Supplements

A  Proofs

A.1 Proof of Theorem/I]

We first introduce the following technical lemma.

Lemma 3. Let g(6), f(0), and h(6) be defined as in Section 2.1} hence f(0) is convex and differentiable, and V f(8) is Lipschitz
continuous with Lipschitz constant L. Let & < 1/L. Let G, (0) and A f(8) be defined as in Section (2.2). Then for all 61 and 02,
the following inequality holds:

9(61) < 9(62) + G (61)(61 — 02) + (Vf(61) — Af(61))" (6] — 62) — % IGa (8113, (16)

where 8] = 0, — aG,(6,).

Proof. The proof is based on the convergence analysis of the standard proximal gradient method [[Vandenberghel 2016]. f(6) is
a convex differentiable function whose gradient is Lipschitz continuous with Lipschitz constant L. By the quadratic bound of the
Lipschitz property:

£(61) < £(61) — oV £(8)Gu(01) + 2L [Ga(0)3.
With a < 1/L, and adding h(6]) on both sides of the quadratic bound, we have an upper bound for g(8}):
9(8]) < J(61) — aV " f(61)Ga(61) + 5 G (61)]3 + h(6)).
By convexity of f(0) and h(0), we have:

£(81) < f(82) + VT £(6:)(6: — 62),
h(0]) < h(62) + (Ga(01) — Af(61))T (8 — 62),

which can be used to further upper bound g(8!), and results in . Note that we have used the fact that Go(601) — Af(01) is a
subgradient of h(6]) in the last inequality. O

With Lemma we are now able to prove Theorem In Lemma let ; = 0 = %) Then by , OJ{ = 0%+ The inequality
in can then be simplified as:

g(8")) = g(6™) < a8(6™) T G (6™) - T[Ga (0™

By the Cauchy-Schwarz inequality and the sufficient condition that ||§(0))[|2 < %”GOL(O(IC))”Q, we can further simplify the
inequality and conclude g(8* 1)) < g(0").

A.2  Proof of Theorem

To prove Theorem [2] we first review Proposition 1 in|Schmidt et al.|[2011]:

Theorem 7 (Convergence on Average, [Schmidt et al.|[[2011]). Let K = (0(0), oM @ ... 0(“)) be the iterates generated by
Algorithm 3] then

K K 2
1 A L A 2
9 (KZO(’”) -90) < 5 ('9(0) 0+ LZ|5(9(k))||2> .
k=1 k=1

Furthermore, according to the assumption that g(@*+V) < g@®) with & € {1,2,---,x}, we have:
g (l D onet G(k)> > g(0")). Therefore,

K

2
. - L A 2 &
9(0")) —g(6) < (HB‘O’ — Ol + ¢ Z|5<9<“>|2> :
k=1



A.3  Proof of Theorem

A.3.1 Proof of Lemmalll
The rationale behind our proof follow that of |Bengio and Delalleau| [2009] and |[Fischer and Igel| [2011].

Let %o € {0, 1}” be an initialization of the Gibbs sampling algorithm. Let  be the parameterization from which the Gibbs sampling

algorithm generates new samples. A Gibbs-7 algorithm hence uses the 7" sample , %, generated from the chain to approximate
the gradient. Since there is only one Markov chain in total, we have S = {X.}. The gradient approximation of Gibbs-7 is hence

given by:
Af(0) = Y(xr) — Exvp(x). (17)

The actual gradient, V f(8), is given in . Therefore, the difference between the approximation and the actual gradient is

6(0) = Af(6) = Vf(0) = (%) — Egtp(x) = VlogPo(Xr).

We rewrite _
P.(x|%0) = P(X; =x | %X0) = Po(x) + €, (x),

where €, (x) is the difference between P, (x | %) and Pg(x). Consider the expectation of the j*" component of §(8), J,(0),
where j € {1,2,---,m}, after running Gibbs-7 that is initialized by Xq:

Ex, [0;(0) | %] = D Pr(x|%0)5;(0) = Y (Po(x)+ er(x))5;(6)

x€{0,1}P x€{0,1}?
= > &(x)8(0)= Y (Pr(x|x0) - Po(x))5;(6) (18)
xe€{0,1}P x€{0,1}P
= Y (Pr(x|x0) = Po(x))V;log Po(%-),

xe€{0,1}P

where we have used the fact that > o 1y» Po(x)V;logPe(x) = 0, and V; logPg(x) represents the 4™ component of
VlogPg(%-), withj € {1,2,--- ,m}.

Therefore, from (T8},
[Ex,[5;(0) | %o]| < > [P-(x|x0) — Po(x)| - |V;log Po(%-)|
xe€{0,1}P

< Y [Pr(x|x0) = Po(x)| = 2P+ (x| %o) = Po(x)llyy ,
x€{0,1}P

19)

where we have used the fact that |V log Pe(%,)| < 1 when 1)(x) € {0,1}™, forall x € {0, 1}".
Therefore, by (19),

B, [5(8) | Xolll2 =, | > [Bx.[0;(8) | %o]|” < \/m % 2[IP+(x | x0) = Po() )2
=2v/m ||P,(x | x0) — Po(x) |1y -

A.3.2 Proof of Lemma[2]
Let j # i be given. With &;; = Omin{i,j},max{i,;j}» consider

Pg(Xi = I,X,i)
Po(X: =0,X_;) + Po(X; = 1,X_,)
. 1
1+exp (_eii =D ki &',ka)
. 1
1+ exp (—Gz‘z‘ = Dkti kot fi,ka) exp (—&i,; X;)
=g (eXp (_"SMJXJ) ) bl) )

Po(X;=1|X_;) =




where
b = exp Z ik Xk T, s),
k#i,k#j
with

r = exp (9“' — Z &, max {sgn(fi,k),O}) , S8 =exp (Gii — Z &k max{sgn({ak),O}) .

k#i,k#j ki, k#j
Therefore,
1
Cijzxrgl(ag](vﬂpe( i=1]|X_;)—Pe(Y;=1]Y_ )|+§|P0(Xi:0|X,) Po(Y; =0|Y_,)|

- Po(X;=1|X_;)—Po(Yi=1|Y_
max [Po(X; =1 o(Yi=1]Y_)

:£$ﬂ|g®ﬂﬂ §i,jXj),b) — g (exp (=& ;Y;),0)|
ax lexp (=&;,; X;) — exp (=&,;Y;)[b
X.YeN; (1+bexp (—=&,;X;)) (1 +brexp (—=&,;Y))

e () -1
X.YeN; (1+bexp (&) (1+0b)

Then following the Lemma 15 in Mitliagkas and Mackey|[2017]], we have

lexp (=&i,;) — 1[b
(1+bjexp(=&i;)) (L+b%)

Ci; <

)

(20)

with b* = max {r, min {s, exp (

A4  Proof of Theorem |

We are interested in concentrating ||6(0)||, around ||Ex_ [0(0) | Xo]||,- To this end, we first consider concentrating
6;(0) around Ex_[6;(0) | %], where j € {1,2,---,m}. Let ¢ defined in Algorithm 2] be given. Then g trials of
Gibbs sampling are run, resulting in {6(1)(0),6;2)(0), e ,6;‘1)(9)}, and {¢§1)(9)7¢;2)(9), - ,wj(-q)(O)} defined
in Sectlon one element for each of the ¢ trials. Since all the trials are independent, 5]@ (0)’s can be considered as

i.i.d. samples with mean Ex_[0;(6) | Xo]. Furthermore, 5]@ (0) = V,logPg(x,) € [—1,1] when 9(x) € {0,1}"
forall x € {0,1}”. Let 8; > 0 be given; we define the adversarial event:

1 q

El(eg) = | 220,"(6) — Ex.[5;(6) | %o]| >, @
i=1
with j € {1,2,--- ,m}.
. ()
Define another random variable Z; %j(s) with samples Z](Z) = w and the sample variance
Vs, Vi,
Vz, = 5= ="

Considering Z € [0, 1], we can apply Theorem 4 in|Maurer and Pontil| [2009] and achieve

q
S 20— Bk 175 | %]

€.

[2Vz, 1n2/ﬁ] 7ln2/6j IV IHZ/BJ 71n2/ﬂj

where




That is to say

Now, forall j € {1,2,--- ,m}, we would like = >, 6§i) (0) to be close to Ex_[0;(0) | Xo]. i.e.,

§€j.

51(8) — Ex, [6,(8) | %o]

=1

Q|

This concentrated event will occur with probability:
1-P(Ej(g)) > 1-P (E(e;)) = 1—28;.

When all the concentrated events occur for each 7,

16(0)[l; — B, [6(0) [ Xo]ll, <[16(8) — Ex, [8(6) | Xo]ll, = 525“)(0) — Ex.[6(8) | %o]

2

Therefore,

16(O)]l; < Ex.[6(6) | x0lll, +

Z?L:l 6]2‘

4m

<2vym |9 (B7) +

That is to say, we can conclude that (I3)) holds provided that all the concentrated events occur. Thus, the probability
that (I3) holds follows the inequality below:

mooe2 m
p (100, <2vim (987 4| =29 ) 1P (U B | 21 P () 212305,

4m

A.5 Proof of Theorem[3

We consider the probability that the achieved objective function value decreases in the k'” iteration provided that the
criterion [TAY-CRITERION]is satisfied:

1
P (a(6%) < g(6) | 217 (B) < |Ga(6“) )
Since [|§(8%)) |2 < 1|Go(6™) ]| provided in Theoremis a sufficient condition for g(@*+1)) < g(8™*)), we have:
P (al6%) < g(6) | 219 (B) < |Gu(6“ )l
1 1

= (18692 < 1G4 (62 |2V (B7) < 31Ga (0]l

=1-P([6(6® H1Ga(0®) ]2 | 20m% (BT) < £[|Ga(6%

=1 P ([8(6%) 2 > S1Ga(6®) > | 20/m4 (BT) < L |Ga(0D)]

21 (186 ~ 185, 606) | Kall, > 51G (O] — 2079 (B7) | 217 (B) < 5 |Ga(6®)l



S <E§?(2\}T—n|Ga(9(k))||2 —29(B") | 2/m¥ (B") < ;HGa(@(k))z) ,

where EY (ﬁ“Ga(e(mﬂb — Qg(BT)) is defined in and in the 4" line we apply . As ¢ approaches
infinity, by the weak law of large numbers, we have
1
i 7 (—— F)ly — T =
tin P (B2 (= Ga 0™ - 2087 ) ) =0,

Then,

q— o0

i P (4(6+) < 5(61) | 2179 (B7) < 511G0%)2

1 i a1 N - el RS
>1 th&jE_lP<Ej(2ﬁ|Ga(e )2 = 2¢(B")) | 2v/m# (B) < 5[ Ga(0 )2) 1

A.6  Proof of Theorem

According to Theorem 2} we only need to show

lim P (g(6+1) < g(6®)) =1,

q—00
fork=1,2,--- ,kx— 1.
By a union bound, the following inequality is true:

k—1

lim P (g(0%+D) < g(6*)) <1- 3 1im P (4(6%+V) > g(6™)) .
q—00
k=1

q—o0

Notice that, following TAY, we always have:

1
P (2\/%{4(37) < 2||Ga(t9<’“))lz> =1,
suggesting

lim P (9(0%*D) > g(6®)) = 1im P (g<o<k“>> > g(6W) |2¢/m% (B7) < §||Ga<e<’“)>||2) 0,

q—r00 q—ro0
where the equality is due to Theorem 5]
Finally, with Theorem [2] we can finish the proof.
B Experiments

B.1 Comparison with SPG-based Methods

In this section, we consider the effect of the regularization parameter A. Specifically, we apply the methods mentioned
the Section [7.1] with different As. The results are reported in Figure [d]and Figure
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Figure 4: Area under curve (AUC) and the steps of Gibbs sampling (7) for the structure learning of a 10-node network

with different \’s.
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Figure 5: Area under curve (AUC) and the steps of Gibbs sampling (7) for the structure learning of a 20-node network
with different \’s.



B.2 Comparison with the Pseudo-likelihood Method

We compare TYA with the pseudo-likelihood method (Pseudo) under the same parameter configuration introduced in
Section[7.1] Note that the two methods achieve a comparable performance: Pseudo is slightly better with 10 nodes and
TAY outperforms a little with 20 nodes. This is consistent with the theoretical result that the two inductive principles
are both sparsistent.
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Figure 6: Area under curve (AUC) and for the structure learning of a 20-node network.



