
A Motivating Examples

Our settings can be used to model many real-world opti-
mization problems. In this section, we expand on some
example real-world problems that fall into our frame-
work:

(i) A company who wants to decide a production plan
to maximize profit faces a linear program. But when
entering a new market, the company may not ini-
tially know the average unit price ci for their dif-
ferent products in this market. Sampling ci corre-
sponds to surveying a consumer on his willingness
to buy product i.

(ii) A delivery company who wants to plan driver routes
may not know the average traffic/congestion of road
segments. Each segment e (an edge in the graph)
has a true average travel time be, but any given day it
is be + noise. One can formulate shortest paths as an
LP where b is the vector of edge lengths. Sampling
be corresponds to sending an observer to the road
segment e to observe how long it takes to traverse
on a given day.

(iii) A ride sharing company (e.g. Uber) wants to de-
cide a set of prices for rides request but it may not
know customers’ likelihood of accepting the prices
ci. Sampling ci in this setting corresponds to post-
ing different prices to collect information.

(iv) For the purpose of recommending the best route in
real time, a navigation App, e.g., Waze9, may want
to collect traffic information or route information
from distributed driver via their App.

B Change of Distribution Lemma

Some of our lower bound proofs are based on the work
Chen et al. [2017]. For self-containedness, we restate
some of the lemmas in Chen et al. [2017].

A key element to derive the lower bounds is the Change
of Distribution lemma, which was first formulated in
Kaufmann et al. [2016] to study best arm identification
problem in multi-armed bandit model. The lemma pro-
vides a general relation between the expected number
of draws and Kullback-Leibler divergences of the arms
distributions. The core elements of the model that the
lemma can be applied to are almost the same as the clas-
sical bandit model. We will state it here and explain the
applicability of our setting. In the bandit model, there
are n arms, with each of them being characterized by
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an unknown distribution νi, i = 1, 2, ..., n. The bandit
model consists of a sequential strategy that selects an
arm at at time t. Upon selection, arm at reveals a re-
ward zt generated from its corresponding distribution.
The rewards for each arm form an i.i.d. sequence. The
selection strategy/algorithm invokes a stopping time T
when the algorithm will terminate and output a solution.
To present the lemma, we define filtration (Ft)t≥0 with
Ft = σ(a1, z1, . . . , at, zt).

If we consider a LP instance I with unknown parame-
ters d as a bandit model, an unknown parameter di will
correspond to an arm a in the Lemma B.2, and thus νa is
just the Gaussian distribution with mean di and variance
1 (both being unknown). Each step, we select one co-
efficient to sample with. Then we will be able to safely
apply the Change of Distribution lemma to our setting.
The lemma can be stated as follows in our setting of the
problem.
Lemma B.1. Let A be a (δ, ε1, ε2)-correct algorithm
with δ ∈ (0, 0.1). Let I, I ′ be two LP instances that
are equal on all known parameters, and let d, d′ be their
respective vectors of unknown parameters. Suppose each
instance has samples distributed Gaussian with variance
1. SupposeOPT (I; ε1, ε2) andOPT (I ′; ε1, ε2) are dis-
joint. Then letting τi be the number of samples A draws
for parameter di on input I, we have

E
∑
i

τi(di − d′i)2 ≥ 0.8 ln
1

δ
.

Proof. We use a result on bandit algorithms by Kauf-
mann et al. [2016], which is restated as follows.

Lemma B.2 (Kaufmann et al. [2016]). Let ν and ν′ be
two bandit models with n arms such that for all arm a,
the distribution νa and ν′a are mutually absolutely con-
tinuous. For any almost-surely finite stopping time T
with respect to (Ft),
n∑
i=1

Eν [Na(T )]KL(νa, ν
′
a) ≥ sup

E∈FT

d(Pr
ν

(E),Pr
ν′

(E)),

where d(x, y) = x ln(x/y) + (1 −
x) ln ((1− x)/(1− y)) is the binary relative entropy
function, Na(T ) is the number of samples drawn on arm
a before time T and KL(νa, νa′) is the KL-divergence
between distribution νa and νa′ .

Let I and I ′ be the two bandit models in Lemma B.2.
Applying above lemma we have

n∑
i=1

EA,I [τi]KL(N (di, 1),N (d′i, 1))

≥d( Pr
A,I

(E), Pr
A,I′

(E)), for all E ∈ FT ,



where N (µ, σ) is the Gaussian distribution with mean µ
and variance σ, PrA,I [E ] is the probability of event E
when algorithm A is given input I, and EA,I [X] is the
expected value of random variable X when algorithm A
is given input I. According to the result in Duchi, the
KL-divergence for two Gaussian distribution with mean
µ1, µ2 and variance σ1, σ2 is equal to

log
σ2

σ1
+
σ2

1 + (µ1 − µ2)2

2σ2
2

.

Thus we have KL(N (di, 1),N (d′i, 1)) = 1
2 (di − d′i)2.

We further define event E to be the event that algorithm
A finally outputs a solution in set OPT (I; ε1, ε2), then
since A is (δ, ε1, ε2)-correct and OPT (I; ε1, ε2) is dis-
joint from OPT (I ′; ε1, ε2), we have PrA,I(E) ≥ 1 − δ
and PrA,I′(E) ≤ δ. Therefore

n∑
i=1

EA,I [τi]
1

2
(di − d′i)2 ≥ d(1− δ, δ) ≥ 0.4 ln δ−1.

The last step uses the fact that for all 0 < δ < 0.1,

d(1−δ, δ) = (1−2δ) ln
1− δ
δ
≥ 0.8 ln

1√
δ

= 0.4 ln δ−1.

C The Unknown Constraints Case

C.1 Proof for Theorem 4.1

Theorem 4.1 (Lower bound for unknown b). Suppose
we have a (δ, ε1, ε2)-correct algorithm A where δ ∈
(0, 0.1), ε1 > 0, ε2 > 0. Then for any n > 0, there
exists infinitely many instances of the AIALO problem
with unknown-b with n variables with objective function
‖c‖∞ = 1 such that A must draw at least

Ω
(
n ln(1/δ) ·max{ε1, ε2}−2

)
samples in expectation on each of them.

Let A be a (δ, ε1, ε2)-correct algorithm. For a positive
integer n, consider the following LP instance I with n
variables and n constraints,

max x1

s.t. x1 ≤ C,
x1 + xi ≤ C, ∀2 ≤ i ≤ n,
x ≥ 0.

Clearly the optimal solution is x∗1 = C and x∗i = 0 for
i > 1. Every constraint is a binding constraint. Now

we prove that for any k ∈ [n], algorithm A should take
at least Ω

(
ln(1/δ) ·max{ε1, ε2}−2

)
for the kth con-

straint. We construct a new LP I ′ by subtracting the
right-hand side of kth constraint by 2(ε1 + ε2). Then
OPT (I; ε1, ε2) and OPT (I ′; ε1, ε2) must be disjoint,
since for any x ∈ OPT (I ′; ε1, ε2), x will not violate the
kth constraint of I ′ by more than ε2,

x1 ≤ C − 2(ε1 + ε2) + ε2 < C − 2ε1,

which means that x /∈ OPT (I; ε1, ε2). According to
Lemma B.1,

E[τk] · 4(ε1 + ε2)2 ≥ 0.8 ln(1/δ)

And since 2 max{ε1, ε2} ≥ ε1 + ε2,

E[τk] = Ω(max{ε1, ε2}−2 · ln(1/δ)).

C.2 Proof for Theorem 4.2

Recall that our algorithm and the sample complexity the-
orem works as follows:

Algorithm 4 Modified ellipsoid algorithm

Let E(0) be the initial ellipsoid containing the feasible
region.
Draw one sample for each bi, i ∈ [m].
Let k = 0 and t = m.
Let Ti(t) = 1 for all i.
while stopping criterion is not met10 do

Let x(k) be the center of E(k)

Call UCB method to get constraint i or “feasible”
if x(k) is feasible then

Let x ← x(k) if x is not initialized or cTx(k) >
cTx.
y← −c

else
y← AT

i

end if
Let E(k+1) be the minimal ellipsoid that contains
E(k) ∩ {t : yT t ≤ yTx(k)}
Let k ← k + 1

end while
Output x or “failure” if it was never set.

Theorem 4.2 (Ellipsoid-UCB algorithm). The Ellipsoid-
UCB algorithm is (δ, ε1, ε2)-correct and with probability
1− δ, draws at most the following number of samples:

O

(
m∑
i=1

σ2
i

∆2
i,ε2/2

log
m

δ
+

m∑
i=1

σ2
i

∆2
i,ε2/2

log log

(
σ2
i

∆2
i,ε2/2

))
.

10Our stopping criterion is exactly the same as in the stan-
dard ellipsoid algorithm, for which there are a variety of pos-
sible criteria that work. In particular, one is

√
cTP−1c ≤

min{ε1, ε2}, where P is the matrix corresponding to ellipsoid
E(k) as discussed above.



Algorithm 5 UCB-method

Input x(k)

Set δ′ =
(

δ
20m

)2/3
loop

1. Let j be the constraint with the largest index,

j = arg max
i

Aix
(k) − b̂j,Tj(t) + Ui(Ti(t)),

where Ui(s) = 3

√
2σ2

i log(log(3s/2)/δ′)

s and b̂j,Tj(t)

as in Definition 4.1.
2. If Ajx

(k) − b̂j,Tj(t) − Uj(Tj(t)) > 0 return j.
3. If Ajx

(k)− b̂j,Tj(t) +Uj(Tj(t)) < 0 return “fea-
sible”.
4. If Uj(Ti(t)) < ε2/2 return “feasible”.
5. Let t← t+ 1
6. Draw a sample of bj .
7. Let Tj(t) = Tj(t− 1) + 1.
8. Let Ti(t) = Ti(t− 1) for all i 6= j.

end loop

Specifically, the number of samples used for bi is at most
σ2
i

∆2
i,ε2/2

(
log(m/δ) + log log(σ2

i /∆
2
i,ε2/2

)
)

.

Our analysis is inspired by the techniques used in
Jamieson et al. [2014]. The following lemma is the same
as Lemma 3 in Jamieson et al. [2014], and is simplified
by setting ε = 1/2. We choose 1/2 only for simplicity. It
will not change our result asymptotically. The constant
in this lemma can be optimized by selecting parameters
carefully.

Lemma C.1. Let X1, X2, . . . be i.i.d. sub-Gaussian
random variables with scale parameter σ and mean
µ. We has probability at least 1 − 20 · δ3/2 for all
t ≥ 1,

∣∣∣ 1t ∑t
s=1Xs − µ

∣∣∣ ≤ L(t, δ), where L(t, δ) =

3
√

2σ2 log(log(3t/2)/δ)
t .

Define event A to be the event that
∣∣∣̂bi,t − bi∣∣∣ ≤ Ui(t)

for all t ≥ 0 and i ∈ [m]. Since our definition of Ui(t) is
the same as L(t, (δ/20m)2/3) in Lemma C.1 with scale
parameter σi, the probability that eventA holds is at least
1− δ according to union bound.

We prove the correctness and the sample number of the
algorithm conditioning on that A holds.

Correctness: We first prove that the output of our algo-
rithm satisfies relaxed feasibility and relaxed optimality
when A holds. If our UCB-method always gives cor-
rect answer, the ellipsoid algorithm will be able to find
an ε1-suboptimal solution. So we only need to prove the

correctness of the UCB-method.

• When UCB method returns a violated constraint j
in line 2, it is indeed a violated one: since |̂bj,Tj(t)−
bj | ≤ Uj(Tj(t)),

Ajxk − bj
≥Ajxk − b̂j,Tj(t) − Uj(Tj(t))
>0.

• When it returns “feasible” in line 3, no constraint is
violated:

Aixk − bi
≤Aixk − b̂i,Ti(t) + Ui(Ti(t))

≤Ajxk − b̂j,Tj(t) + Uj(Tj(t))

<0, ∀i ∈ [m].

• When it returns ”feasible” in line 4, no constraint is
violated more than ε2:

Aixk − bi
≤Aixk − b̂i,Ti(t) + Ui(Ti(t))

≤Ajxk − b̂j,Tj(t) + Uj(Tj(t))

≤Ajxk − b̂j,Tj(t) − Uj(Tj(t)) + 2Uj(Tj(t))

≤0 + ε2, ∀i ∈ [m].

Therefore the relaxed feasibility should be satisfied and
the relaxed optimality is guaranteed by ellipsoid algo-
rithm.

Number of samples: We bound the number of sam-
ples used on each constraint separately. The number of
samples used on constraint i can be stated as the maxi-
mum Ti(t) where t is a mini-stage in which a sample of
bi is drawn. We bound Ti(t) by showing that Ui(Ti(t))
should be larger than a certain value if bi is sampled at
mini-stage t. This immediately give us an upper bound
of Ti(t) since Ui(t) is a decreasing function of t. Sup-
pose bi is sampled at mini-stage t in ellipsoid iteration
k. Let i∗ be the constraint with largest violation. Condi-
tioning onA holds, the fact that constraint i have a larger
index than i∗ gives

Vi(k) + 2Ui(Ti(t))

≥Aixk − b̂i,Ti(t) + Ui(Ti(t))

≥Ai∗xk − b̂i∗,Ti∗ (t) + Ui∗(Ti∗(t))

≥Vi∗(k). (6)

which implies 2Ui(Ti(t)) ≥ V ∗(k) − Vi(k). Now look
at line 2 in UCB-method. If a sample of bi is drawn, we



should not quit in this step. So if Vi(k) > 0, we must
have

Vi(k)− 2Ui(Ti(t))

≤Aixk − b̂i,Ti(t) − Ui(Ti(t))
≤0. (7)

Similarly, because of line 3 in UCB-method, if Vi(k) ≤
0, it should be satisfied that

Vi(k) + 2Ui(Ti(t))

≥Aixk − b̂i,Ti(t) + Ui(Ti(t))

≥0. (8)

Putting inequality (6), (7) and (8) and Ui(Ti(t)) ≥
ε2/2 together, we get the conclusion that 2Ui(Ti(t)) ≥
max{V ∗(k) − Vi(k), |Vi(k)|, ε2/2} = gapi,ε2/2(k)
should be satisfied if we draw a sample of bi at mini-
stage t in ellipsoid iteration k.

Then we do some calculation,

2Ui(Ti(t)) ≥ gapi,ε2/2(k)

⇒ 6

√
2σ2

i log(log(3Ti(t)/2)/δ′

Ti(t)
≥ gapi,ε2/2(k)

⇒ log(log(3Ti(t)/2)/δ′)

Ti(t)
≥
gap2

i,ε2/2
(k)

72σ2
i

⇒ Ti(t) ≤
108σ2

i

gap2
i,ε2/2

(k)
log

(
20m

δ

)

+
72σ2

i

gap2
i,ε2/2

(k)
log log

(
108σ2

i

gap2
i,ε2/2

(k)δ′

)
. (9)

In the last step, we use the fact that for 0 < δ ≤ 1, c > 0,

1

t
· log

(
log(3t/2)

δ

)
≥ c

⇒ t ≤ 1

c
log

(
2 log(3/(2cδ))

δ

)
.

Take maximum of (9) over all k and according to the
definition of ∆i,ε2/2,

Ti(t) ≤
108σ2

i

∆2
i,ε2/2

log

(
20m

δ

)
+

72σ2
i

∆2
i,ε2/2

log log

(
108σ2

i

∆2
i,ε2/2

δ′

)
Therefore the overall number of samples is at most

O

(∑
i

σ2
i

∆2
i,ε2/2

log
m

δ
+
∑
i

σ2
i

∆2
i,ε2/2

log log

(
σ2
i

∆2
i,ε2/2

))
.

D Proofs for the Unknown Objective
Function Case

D.1 Proof for Theorem 5.1

We restate the instance-wise lower bound for unknown
objective function LP problems.

Theorem 5.1 (Instance lower bound). Let I be an in-
stance of AIALO in the unknown-c case. For 0 < δ <
0.1, any δ-correct algorithm A must draw

Ω(Low(I) ln δ−1)

samples in expectation on I.

Let I be a LP instance max{x:Ax≤b} cTx, and A be a
δ-correct algorithm, where 0 < δ < 0.1. Define ti to be
the expected number of samples that algorithm will draw
for ci when the input is I.

We only need to show that 5t/ ln(1/δ) is a feasible solu-
tion of the convex program (3) that computes Low(I).

Consider a constraint in (3)

n∑
i=1

(s
(k)
i − x∗i )2

τi
≤
(
cT (x∗ − s(k))

)2

,

where x∗ is the optimal solution of I and s(k) is a cor-
ner point of the feasible region of I. To prove that
5t/ ln(1/δ) satisfies this constraint, we will construct a
new LP instance I∆ by adding ∆ to the objective func-
tion c, such that s(k) becomes a better solution than x∗.
We construct vector ∆ as follows,

∆i =
D(x∗i − s

(k)
i )

ti
, and D =

−2cT (x∗ − s(k))∑n
i=1

(s
(k)
i −x∗i )2

ti

.

It is not difficult to verify that x∗ is no longer the optimal
solution of I∆:

〈c + ∆,x∗ − s(k)〉
=〈c,x∗ − s(k)〉+ 〈∆,x∗ − s(k)〉
=〈c,x∗ − s(k)〉−

n∑
i=1

2cT (x∗ − s(k))∑n
i=1

(s
(k)
i −x∗i )2

ti

· x
∗
i − s

(k)
i

ti
· (x∗i − s

(k)
i )

=− 〈c,x∗ − s(k)〉
<0.



Then by Lemma B.1,

0.8 ln(1/δ) ≤
n∑
i=1

ti ·∆2
i

=

n∑
i=1

ti ·

(
D(x∗i − s

(k)
i )

ti

)2

=

n∑
i=1

(x∗i − s(k))2

ti
·D2

=

n∑
i=1

(x∗i − s(k))2

ti
·

−2cT (x∗ − s(k))∑n
i=1

(s
(k)
i −x∗i )2

ti

2

= 4 · (cT (x∗ − s(k)))2∑n
i=1

(s
(k)
i −x∗i )2

ti

,

which is equivalent to

n∑
i=1

(s
(k)
i − x∗i )2

5ti/ ln(1/δ)
≤ (cT (x∗ − s(k)))2.

Therefore 5t/ ln(1/δ) is a feasible solution of the convex
program (3), which completes our proof.

D.2 Proof for Theorem 5.2

We prove the worst case lower bound for unknown c
case.

Theorem 5.2 (Worst-case lower bound for unknown c).
Let n be a positive integer and δ ∈ (0, 0.1). For any δ-
correct algorithm A, there exists an infinite sequence of
LP instances with n variables, I1, I2, . . . , such that A
takes

Ω
(
Low(Ik)(ln |S(1)

k |+ ln δ−1)
)

samples in expectation on Ik, where S(1)
k is the set of all

extreme points of the feasible region of Ik, and Low(Ik)
goes to infinity.

The following lemma will be used in the construction of
desired LP instances.

Lemma D.1. Let n be a positive integer. There exists a
constant c, a positive integer l = Ω(n) and z = 2cn sets
W1, . . . ,Wz ⊆ [n] such that

• For all i ∈ [z], we have |Wi| = l = Ω(n).

• For all i 6= j, |Wi ∩Wj | ≤ l/2.

Proof. Define l = n/10. Let each Wi be a uniformly
random subset of [n] with size l. Then it is satisfied that

Pr[|Wi ∩Wj | > l/2] ≤ 2−Ω(n)

for all 1 ≤ i, j ≤ n, i 6= j. So we can choose sufficiently
small c such that

Pr[∃i 6= j, |Wi ∩Wj | > l/2] ≤ z22−Ω(n) < 1,

which implies the existence of a desired sequence of sub-
sets.

Now for any δ-correct algorithm A, we prove the exis-
tence of LP instances I1, I2, . . . , which all have n vari-
ables.

For simplicity, all the linear program instances we con-
struct in this proof share the same feasible region, which
we define as follows. Let W1, . . . ,Wz ⊆ [n] be the se-
quence of subsets in Lemma D.1. For a subset W ⊆ [n],
we define a point pW

pWi =

{
1, if i ∈W ;
0, otherwise.

The feasible region we are going to use throughout this
proof is the convex hull of pW1 , . . . ,pWz .

To find a desired LP instance Ik, we first choose an arbi-
trary constant ∆k. We construct z different LP instances
I∆k,W1 , . . . , I∆k,Wz and show that at least one of them
satisfies the condition in the theorem. Define the objec-
tive function cWj of I∆k,Wj

to be

c
Wj

i =

{
∆k, if i ∈Wj ;
−∆k, otherwise.

Then clearly the optimal solution of I∆k,Wj is point
pWj . We define Pr[A(I∆,Wi) = pWj ] to be the prob-
ability that algorihtm A outputs pWj when the input is
I∆,Wi

. Then we have

Pr[A(I∆,Wi
) = pWi ] ≥ 1− δ,

and ∑
j:j 6=i

Pr[A(I∆,Wi) = pWj ] ≤ δ.

Thus there must exists Wk such that

Pr[A(I∆,Wi
) = pWk ] ≤ 2δ/z.

Let T be the number of samples used by algorithm A
when the input is I∆k,Wk

. Since A is a δ-correct algo-
rithm, Pr[A(I∆,Wk

) = pWk ] ≥ 1 − δ > 0.9. So if we
define event E to be the event that A outputs pWk and
apply Lemma B.2,

E[T ] · (2∆2)

≥d
(
Pr[A(I∆,Wk

)pWk ],Pr[A(I∆,Wi) = pWk ]
)

≥Ω(ln(z/δ)

=Ω(ln z + ln(1/δ)).



Here we use the following property of d(1 − δ, δ) func-
tion: for 0 < δ < 0.1, d(1 − δ, δ) ≥ 0.4 ln(1/δ). So we
get a lower bound for E[T ],

E[T ] ≥ Ω
(
∆−2(ln z + ln(1/δ))

)
.

Meanwhile if we look at the Instance Lower Bound,
Low(I∆,Wk

),

min
τ

n∑
i=1

τi

s.t.

n∑
i=1

(p
Wj

i − pWk
i )2

τi
≤ 〈cWk , (pWk − pWj )〉2,∀j

τi ≥ 0,

It is easy to verify that τi = 8
l∆2 for all i is a feasible so-

lution. So we have Low(I∆,Wk
) = Θ( 8n

l∆2 ) = Θ(∆−2).
Therefore the number of samples that A will use on
I∆,Wk

is Ω
(
Low(I∆,Wk

)(ln z + ln(δ−1))
)

in expecta-
tion.

By simply setting ∆k = 1
k , we will get an infinite se-

quence of LP instances as stated in the theorem.

D.3 Proof for Theorem 5.3

In this section, we prove the sample complexity of our
successive elimination algorithm for unknown c case.

Theorem 5.3 (Sample complexity of Algorithm 3). For
the AIALO with unknown-c problem, Algorithm 3 is δ-
correct and, on instance I, with probability 1− δ draws
at most the following number of samples:

O
(
Low(I) ln ∆−1(ln |S(1)|+ ln δ−1 + ln ln ∆−1)

)
,

where S(1) is the set of all extreme points of the feasible
region and ∆ is the gap in objective value between the
optimal extreme point and the second-best,

∆ = max
x∈S(1)

cTx− max
x∈S(1)\x∗

cTx.

The following lemma will be used in our proof.

Lemma D.2. Given a set of Gaussian arms with unit
variance and mean c1, . . . , cn. Suppose we take τi sam-
ples for arm i. Let Xi be the empirical mean. Then for
an arbitrary vector p,

Pr
[
|pTX− pT c| ≥ ε

]
≤ 2 exp

(
− ε2

2
∑
p2
i /τi

)
Proof. By definition, pTX−pT c follows Gaussian dis-
tribution with mean 0 and variance

∑
i p

2
i /τi.

We define a good event E to be the event that |(x −
y)T (ĉ(r) − c))| ≤ ε(r)/λ for all r and x,y ∈ S(r).
According to Lemma D.2,

Pr[E ] ≥ 1−
∑
r

∑
x∈S(r)

∑
y∈S(r)

2 exp− (ε/λ)2

2
∑

(xi − yi)2/τi
.

Since τ satisfies the constraints in (4),∑
r

∑
x∈S(r)

∑
y∈S(r)

2 exp− (ε/λ)2

2
∑

(xi − yi)2/τi

≤
∑
r

∑
x∈S(r)

∑
y∈S(r)

2 exp
(
− ln(2/δ(r))

)
=
∑
r

∑
x∈S(r)

∑
y∈S(r)

δ(r)

≤δ

Therefore Pr[E ] ≥ 1− δ.

We first prove the correctness of the algorithm condition-
ing on E .
Lemma D.3. When the good event E holds, the optimal
LP solution x∗ = maxAx≤b cTx will not be deleted.

Proof. Suppose to the contrary x∗ is deleted in iteration
r, i.e., x∗ ∈ S(r) but x∗ /∈ S(r+1). Then according
to (5), when the objective function is ĉ(r), x∗ is at least
ε(r)/2− 2ε(r)/λ worse than x(r),

〈x(r) − x∗, ĉ(r)〉 > ε(r)/2 + 2ε(r)/λ.

By the definition of the optimal solution x∗,

〈c,x∗ − x(r)〉 > 0.

Combining the two inequalities will give

〈c− ĉ(r),x∗ − x(r)〉 > ε(r)/2 + 2ε(r)/λ > ε(r)/λ,

contradictory to that event E holds.

We then bound the number of samples conditioning on
E . We first prove the following lemma.
Lemma D.4. When event E holds, all points s in set
S(r+1) satisfies

〈c,x∗ − s〉 < ε(r).

after the rth iteration.

Proof. Suppose when entering the rth iteration, there ex-
ists s ∈ S(r) such that 〈c,x∗ − s〉 > ε(r). Then since E
holds and λ = 10,

〈c,x∗ − s〉 > 〈ĉ(r),x∗ − s〉 − ε(r)/λ

> (1− 1/λ)ε(r)

> ε(r)/2 + 2ε(r)/λ.



By Lemma D.3, we have x∗ ∈ S(r). Therefore s will be
deleted in this iteration.

Now consider a fixed iteration r. Let τ∗ be the opti-
mal solution of the convex program (3) that computes
low(I). Define α = 32λ2 ln(2/δ(r)). We show that t =
ατ∗ is a feasible solution in the convex program (4) that
computes LowAll(S(r), ε(r), δ(r)). For any x,y ∈ S(r),

∑ (xi − yi)2

ti
=

1

α

∑ (xi − yi)2

τ∗i

=
1

α

∑ (xi − x∗i + x∗i − yi)2

τ∗i

≤ 1

α

∑ 2(xi − x∗i )2 + 2(x∗i − yi)2

τ∗i

due to the fact that (a+ b)2 ≤ 2a2 + 2b2 for all a, b ∈ R.

Since τ∗ satisfies the constraints in Low(I) function (3),

1

α

∑ 2(xi − x∗i )2 + 2(x∗i − yi)2

τ∗i

≤ 2

α

(
(cT (x∗ − x))2 + (cT (x∗ − y))2

)
And because of Lemma D.4,

2

α

(
(cT (x∗ − x))2 + (cT (x∗ − y))2

)
≤ 4

α
(ε(r−1))2 =

(ε(r))2

2λ2 ln(2/δ(r))
.

So we have proved that t = ατ∗ is a feasi-
ble solution of the convex program that computes
LowAll(S(r), ε(r), δ(r)). Thus the number of samples
used in iteration r,

∑n
i=1 t

(r)
i , is no more than

n∑
i=1

t
(r)
i ≤

n∑
i=1

ti = α
∑
i

τ∗i

=O(Low(I)(ln |S(r)|+ ln δ−1 + ln r)

Conditioning on E , the algorithm will terminate before
blog(∆−1)c + 1 iterations according to Lemma D.4.
Therefore the total number of samples is

O
(
Low(I) ln ∆−1(ln |S(1)|+ ln δ−1 + ln ln ∆−1)

)
.
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