}$, $\alpha_i^t = 0$ otherwise (i.e. in the limiting case the support vectors are precisely the estimated Pareto set).

Proof: By theorem 3 it may be seen that $\alpha_i^t = 0 \ \forall i :$ $\mathbf{y}_i \notin \mathcal{Y}_{t-1}^{\star}$. Moreover to satisfy the constraints of the score-function problem it must be true that $\forall i : \mathbf{y}_i \in \mathcal{Y}_{t-1}^{\star}$:

$$\sum_{j} \alpha_{j}^{t} L\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right) = \alpha_{i}^{t} \kappa_{\perp}\left(0\right) + \dots$$
$$\dots + \sum_{j \neq i: \mathbf{y}_{j} \in \mathcal{Y}_{t-1}^{\star}} \alpha_{j}^{t} \kappa_{\perp} \left(\min_{q} \left(y_{iq} - y_{jq}\right)\right) = \frac{1}{2} \alpha_{i}^{t} \ge \frac{1}{2}$$

and hence $\alpha_i^t = 1 \ \forall i : \mathbf{y}_i \in \mathcal{Y}_{t-1}^{\star}$.