
Supplements

A Proofs

A.1 Proof of Theorem 1

We first introduce the following technical lemma.

Lemma 3. Let g(θ), f(θ), and h(θ) be defined as in Section 2.1; hence f(θ) is convex and differentiable, and ∇f(θ) is Lipschitz
continuous with Lipschitz constant L. Let α ≤ 1/L. LetGα(θ) and ∆f(θ) be defined as in Section (2.2). Then for all θ1 and θ2,
the following inequality holds:

g(θ†1) ≤ g(θ2) +G>α (θ1)(θ1 − θ2) + (∇f(θ1)−∆f(θ1))>(θ†1 − θ2)− α

2
‖Gα(θ1)‖22 , (16)

where θ†1 = θ1 − αGα(θ1).

Proof. The proof is based on the convergence analysis of the standard proximal gradient method [Vandenberghe, 2016]. f(θ) is
a convex differentiable function whose gradient is Lipschitz continuous with Lipschitz constant L. By the quadratic bound of the
Lipschitz property:

f(θ†1) ≤ f(θ1)− α∇>f(θ1)Gα(θ1) +
α2L

2
‖Gα(θ1)‖22 .

With α ≤ 1/L, and adding h(θ†1) on both sides of the quadratic bound, we have an upper bound for g(θ†1):

g(θ†1) ≤ f(θ1)− α∇>f(θ1)Gα(θ1) +
α

2
‖Gα(θ1)‖22 + h(θ†1).

By convexity of f(θ) and h(θ), we have:

f(θ1) ≤ f(θ2) + ∇>f(θ1)(θ1 − θ2),

h(θ†1) ≤ h(θ2) + (Gα(θ1)−∆f(θ1))>(θ+1 − θ2),

which can be used to further upper bound g(θ†1), and results in (16). Note that we have used the fact that Gα(θ1) −∆f(θ1) is a
subgradient of h(θ†1) in the last inequality.

With Lemma 3, we are now able to prove Theorem 1. In Lemma 3, let θ1 = θ2 = θ(k). Then by (8), θ†1 = θ(k+1). The inequality
in (16) can then be simplified as:

g(θ(k+1))− g(θ(k)) ≤ αδ(θ(k))>Gα(θ(k))− α

2
‖Gα(θ(k))‖22.

By the Cauchy-Schwarz inequality and the sufficient condition that ‖δ(θ(k))‖2 < 1
2
‖Gα(θ(k))‖2, we can further simplify the

inequality and conclude g(θ(k+1)) < g(θ(k)).

A.2 Proof of Theorem 2

To prove Theorem 2, we first review Proposition 1 in Schmidt et al. [2011]:

Theorem 7 (Convergence on Average, Schmidt et al. [2011]). Let K = (θ(0),θ(1),θ(2), · · · ,θ(κ)) be the iterates generated by
Algorithm 3, then

g

(
1

κ

κ∑
k=1

θ(k)
)
− g(θ̂) ≤ L

2κ

(
‖θ(0) − θ̂‖2 +

2

L

κ∑
k=1

‖δ(θ(k))‖2

)2

.

Furthermore, according to the assumption that g(θ(k+1)) ≤ g(θ(k)) with k ∈ {1, 2, · · · , κ}, we have:

g
(

1
κ

∑κ
k=1 θ

(k)
)
≥ g(θ(κ)). Therefore,

g(θ(κ))− g(θ̂) ≤ L

2κ

(
‖θ(0) − θ̂‖2 +

2

L

κ∑
k=1

‖δ(θ(k))‖2

)2

.



A.3 Proof of Theorem 3

A.3.1 Proof of Lemma 1

The rationale behind our proof follow that of Bengio and Delalleau [2009] and Fischer and Igel [2011].

Let x̃0 ∈ {0, 1}p be an initialization of the Gibbs sampling algorithm. Let θ be the parameterization from which the Gibbs sampling
algorithm generates new samples. A Gibbs-τ algorithm hence uses the τ th sample , x̃τ , generated from the chain to approximate
the gradient. Since there is only one Markov chain in total, we have S = {x̃τ}. The gradient approximation of Gibbs-τ is hence
given by:

∆f(θ) = ψ(x̃τ )− EXψ(x). (17)

The actual gradient, ∇f(θ), is given in (3). Therefore, the difference between the approximation and the actual gradient is

δ(θ) = ∆f(θ)−∇f(θ) = ψ(x̃τ )− Eθψ(x) = ∇ log Pθ(x̃τ ).

We rewrite
Pτ (x | x̃0) = P(X̃τ = x | x̃0) = Pθ(x) + ετ (x),

where ετ (x) is the difference between Pτ (x | x̃0) and Pθ(x). Consider the expectation of the jth component of δ(θ), δj(θ),
where j ∈ {1, 2, · · · ,m}, after running Gibbs-τ that is initialized by x̃0:

Ex̃τ [δj(θ) | x̃0] =
∑

x∈{0,1}p
Pτ (x | x̃0)δj(θ) =

∑
x∈{0,1}p

(Pθ(x) + ετ (x))δj(θ)

=
∑

x∈{0,1}p
ετ (x)δi(θ) =

∑
x∈{0,1}p

(Pτ (x | x0)− Pθ(x))δj(θ)

=
∑

x∈{0,1}p
(Pτ (x | x0)− Pθ(x))∇j log Pθ(x̃τ ),

(18)

where we have used the fact that
∑

x∈{0,1}p Pθ(x)∇j log Pθ(x) = 0, and ∇j log Pθ(x) represents the jth component of
∇ log Pθ(x̃τ ), with j ∈ {1, 2, · · · ,m}.

Therefore, from (18),

|Ex̃τ [δj(θ) | x̃0]| ≤
∑

x∈{0,1}p
|Pτ (x | x0)− Pθ(x)| · |∇j log Pθ(x̃τ )|

≤
∑

x∈{0,1}p
|Pτ (x | x0)− Pθ(x)| = 2 ‖Pτ (x | x̃0)− Pθ(x)‖TV ,

(19)

where we have used the fact that |∇j log Pθ(x̃τ )| ≤ 1 when ψ(x) ∈ {0, 1}m, for all x ∈ {0, 1}p.

Therefore, by (19),

‖Ex̃τ [δ(θ) | x̃0]‖2 =

√√√√ m∑
j=1

|Ex̃τ [δj(θ) | x̃0]|2 ≤
√
m× (2 ‖Pτ (x | x0)− Pθ(x)‖TV)2

=2
√
m ‖Pτ (x | x0)− Pθ(x)‖TV .

A.3.2 Proof of Lemma 2

Let j 6= i be given. With ξij = θmin{i,j},max{i,j}, consider

Pθ(Xi = 1 | X−i) =
Pθ(Xi = 1,X−i)

Pθ(Xi = 0,X−i) + Pθ(Xi = 1,X−i)

=
1

1 + exp
(
−θii −

∑
k 6=i ξi,kXk

)
=

1

1 + exp
(
−θii −

∑
k 6=i,k 6=j ξi,kXk

)
exp (−ξi,jXj)

=g (exp (−ξi,jXj) , b1) ,



where

b = exp

−θii − ∑
k 6=i,k 6=j

ξi,kXk

 ∈ [r, s],

with

r = exp

−θii − ∑
k 6=i,k 6=j

ξi,k max {sgn(ξi,k), 0}

 , s = exp

−θii − ∑
k 6=i,k 6=j

ξi,k max {−sgn(ξi,k), 0}

 .

Therefore,

Cij = max
X,Y∈Nj

1

2
|Pθ(Xi = 1 | X−i)− Pθ(Yi = 1 | Y−i)|+

1

2
|Pθ(Xi = 0 | X−i)− Pθ(Yi = 0 | Y−i)|

= max
X,Y∈Nj

|Pθ(Xi = 1 | X−i)− Pθ(Yi = 1 | Y−i)|

= max
X,Y∈Nj

|g (exp (−ξi,jXj) , b)− g (exp (−ξi,jYj) , b)|

= max
X,Y∈Nj

|exp (−ξi,jXj)− exp (−ξi,jYj)|b
(1 + b exp (−ξi,jXj)) (1 + b1 exp (−ξi,jYj))

= max
X,Y∈Nj

|exp (−ξi,j)− 1|b
(1 + b exp (−ξi,j)) (1 + b)

.

Then following the Lemma 15 in Mitliagkas and Mackey [2017], we have

Cij ≤
|exp (−ξi,j)− 1|b∗

(1 + b∗1 exp (−ξi,j)) (1 + b∗)
, (20)

with b∗ = max
{
r,min

{
s, exp

(
ξi,j
2

)}}
.

A.4 Proof of Theorem 4

We are interested in concentrating ‖δ(θ)‖2 around ‖Ex̃τ [δ(θ) | x̃0]‖2. To this end, we first consider concentrating
δj(θ) around Ex̃τ [δj(θ) | x̃0], where j ∈ {1, 2, · · · ,m}. Let q defined in Algorithm 2 be given. Then q trials of

Gibbs sampling are run, resulting in
{
δ
(1)
j (θ), δ

(2)
j (θ), · · · , δ(q)j (θ)

}
, and

{
ψ
(1)
j (θ), ψ

(2)
j (θ), · · · , ψ(q)

j (θ)
}

defined

in Section 4.2, one element for each of the q trials. Since all the trials are independent, δ(i)j (θ)’s can be considered as

i.i.d. samples with mean Ex̃τ [δj(θ) | x̃0]. Furthermore, δ(i)j (θ) = ∇j log Pθ(x̃τ ) ∈ [−1, 1] when ψ(x) ∈ {0, 1}m,
for all x ∈ {0, 1}p. Let βj > 0 be given; we define the adversarial event:

Eqj (εj) =

∣∣∣∣∣1q
q∑
i=1

δ
(i)
j (θ)− Ex̃τ [δj(θ) | x̃0]

∣∣∣∣∣ > εj , (21)

with j ∈ {1, 2, · · · ,m}.

Define another random variable Zj =
1+δj(θ)

2 with samples Z
(i)
j =

1+δ
(i)
j (θ)

2 and the sample variance

VZj =
Vδj
4 =

Vψj
4 .

Considering Z ∈ [0, 1], we can apply Theorem 4 in Maurer and Pontil [2009] and achieve

P

(∣∣∣∣∣1q
q∑
i=1

Z
(i)
j − Ex̃τ [Zj | x̃0]

∣∣∣∣∣ > εj
2

)
≤ 2βj ,

where

εj
2

=

√
2VZj ln 2/βj

q
+

7 ln 2/βj
3(p− 1)

=

√
Vψj ln 2/βj

2q
+

7 ln 2/βj
3(p− 1)

.



That is to say
P
(
Eqj (εj)

)
≤ 2βj .

Now, for all j ∈ {1, 2, · · · ,m}, we would like 1
m

∑m
i=1 δ

(i)
j (θ) to be close to Ex̃τ [δj(θ) | x̃0]. i.e.,∣∣∣∣∣1q

q∑
i=1

δ
(i)
j (θ)− Ex̃τ [δj(θ) | x̃0]

∣∣∣∣∣ ≤ εj .
This concentrated event will occur with probability:

1− P (Ej(εj)) ≥ 1− P
(
Eqj (εj)

)
≥ 1− 2βj .

When all the concentrated events occur for each j,

‖δ(θ)‖2 − ‖Ex̃τ [δ(θ) | x̃0]‖2 ≤‖δ(θ)− Ex̃τ [δ(θ) | x̃0]‖2 =

∥∥∥∥∥1q
q∑
i=1

δ(i)(θ)− Ex̃τ [δ(θ) | x̃0]

∥∥∥∥∥
2

=

√√√√ m∑
j=1

(
1

q

q∑
i=1

δ
(i)
j (θ)− Ex̃τ [δj(θ) | x̃0]

)2

≤

√√√√ m∑
j=1

ε2j .

Therefore,

‖δ(θ)‖2 ≤ ‖Ex̃τ [δ(θ) | x̃0]‖2 +

√√√√ m∑
j=1

ε2j ≤ 2
√
m ‖Pτ (x | x̃0)− Pθ(x)‖TV +

√√√√ m∑
j=1

ε2j

≤ 2
√
m

G (Bτ ) +

√∑m
j=1 ε

2
j

4m

 .

That is to say, we can conclude that (13) holds provided that all the concentrated events occur. Thus, the probability
that (13) holds follows the inequality below:

P

‖δ(θ)‖2 ≤ 2
√
m

G (Bτ ) +

√∑m
j=1 ε

2
j

4m

 ≥1− P

 m⋃
j=1

Ej(εj)

 ≥ 1−
m∑
j=1

P
(
Eqj (εj)

)
≥ 1− 2

m∑
j=1

βj .

A.5 Proof of Theorem 5

We consider the probability that the achieved objective function value decreases in the kth iteration provided that the
criterion TAY-CRITERION is satisfied:

P

(
g(θ(k+1)) < g(θ(k)) | 2

√
mG (Bτ ) <

1

2
‖Gα(θ

(k))‖2
)
.

Since ‖δ(θ(k))‖2 ≤ 1
2‖Gα(θ

(k))‖2 provided in Theorem 1 is a sufficient condition for g(θ(k+1)) ≤ g(θ(k)), we have:

P

(
g(θ(k+1)) ≤ g(θ(k)) | 2

√
mG (Bτ ) <

1

2
‖Gα(θ

(k))‖2
)

≥P
(
‖δ(θ(k))‖2 ≤

1

2
‖Gα(θ

(k))‖2 | 2
√
mG (Bτ ) <

1

2
‖Gα(θ

(k))‖2
)

=1− P

(
‖δ(θ(k))‖2 >

1

2
‖Gα(θ

(k))‖2 | 2
√
mG (Bτ ) <

1

2
‖Gα(θ

(k))‖2
)

≥1− P

(
‖δ(θ(k))‖2 − ‖Ex̃τ [δ(θ) | x̃0]‖2 >

1

2
‖Gα(θ

(k))‖2 − 2
√
mG (Bτ ) | 2

√
mG (Bτ ) <

1

2
‖Gα(θ

(k))‖2
)



≥1−
m∑
j=1

P

(
Eqj (

1

2
√
m
‖Gα(θ

(k))‖2 − 2G (Bτ )) | 2
√
mG (Bτ ) <

1

2
‖Gα(θ

(k))‖2
)
,

where Eqj
(

1
2
√
m
‖Gα(θ

(k))‖2 − 2G (Bτ )
)

is defined in (21) and in the 4th line we apply (12). As q approaches
infinity, by the weak law of large numbers, we have

lim
q→∞

P

(
Eqj

(
(

1

2
√
m
‖Gα(θ

(k))‖2 − 2G (Bτ )

))
= 0.

Then,

lim
q→∞

P

(
g(θ(k+1)) < g(θ(k)) | 2

√
mG (Bτ ) <

1

2
‖Gα(θ

(k))‖2
)

≥1− lim
q→∞

m∑
j=1

P

(
Eqj (

1

2
√
m
‖Gα(θ

(k))‖2 − 2G (Bτ )) | 2
√
mG (Bτ ) <

1

2
‖Gα(θ

(k))‖2
)

= 1.

A.6 Proof of Theorem 6

According to Theorem 2, we only need to show

lim
q→∞

P
(
g(θ(k+1)) ≤ g(θ(k))

)
= 1,

for k = 1, 2, · · · , κ− 1.

By a union bound, the following inequality is true:

lim
q→∞

P
(
g(θ(k+1)) ≤ g(θ(k))

)
≤ 1−

κ−1∑
k=1

lim
q→∞

P
(
g(θ(k+1)) > g(θ(k))

)
.

Notice that, following TAY, we always have:

P

(
2
√
mG (Bτ ) <

1

2
‖Gα(θ

(k))‖2
)

= 1,

suggesting

lim
q→∞

P
(
g(θ(k+1)) > g(θ(k))

)
= lim
q→∞

P

(
g(θ(k+1)) > g(θ(k)) | 2

√
mG (Bτ ) <

1

2
‖Gα(θ

(k))‖2
)

= 0,

where the equality is due to Theorem 5.

Finally, with Theorem 2, we can finish the proof.

B Experiments

B.1 Comparison with SPG-based Methods

In this section, we consider the effect of the regularization parameter λ. Specifically, we apply the methods mentioned
the Section 7.1 with different λs. The results are reported in Figure 4 and Figure 5.
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Figure 4: Area under curve (AUC) and the steps of Gibbs sampling (τ ) for the structure learning of a 10-node network
with different λ’s.
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Figure 5: Area under curve (AUC) and the steps of Gibbs sampling (τ ) for the structure learning of a 20-node network
with different λ’s.



B.2 Comparison with the Pseudo-likelihood Method

We compare TYA with the pseudo-likelihood method (Pseudo) under the same parameter configuration introduced in
Section 7.1. Note that the two methods achieve a comparable performance: Pseudo is slightly better with 10 nodes and
TAY outperforms a little with 20 nodes. This is consistent with the theoretical result that the two inductive principles
are both sparsistent.
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Figure 6: Area under curve (AUC) and for the structure learning of a 20-node network.


