
SUPPLEMENTARY MATERIAL

A PROOFS

A.1 PROOF OF THEOREM 1

Theorem 1. Consider a random matrix Ω following a
G-Wishart distribution with graph G = (V ,E) as well
as parameters ν and Ψ, i.e., Ω ∼ WG(ν,Ψ). Let Σ =

Ω−1 and Σ̃ be the normalized matrix of Σ, i.e., Σ̃ij =
Σij/

√
ΣiiΣjj . Then, for large ν, we have

Var [Σ̃ij ] ≈
(1− (E [Σ̃ij ])

2)2

ν
,

for off-diagonal elements Σ̃ij whenever (i, j) ∈ E.

Proof. If Ω follows a G-Wishart distribution, i.e., Ω ∼
WG(ν,Ψ), and Σ = Ω−1, then we say that Σ follows a
hyper inverse-Wishart distribution [21], denoted by Σ ∼
HIWG(ν,Ψ).

Lemma 1 (see [22]). For a graph G = (V ,E), assume
Σ ∼ HIWG(ν,Ψ). Then, for any B ⊆ V , we have

ΣBB ∼ HIWGB
(ν,ΨBB) ,

where GB is the subgraph only involving variables in B.

Lemma 2 (see [9]). If Σ follows an inverse-Wishart dis-
tribution, i.e., Σ ∼ IW(ν,Ψ), and Σ̃ = (Σ̃ij) with
Σ̃ij = Σij/

√
ΣiiΣjj , then for each off-diagonal element

Σ̃ij and large ν, we have

Var [Σ̃ij ] ≈
(1− (E [Σ̃ij ])

2)2

ν
.

Suppose Σ ∼ HIWG(ν,Ψ) with a graph G = (V ,E).
According to Lemma 1, for any subset B = {i, j} ⊆ V ,
we have[

Σii Σij
Σji Σjj

]
∼ HIWGB

(
ν,

[
Ψii Ψij

Ψji Ψjj

])
. (8)

If there exists an edge between node i and node j in
graph G, i.e., (i, j) ∈ E, the subgraph GB is a fully
connected graph. Then, the hyper inverse-Wishart distri-
bution in (8) reduces to an inverse-Wishart distribution,
i.e., [

Σii Σij
Σji Σjj

]
∼ IW

(
ν,

[
Ψii Ψij

Ψji Ψjj

])
,

when (i, j) ∈ E.

Let Σ̃ij = Σij/
√

ΣiiΣjj , then according to Lemma 2,
for large ν, we have

Var [Σ̃ij ] ≈
(1− (E [Σ̃ij ])

2)2

ν
,

whenever (i, j) ∈ E in graph G.

A.2 PROOF OF THEOREM 2

Theorem 2 (Consistency of the CFPC algorithm).
Let Yn = (y1, . . . ,yn)T be independent observations
drawn from a Gaussian copula factor model. If 1) the
measurement model per factor is known and pure; and
2) the distribution over factors is faithful to a DAG G,
then

lim
n→∞

P
(
M̂n(G) =M(G)

)
= 1 ,

where M̂n(G) is the output of the CFPC algorithm and
M(G) is the Markov equivalent class of the true under-
lying DAG G.

Proof. If S = ΛCΛT + D is the response vector’s
covariance matrix, then its correlation matrix is S̃ =
V −

1
2SV −

1
2 = V −

1
2 ΛCΛTV −

1
2 + V −

1
2DV −

1
2 =

Λ̃CΛ̃T + D̃, where V is a diagonal matrix containing
the diagonal entries of S. We make use of Theorem 1
from [18] to show the consistency of S̃. Our factor-
analytic prior puts positive probability density almost ev-
erywhere on the set of correlation matrices that have a
k-factor decomposition. Then, by applying Theorem 1
in [18], we obtain the consistency of the posterior distri-
bution on the response vector’s correlation matrix:

lim
n→∞

Π
(
S̃ ∈ V(S̃0)|Zn ∈ D(Yn)

)
= 1 a.s. ∀ V(S̃0),

where D(Yn) is the space restricted by observed data,
and V(S̃0) is a neighborhood of the true parameter S̃0.

From this point on, to simplify notation, we will omit
adding the tilde to refer to the rescaled matrices Σ̃, S̃, Λ̃,
and D̃, since scaling the covariance matrix to a correla-
tion matrix does not change C. Thus, S from now on
refers to the correlation matrix of the response vector.

The Gibbs sampler underlying the CFPC algorithm has
the posterior of Σ as its stationary distribution. Σ con-
tains S, the correlation matrix of the response random
vector, in the upper left block and C in the lower right
block. Here C is the correlation matrix of factors,
which implicitly depends on the Gaussian Copula Fac-
tor Model from Definition 1 of the main paper via the
formula S = ΛCΛT + D. In order to render this de-
composition identifiable, we need to put constraints on
C, Λ, D. Otherwise, we can always replace Λ with
ΛU and C with U−1CU−1, where U is any k × k in-
vertible matrix, to obtain the equivalent decomposition
S = (ΛU)(U−1CU−T )(UTΛT ) + D. However, we
have assumed that Λ follows a particular sparsity struc-
ture in which there is only a single non-zero entry for
each row. This assumption restricts the space of equiva-
lent solutions, since any ΛU has to follow the same spar-
sity structure as Λ. More explicitly, ΛU maintains the



same sparsity pattern if and only if U is a diagonal ma-
trix (Lemma 3).

By decomposing S, we get a class of solutions forC, i.e.,
U−1CU−1, where U can be any invertible diagonal ma-
trix. However, we can show that all the members in this
class encode the same set of conditional independencies
(Lemma 4). Thus, all solutions in this class imply the
same causal structure, which means that we can use any
of these solutions as the input to the PC algorithm.

In order to get a unique solution for C, we impose two
identifying conditions: 1) we restrict C to be a correla-
tion matrix; 2) we force the first non-zero entry in each
column of Λ to be positive. These conditions are suffi-
cient for identifying C uniquely (Lemma 5).

Now, given the consistency of S and the unique smooth
map from S to C, we obtain the consistency of the poste-
rior mean of the parameter C. Finally, given the correct
correlation matrix, the PC algorithm will output the cor-
rect Markov equivalent class [27] with high probability,
that is

lim
n→∞

P
(
M̂n(G) =M(G)

)
= 1 .

Lemma 3. If Λ = (λij) is a p× k factor loading matrix
with only a single non-zero entry for each row, then ΛU
will have the same sparsity pattern if and only if U =
(uij) is diagonal.

Proof. (⇒) We prove the direct statement by contradic-
tion. We assume that U has an off-diagonal entry that
is not equal to zero. We arbitrarily choose that entry to
be urs, r, s ∈ {1, 2, . . . , k}, r 6= s. Due to the partic-
ular sparsity pattern we have chosen for Λ, there exists
q ∈ {1, 2, . . . , p} such that λqr 6= 0 and λqs = 0, i.e.,
the unique factor corresponding to the response Zq is ηr.
However, we have (ΛU)qs = λqrurs 6= 0, which means
(ΛU) has a different sparsity pattern. We have reached a
contradiction, therefore U is diagonal.

(⇐) If U is diagonal, i.e., U = diag (u1, u2, . . . , uk),
then (ΛU)ij = λijuj . This means that (ΛU)ij =
0 ⇐⇒ λijuj = 0 ⇐⇒ λij = 0, so the sparsity
pattern is preserved.

Lemma 4. Consider a random vector η =
(η1, . . . , ηk)T that follows a multivariate nor-
mal distribution with population correlation ma-
trix C. Then, for any invertible diagonal matrix
U = diag (u1, u2, . . . , uk), the matrix C̃ = UCU
encodes the same set of conditional independencies
among η as C.

Proof. Let i, j ∈ {1, . . . , k}, and Q ⊆
{1, . . . , k}/{i, j}. In the Gaussian case, ηi is in-
dependent of ηj given ηQ if and only if the partial
correlation between ηi and ηj given ηQ, denoted by
ρCij|Q, vanishes, i.e.,

ηi ⊥⊥ ηj |ηQ ⇐⇒ ρCij|Q = 0 . (9)

The partial correlation ρCij|Q is uniquely determined by
the correlation matrix C, that is,

ρCij|Q = − Aij√
AiiAjj

, (10)

where A = (C(i,j,Q))
−1 is the inverse of the principal

submatrix of C over {i, j, Q}. Similarly, for the matrix
C̃, we have

ρC̃ij|Q = − Bij√
BiiBjj

, (11)

where

B = (C̃(i,j,Q))
−1

= ((UCU)(i,j,Q))
−1

= (U(i,j,Q)C(i,j,Q)U(i,j,Q))
−1 (since U is diagonal)

= (U(i,j,Q))
−1(C(i,j,Q))

−1(U(i,j,Q))
−1

= (U(i,j,Q))
−1A(U(i,j,Q))

−1 .

Since all the diagonal elements of U are non-zero, we
have

Bij = u−1
i Aiju

−1
j = 0 ⇐⇒ Aij = 0 . (12)

From Equation (10), (11), and (12), we have

ρC̃ij|Q = 0 ⇐⇒ ρCij|Q = 0 . (13)

Therefore, according to Equation (9) and (13), ∀i, j, and
Q, we have

ηi ⊥⊥ ηj |ηQ ⇐⇒ ρCij|Q = 0 ⇐⇒ ρC̃ij|Q = 0 ,

which concludes our proof.

Lemma 5. Given the factor structure defined in Section
3 of the main paper, we can uniquely recover C from
S = ΛCΛT + D if we constrain it to be a correlation
matrix and we force the first element in each column of
Λ to be positive. If a factor η has a single response Z
(reduction to a Gaussian copula model), we set Z = η.

Proof. Here we assume that the model has the stated fac-
tor structure, i.e., that there is some Λ,C, andD such that
S = ΛCΛT +D. We then show that our chosen restric-
tions are sufficient for identification using an argument



similar to that in [2]. The difference is that we only re-
quire C to be identified, while Λ and D may potentially
still be non-identifiable in some situations.

The decomposition S = ΛCΛT +D constitutes a system
of p(p+1)

2 equations:

sii = λ2
if(i) + dii

sij = cf(i)f(j)λif(i)λjf(j) , i < j ,
(14)

where S = (sij),Λ = (λij), C = (cij), D = (dij),
and f : {1, 2, . . . , p} → {1, 2, . . . , k} is the map from
a response variable to its corresponding factor. Look-
ing at the equation system in (14), we notice that each
factor correlation term cqr, q 6= r, appears only in the
equations corresponding to response variables indexed
by i and j such that f(i) = q and f(j) = r or vice
versa. This suggests that we can restrict our analysis to
submodels that include only two factors by considering
the submatrices of S,Λ, C,D that only involve those two
factors. To be more precise, the idea is to look only at the
equations corresponding to the submatrix Sf−1(q)f−1(r),
where f−1 is the preimage of {1, 2, . . . , k} under f . In-
deed, we will show that we can identify each individual
correlation term corresponding to pairs of factors only by
looking at these submatrices. Any information concern-
ing the correlation term provided by the other equations
is then redundant.

Let us then consider an arbitrary pair of factors in our
model and the corresponding submatrices of Λ, C, D,
and S. (The case of a single factor is trivial and not in-
teresting for causal discovery.) In order to simplify no-
tation, we will also use Λ, C, D, and S to refer to these
submatrices. We also re-index the two factors involved to
η1 and η2 for simplicity. In order to recover the correla-
tion between a pair of factors from S, we have to analyze
three separate cases to cover all the bases (see Figure 6
for examples concerning each case):

1. The two factors are not correlated, i.e., c12 = 0.
(There are no restrictions on the number of response
variables that the factors can have.)

2. The two factors are correlated, i.e., c12 6= 0, and
each has a single response, which implies that Z1 =
η1 and Z2 = η2.

3. The two factors are correlated, i.e., c12 6= 0, but at
least one of them has at least two responses.

Case 1: If the two factors are not correlated (see example
in the left panel of Figure 6), this fact will be reflected in
the matrix S. More specifically, the off-diagonal blocks
in S, which correspond to the covariance between the

responses of one factor and the responses of the other
factor, will be set to zero. If we notice this zero pattern
in S, we can immediately determine that c12 = 0.

Case 2: If the two factors are correlated and each factor
has a single associated response (see middle panel of Fig-
ure 6), the model reduces to a Gaussian Copula model,
hence d11 = d22 = 0. Then, we directly get c12 = s12

since we have put the constraints Z = η if η has a single
indicator Z.

Case 3: If at least one of the factors (w.l.o.g., η1) is al-
lowed to have more than one response (see the example
in the right panel of Figure 6), we arbitrarily choose two
of these responses. We also require one response variable
corresponding to the other factor (η2). We use λi1, λj1,
and λl2 to denote the loadings of these response vari-
ables, where i, j, l ∈ {1, 2, . . . , p}. From (14) we have:

sij = λi1λj1

sil = c12λi1λl2

sjl = c12λj1λl2.

Since we are in the case in which c12 6= 0, which au-
tomatically implies that sjl 6= 0, we can divide the last
two equations to obtain sil

sjl
= λi1

λj1
. We then multiply the

result with the first equation to get sijsilsjl
= λ2

i1. Without
loss of generality, we can say that λi1 is the first entry in
the first column of Λ, which means that λi1 > 0. This
means that we have uniquely recovered λi1 and λj1.

We can also assume without loss of generality that λl2 is
the first entry in the second column of Λ, so λl2 > 0. If
η2 has at least two responses, we use a similar argument
to the one before to uniquely recover λl2. We can then
use the above equations to get c12. If η2 has only one
response, then dll = 0, which means that sll = λ2

l2, so
again λl2 is uniquely recoverable and we can obtain c12

from the equations above.

Thus, we have shown that we can correctly determine cqr
only from Sf−1(q)f−1(r) in all three cases. By applying
this approach to all pairs of factors, we can uniquely re-
cover all pairwise correlations. This means that, given
our constraints, we can identify a unique C from the de-
composition of S.

B GENERALIZATION OF THE
PC-MIMBUILD ALGORITHM

Given a pure and correct measurement model involving
at least 2 indicators per factor, Spirtes et al. [27] pro-
posed to test independence and conditional independence
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Figure 6: Left panel: Case 1 (c12 = 0); Middle panel: Case 2 (c12 6= 0 and only one response per factor); Right panel:
Case 3 (c12 6= 0 and at least one factor has multiple responses).

among the factors, by taking advantage of the following
proposition (see also Theorem 19 of [24]):

Proposition 1 (Conditional Independence Test 1, CIT 1).
Let G be a pure linear latent variable model. Let η1,
η2 be two factors in G, and Q a set of factors in G. Let
Z1 be an indicator of η1, Z2 be an indicator of η2, and
ZQ be a set of indicators of Q containing at least two
indicators per factor. Then η1 is d-separated from η2

given Q in G if and only if the rank of the correlation
matrix of {Z1, Z2} ∪ ZQ is less than or equal to |Q|
with probability 1 with respect to the Lebesgue measure
over the linear coefficients and error variances of G.

One way to test if the rank of a covariance matrix in
Gaussian models is at most q is to fit a factor analysis
model with q latents and assess its significance [24]. The
PC-MIMBuild algorithm arises when applying ‘CIT 1’
to test conditional independence among latent factors in
the PC algorithm.

When a factor only has a single indicator, we propose
to test conditional independence by making use of the
following proposition:

Proposition 2 (Conditional Independence Test 2, CIT 2).
Let η1, η2 be two factors in G, and Q a set of factors in
G. Let Z1 be one of the indicators of η1, Z2 be one of
the indicators of η2, and ZQ be all the indicators of Q.
Then η1 is d-separated from η2 given Q in G if and only
if Z1 is independent of Z2 given ZQ for all Z1 and Z2.

This test can proceed via partial correlations for Gaus-
sian data. By using ‘CIT 1’ or ‘CIT 2’, we generalize the
PC-MIMBuild algorithm to the case where a factor has
either a single or multiple indicators. Also, we extend the
PC-MIMBuild algorithm to mixed continuous and dis-
crete cases by learning the correlation matrix of response
variables via the Gibbs sampler by [13] and taking it as
input to the original PC-MIMBuild. The pseudocode of
the extended PC-MIMBuild algorithm is summarized in
Algorithm 2.

Algorithm 2 PC-MIMBuild algorithm

1: Input: Measurement models and indicator data Y .
2: Output: Markov equivalent classM over latent fac-

tors.
3: Get correlation matrix of response variables via

Gibbs sampler by [13] given Y ;
4: if Unconditional independence, i.e., |Q| = 0, or all

factors inQ have a single indicator. then
5: The PC algorithm with CIT 2;
6: else
7: The PC algorithm with CIT 1;
8: end if
9: ReturnM.

C PSEUDOCODE OF THE GREEDY
STEP-WISE PC ALGORITHM

The pseudocode of the greedy step-wise PC algorithm is
summarized in Algorithm 3.

Algorithm 3 Greedy step-wise PC algorithm

1: Input: Measurement models (represented by the
sparsity pattern of Λ) and indicator data Y .

2: Output: Markov equivalent classM over latent fac-
tors.

3: for i ∈ {1, . . . , k} do
4: Let Q = {Yj : λji 6= 0}, which is the set of

indicators of the i-th factor;
5: if |Q| = 1 then
6: Take the indicator data as the factor score, i.e.,

ηi = Q;
7: else if |Q| = 2 then
8: Take the average of two indicators as the factor

score, i.e., ηi = (Q1 +Q2)/2;
9: else

10: Fit the measurement model of the i-th factor to
its indicator dataQ;

11: Obtain the factor score ηi from the fitted model;
12: end if
13: end for
14: Take pseudo data η = (η1, . . . , ηk) as input to the

‘Copula PC’ algorithm to getM.


