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The proofs use the following two results, i.e., Lemma 1
and Lemma 2, of subsampled randomized Hadamard
transform (SRHT).

Lemma 1 ((Tropp, 2011)). Suppose that V is an n ⇥ k

matrix with orthonormal columns and ⇧ is an n ⇥ n

SRHT matrix, it satisfies that

Pr

 
max

j

��e>j ⇧V
�� �

r
k

n
+

r
8 log (n/�)

n

!
 �.

Lemma 2 ((Tropp, 2011)). Let V be an n⇥k matrix with
orthonormal columns, and denote the maximum squared
row norm by � = maxj

��e>j V
��2. Sample uniformly

without replacement m rows of V to obtain a reduced
matrix V

0. For any t > 0, the extreme singular values
satisfy
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The following theorem is a consequence of Lemma 1 and
Lemma 2. The theorem basically states that kernel ap-
proximation in Algorithm 1 is close to the true kernel up
to some scaling factor 1± ✏.

Theorem 3 (Approximate matrix multiplication). Let A
be an n⇥p matrix with rank r. Let ⇧ be an m⇥p SRHT
matrix with
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Suppose that p > m and compute bA = A⇧>, then the
inequality
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fails with probability at most 3/n.

Proof. Note that the failure probability in Lemma 2 is no
more than
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To make the failure probability no more than 2k�1, it
suffices to set
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Incorporating the scaling factors of the SRHT, the ex-
treme singular values of the transformed V satisfy
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From Lemma 1, with failure probability at most k�1 that
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Combined with the singular value bounds, this result es-
tablishes the connection between m and the desired sin-
gular value bounds. One may choose m = tn� log k, for
some t � 4.

The rest of the proof is now straightforward. We con-
sider the singular value decomposition A = U⌃V

>,
where V is p ⇥ r orthonormal V and has orthonormal
columns. Let ⇧ be the SRHT, we have that bA bA> =
U⌃

�
V

>⇧>⇧V
�
⌃U

>. The desired result follows by
invoking Lemma 2 to bound the extreme singular values
of V >⇧>⇧V .

Proof of Theorem 1. The idea is to simplify the analy-
sis by dealing with the equivalent primal form of (16),
involving only one ⇧ term. We then perform a pertur-
bation analysis of the inverse component. In addition,
Weyl’s inequalities as well the exponentiated version of
Horn’s inequalities are used for eigenvalue manipula-
tions.

First, (16) can be equivalently expressed in the primal
form (3):
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Let � = ��1 + X
> bV �1

X , the idea is to bound the
error norm using the perturbation of the singular val-
ues of ��1. Denote by �0 =

p
�⇧>⇧

p
� and � =



�0�1���1, a basic result from matrix perturbation the-
ory (Stewart and Sun, 1990) gives
�����1 � (�+�)�1

���
2
 k�k2

����1
��
2

���(�+�)�1
���
2
.

From Weyl’s inequalities, one further obtains
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We now provide a bound for k�k2. Observe that
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treme singular values of the parenthesized difference are
bounded via Theorem 3. Thus, we have
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It remains to give a lower bound for �min
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Theorem 3 and Horn’s inequalities, one has
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Finally, the desired estimation bound satisfies
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Proof of Theorem 2. Let P = ZZ
†, then I�P is idem-

potent. Thus, the noise AVC b�2
AVC in (12) can be ex-

pressed as
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where A is given in Algorithm 1. One then invokes The-
orem 3 to bound the singular values of X�X
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fails with probability at most 3/n. The second line fol-
lows from the exponentiated Horn’s inequalities and the
fact that I � P is an idempotent projection matrix of
rank n� q. The sum in the fraction equals to the Ky Fan
(n� q)-norm of X�X
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To show the bound for b⇤AVC, it follows from (15) that
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where we used Theorem 3 and the earlier bound on b�2
AVC.


