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Abstract

Many machine learning techniques sacrifice
convenient computational structures to gain es-
timation robustness and modeling flexibility.
However, by exploring the modeling struc-
tures, we find these “sacrifices” do not al-
ways require more computational efforts. To
shed light on such a “free-lunch” phenomenon,
we study the square-root-Lasso (SQRT-Lasso)
type regression problem. Specifically, we
show that the nonsmooth loss functions of
SQRT-Lasso type regression ease tuning effort
and gain adaptivity to inhomogeneous noise,
but is not necessarily more challenging than
Lasso in computation. We can directly ap-
ply proximal algorithms (e.g. proximal gra-
dient descent, proximal Newton, and proxi-
mal quasi-Newton algorithms) without worry-
ing about the nonsmoothness of the loss func-
tion. Theoretically, we prove that the proximal
algorithms enjoy fast local convergence with
high probability. Our numerical experiments
also show that when further combined with
the pathwise optimization scheme, the proxi-
mal algorithms significantly outperform other
competing algorithms.

1 INTRODUCTION

Many statistical machine learning methods can be for-
mulated as optimization problems in the following form

min £(6) +R(6), (1.1)

where £(0) is a loss function and R(9) is a regularizer.
When the loss function is smooth and has a Lipschitz
continuous gradient, (1.1) can be efficiently solved by
simple proximal gradient descent and proximal Newton
algorithms (also requires a Lipschitz continuous Hessian
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matrix of £(6)). Some statistical machine learning meth-
ods, however, sacrifice convenient computational struc-
tures to gain estimation robustness and modeling flexibil-
ity [1, 2, 3]. Taking SVM as an example, the hinge loss
function gains estimation robustness, but sacrifices the
smoothness (compared with the square hinge loss func-
tion). However, by exploring the structure of the prob-
lem, we find that these “sacrifices” do not always require
more computational efforts.

Advantage of SQRT-Lasso over Lasso. To shed light
on such a “free-lunch” phenomenon, we study the high
dimensional square-root (SQRT) Lasso regression prob-
lem [2, 4]. Specifically, we consider a sparse linear
model in high dimensions,
y=X0"+¢,

where X € R™*? is the design matrix, y € R” is the
response vector, € ~ N(0,0%1,) is the random noise,
and 0* is the sparse unknown regression coefficient vec-
tor (all of the following analysis can be extended to the
weak sparsity based on [5]). To estimate 6%, [6] propose
the well-known Lasso estimator by solving

—Lasso

o1
0 :arggmnﬁny—XHH%—|—/\|_asso||9||1, (1.2)

where A ,ss0 1S the regularization parameter. Existing lit-
erature shows that given

logd
Alasso X O s (1.3)
n
—Lasso . .. . . . .
0 is minimax optimal for parameter estimation in

high dimensions. Note that the optimal regularization
parameter for Lasso in (1.3), however, requires the prior
knowledge of the unknown parameter o. This requires
the regularization parameter to be carefully tuned over a
wide range of potential values to get a good finite-sample
performance.

To overcome this drawback, [2] propose the SQRT-Lasso
estimator by solving

_SQRT o1
0 = argmin —=|ly — X0z + Asqrl|0][1, (1.4)
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where Asqrt is the regularization parameter. They fur-

-5 . .. . .
ther show that 6 is also minimax optimal in param-
eter estimation, but the optimal regularization parameter
is

log d
ASQRTX 5 .

(1.5)

Since (1.5) no longer depends on o, SQRT-Lasso eases
tuning effort.

Extensions of SQRT-Lasso. Besides the tuning advan-
tage, the regularization selection for SQRT-Lasso type
methods is also adaptive to inhomogeneous noise. For
example, [3] propose a multivariate SQRT-Lasso for
sparse multitask learning. Given a matrix A € R?¥9,
let A, denote the k-th column of A, and A;. denote the
i-th row of A. Specifically, [3] consider a multitask re-
gression model

Y = XO* + W,

where X € R™*? is the design matrix, Y € R"*"™ ig
the response matrix, W, ~ N(0,03:1,) is the random
noise, and ©* € R¥*™ is the unknown row-wise sparse
coefficient matrix, i.e., ©* has many rows with all zero
entries. To estimate ©*, [3] propose a calibrated multi-
variate regression (CMR) estimator by solving

m
5" argmin L Z [YVir. = XOull2 + Acmr|O][1,2,
feRdxm \/ﬁ h—1

where ||©]]12 = Z?zl 19 «]|2. [3] further shows that
the regularization of CMR approach is adaptive to o’s
for each regression task, i.e., Y, = X0}, + Wy, and
therefore CMR achieves better performance in parameter
estimation and variable selection than its least square loss
based counterpart. With a similar motivation, [7] propose
a node-wise SQRT-Lasso approach for sparse precision
matrix estimation. Due to space limit, please refer to [7]
for more details.

Existing Algorithms for SQRT-Lasso Optimization.
Despite of these good properties, in terms of optimiza-
tion, (1.4) for SQRT-Lasso is computationally more chal-
lenging than (1.2) for Lasso. The /2 loss in (1.4) is not
necessarily differentiable, and does not have a Lipschitz
continuous gradient, compared with the least square loss
in (1.2). A few algorithms have been proposed for solv-
ing (1.4) in existing literature, but none of them are sat-
isfactory when n and d are large. [2] reformulate (1.4)
as a second order cone program (SOCP) and solve by
an interior point method with a computational cost of
O(nd®®log(e™1)), where € is a pre-specified optimiza-
tion accuracy; [8] solve (1.4) by an alternating direction
method of multipliers (ADMM) algorithm with a com-
putational cost of O(nd?/e); [4] propose to solve the
variational form of (1.4) by an alternating minimization
algorithm, and [9] further develop a coordinate descent

General: Smooth

\

Extreme: Nonsmooth

D

Figure 1: The extreme and general cases of the /5 loss.
The nonsmooth region {# : y — X6 = 0} is out of our
interest, since it corresponds to those overfitted regres-
sion models

subroutine to accelerate its computation. However, no it-
eration complexity is established in [9]. Our numerical
study shows that their algorithm only scales to moderate
problems. Moreover, [9] require a good initial guess for
the lower bound of 0. When the initial guess is inaccu-
rate, the empirical convergence can be slow.

Our Motivations. The major drawback of the aforemen-
tioned algorithms is that they do not explore the model-
ing structure of the problem. The {5 loss function is not
differentiable only when the model are overfitted, i.e.,
the residuals are zero values y — X6 = 0. Such an
extreme scenario rarely happens in practice, especially
when SQRT-Lasso is equipped with a sufficiently large
regularization parameter Asqrt to yield a sparse solution
and prevent overfitting. Thus, we can treat the /5 loss as
an “almost” smooth function. Moreover, our theoreti-
cal investigation indicates that the ¢5 loss function also
enjoys the restricted strong convexity, smoothness, and
Hessian smoothness. In other words, the /5 loss function
behaves as a strongly convex and smooth over a sparse
domain. An illustration is provided in Figure 1.

Our Contributions. Given these nice geometric prop-
erties of the /5 loss function, we can directly solve (1.4)
by proximal gradient descent (Prox-GD), proximal New-
ton (Prox-Newton), and proximal Quasi-Newton (Prox-
Quasi-Newton) algorithms [10, 11]. Existing literature
only apply these algorithms to solve optimization prob-
lems in statistical machine learning when the loss func-
tion is smooth. Our theoretical analysis shows that
both algorithms enjoy fast convergence. Specifically,
the Prox-GD algorithm achieves a local linear conver-
gence and the Prox-Newton algorithm achieves a lo-
cal quadratic convergence. The computational perfor-
mance of these two algorithms can be further boosted in
practice, when combined with the pathwise optimization
scheme. Specifically, the pathwise optimization scheme
solves (1.4) with a decreasing sequence of regulariza-
tion parameters, A\g > ... > Ay with Ay = AsqrT.
The pathwise optimization scheme helps yield sparse so-
lutions and avoid overfitting throughout all iterations.
Therefore, the nonsmooth loss function is differentiable.



Table 1: Comparison with existing algorithms for solving SQRT-Lasso. SOCP: Second-order Cone Programming;
TRM: Trust Region Newton; VAM: Variational Alternating Minimization; ADMM: Alternating Direction Method of
Multipliers; VCD: Coordinate Descent; Prox-GD: Proximal Gradient Descent; Prox-Newton: Proximal Newton.

Algorithm Theoretical Guarantee ~ Empirical Performance
(2] SOCP + TRM O(nd*5 log(e™1)) Very Slow
[4] VAM N.A. Very Slow
[8] ADMM O(nd?/e) Slow
[9] VAM + CD N.A. Moderate
This paper Pathwise Prox-GD O(ndlog(e™)) Fast
This paper  Pathwise Prox-Newton + CD  O(sndloglog(e™ 1)) Very Fast

Remark: [9] requires a good initial guess of o to achieve moderate performance. Otherwise, its empirical performance

is similar to ADMM.

Besides sparse linear regression, we extend our algo-
rithms and theory to sparse multitask regression and
sparse precision matrix estimation. Extensive numeri-
cal results show our algorithms uniformly outperform the
competing algorithms.

Key Points of Analysis. We highlight that our local
analysis with strong convergence guarantees are novel
and nontrivial for solving the SQRT-Lasso problem us-
ing simple and efficient proximal algorithms. First of
all, sophisticated analysis is required to demonstrate
the restricted strong convexity/smoothness and Hessian
smoothness of the ¢y loss function over a neighbor-
hood of the underlying model parameter 6* in high di-
mensions. These are key properties for establishing the
strong convergence rates of proximal algorithms. More-
over, it is involved to guarantee that the output solution
of the proximal algorithms do not fall in the nonsmooth
region of the /5 loss function. This is important in guar-
anteeing the favored computational and statistical prop-
erties. In addition, it is technical to show that the path-
wise optimization does enter the strong convergence re-
gion at certain stage. We defer all detailed analysis to the
appendix.

Notations. Given a vector v € R, we define the sub-
vector of v with the j-th entry removed as v\; € R-1,
Given an index set Z C {1,...,d}, let Z be the comple-
mentary set to Z and vz be a subvector of v by extract-
ing all entries of v with indices in Z. Given a matrix
A € R4, we denote A.; (Ag.) the j-th column (k-th
row), A\i\ ; as a submatrix of A with the i-th row and the
Jj-th column removed and A\ ;; (A;\ ;) as the j-th column
(i-th row) of A with its i-th entry (j-th entry) removed.
Let Amax(A) and Apin(A) be the largest and small-
est eigenvalues of A respectively. Given an index set
7 C {1,...,d}, we use Azz to denote a submatrix of A
by extracting all entries of A with both row and column

indices in Z. We denote A > 0 if A is a positive-definite
matrix. Given two real sequences {A,}, {a,}, we use
conventional notations A, = O(a,) (or A, = Q(ay))
denote the limiting behavior, ignoring constant, O to de-
note limiting behavior further ignoring logarithmic fac-
tors, and Op(-) to denote the limiting behavior in prob-
ability. A, =< a, if A, = O(a,) and A, = Q(ay,)
simultaneously. Given a vector + € RY and a real
value A > 0, we denote the soft thresholding opera-
tor Sx(z) = [sign(z;) max{lz;| — A, 0}]7_,. We use
“w.h.p.” to denote “with high probability”.

2 ALGORITHM

We present the Prox-GD and Prox-Newton algorithms.
For convenience, we denote
FA(0) = L(0) + Al0]]1,

where £(6) = ﬁ”y — X0)|2. Since SQRT-Lasso is
equipped with a sufficiently large regularization param-
eter A to prevent overfitting, i.e., y — X6 # 0, we treat
L(0) as a differentiable function in this section. Formal
justifications will be provided in the next section.

2.1 PROXIMAL GRADIENT DESCENT
ALGORITHM

Given A at t-th iteration, we consider a quadratic ap-
proximation of Fy(6) at § = 6(*) as

Q1 (0,00) = £(BD) +vLED)T (9 —0)
L1
+ 7”9 —0DI3+ A0, @1

where L(*) is a step size parameter determined by the
backtracking line search. We then take

vLOD
(9(0 — %) .

For simplicity, we denote 0+ = T, ,(0D).
Given a pre-specified precision €, we terminate the it-

i+l — argmin Q) (6, e(t)) =S5
p L)
)



erations when the approximate KKT condition holds:

wA(0P) = min  [VLOD) + Agllew <. (22)

geallo® |1y
2.2 PROXIMAL NEWTON ALGORITHM

Given 0O at £-th iteration, we denote a quadratic term of
0 as

10 =012 gy = (6= 6“)TV2L(OW)(6 - 6),
and consider a quadratic approximation of F(6) at § =
6 is

0x(6,0) = £L(0D) +vLOD)T (9 —6®)

1
+ 5\\9 - 9<t)||2v25(9<t>) + A6l (2:3)
‘We then take

g(t+0-5) — argmin Q) (6, Q(t)). 2.4)
6

An additional backtracking line search procedure is re-
quired to obtain

0(t+1) _ e(t) + 77t(0(t+0.5) o 0(1‘/))’

which guarantees Fy (1)) < Fy(6®). The termina-
tion criterion for Prox-Newton is same with (2.2).

Remark 2.1. The ¢; regularized quadratic problem in
(2.4) can be solved efficiently by the coordinate descent
algorithm combined with the active set strategy. See
more details in [12]. The computational cost is O(snd),
where s < d is the solution sparsity.

Algorithm 1 Prox-GD algorithm for solving the SQRT-
Lasso optimization (1.4). We treat £(6) as a differen-
tiable function.
Imput: y, X, \, &, Lijax > 0 _
Initialize: 0©), ¢ < 0, L(9 < L., L(® « L©
Repeat: t <t + 1
Repeat: (Line Search)
0") Tf(t),,\(e(t_l))
If F5,(01) < @\ (61, 60-1)
Then L) + %
Until: 75(60)) > 0, (00, 9(t=1)
L0 ¢ min{2L0, Ly}, IO « L
00— Tpi A (007D)
Until: wy (0®)) < ¢
Return: § « ()

Details of Prox-GD and Prox-Newton algorithms are
summarized in Algorithms 1 and 2 respectively. To fa-
cilitate global fast convergence, we further combine the
pathwise optimization [13] with the proximal algorithms.
See more details in Section 4.

Remark 2.2. We can also apply proximal quasi-Newton
method. Accordingly, at each iteration, the Hessian ma-
trix in (2.3) is replaced with an approximation. See [14]
for more details.

Algorithm 2 Prox-Newton algorithm for solving the
SQRT-Lasso optimization (1.4). We treat £(6) as a dif-
ferentiable function.
Input: y, X, \, ¢
Initialize: 0(*), ¢ + 0, p + 0.9, v - %
Repeat: t <t + 1
6" < argming, Qyx(6,0¢~1)
AQD)  gt) _ gt—1)
7o VL (84D) T A6 A (6D, — (|64 1]),)
< 1,qg+<0
Repeat: g < ¢ + 1 (Line Search)
My <= pe
Until Fy, (G(t_l) + ntAQ(t)) < Fa (H(t_l)) + anyye
61 — 91 4, APCE-1)
Until: wy (0®)) < ¢
Return: § « 0

3 THEORETICAL ANALYSIS

We start with defining the locally restricted strong con-
vexity/smoothness and Hessian smoothness.

Definition 3.1. Denote
B, ={0cR: |0 —0"|2<r}

for some constant r € RT. For any v, w € B, satisfying
lv —wllo < s, L is locally restricted strongly convex
(LRSHC), smooth (LRSS), and Hessian smooth (LRHS)
respectively on B, at sparsity level s, if there exist uni-
versal constants p; , pT, Ls € (0,00) such that

LRSC:L(v) L (w)—VL(w) (v — w) Z%HU — w2,

+
LRSS:L(v)—L(w)—VL(w) (v — w) S%HU — w2,

LRHS:u" (V2L (v) — V2L(w))u < Ly|lv — wl|3,
3.

for any u satisfying ||ullo < s and |lul|2 = 1. We define
the locally restricted condition number at sparsity level s

.
as&szgi.

LRSC and LRSS are locally constrained variants of re-
stricted strong convexity and smoothness [15, 16], which
are keys to establishing the strong convergence guar-
antees in high dimensions. The LRHS is parallel to
the local Hessian smoothness for analyzing the proxi-
mal Newton algorithm in low dimensions [11]. This is
also closely related to the self-concordance [17] in the
analysis of Newton method [18]. Note that r is associ-
ated with the radius of the neighborhood of 8* excluding
the nonsmooth (and overfitted) region of the problem to
guarantee strong convergence, which will be quantified
below.



Next, we prove that the /5 loss of SQRT-Lasso enjoys
the good geometric properties defined in Definition 3.1
under mild modeling assumptions.

Lemma 3.2. Suppose € has i.i.d. sub-Gaussian entries
with E[¢;] = 0 and E[¢?] = o2, ||6*|lo = s*. Then for

any A > C14/228¢ wh.p. we have

n

Cr oo
Az VLG

Moreover, given each row of the design matrix X inde-
pendently sampled from a sub-Gaussian distribution with
the positive definite covariance matrix Xy € R4¥¢ with
bounded eigenvalues. Then for
n > Cys™ logd,

L(0) satisfies LRSC, LRSS, and LRHS properties on B,
at sparse level s* + 2s with high probability. Specifically,
(3.1) holds with

C C C
+ 3 4 B 5
ps*+2g S ?7 psx+2’§ 2 ? and LS*+28 S ?7
where C1, ..., Cs € RT are generic constants, and  and
5 are sufficiently large constants, i.e., § > (1962, 55 +

14454+ 1 05) ™.

The proof is provided in Appendix A. Lemma 3.2 guar-
antees that with high probability:

(i) A is sufficiently large to eliminate the irrelevant vari-
ables and yields sufficiently sparse solutions [19, 5];

(ii) LRSC, LRSS, and LRHS hold for the ¢, loss of
SQRT-Lasso such that fast convergence of the proxi-
mal algorithms can be established in a sufficiently large
neighborhood of 6* associated with r;

(iii) (3.1) holds in B, at sparsity level s* + 25. Such
a property is another key to the fast convergence of the
proximal algorithms, because the algorithms can not en-
sure that the nonzero entries exactly falling in the true
support set of 6*.

3.1 LOCAL LINEAR CONVERGENCE OF
PROX-GD
For notational simplicity, we denote
S ={jl0o;#0}, & ={j|0; =0}, and
Bt =B.n{#eR?: |0 — 0% < s* +3}.
To ease the analysis, we provide a local convergence

analysis when # € B2 ** is sufficiently close to 6*. The
convergence of Prox-GD is presented as follows.

Theorem 3.3. Suppose X and n satisfy conditions
in Lemma 3.2. Given ) and 6 such that A >
GIVLE)|ocs 190 = 6] < 57 (83/p7:.5)" and
6©) ¢ Bs'+5, we have sufficiently sparse solutions
throughout all iterations, i.e.,

165~

0 <s.

Moreover, given € > 0, we need at most

K3, L o=8* A2
T=0 (Iis*+2‘§10g <S+2;
5

iterations to guarantee that the output solution 0 satisfies

~ _ T
16-8)3=0 ((1 ) A) and

Fr(B) — Fa(B) = 0 ((1 _ 8K51+2§>T5/\5*> ’

where @ is the unique sparse global optimum to (1.4) with

Ibls+llo <5

The proof is provided in Appendix C. Theorem 3.3 guar-
antees that when properly initialized, the Prox-GD algo-
rithm iterates within the smooth region, maintains the so-
lution sparsity, and achieves a local linear convergence to
the unique sparse global optimum to (1.4).

3.2 LOCAL QUADRATIC CONVERGENCE OF
PROX-NEWTON

We then present the convergence analysis of the Prox-
Newton algorithm as follows.

Theorem 3.4. Suppose X and n satisfy conditions
in Lemma 3.2. Given A and 6(°) such that 2)\ >
GVLEOloer 100 = 613 < 5 (8M/py:45)° and
6 ¢ B:'+5, we have sufficiently sparse solutions
throughout all iterations, i.e.,

1695 llo < 5.

Moreover, given € > 0, we need at most

3pf s
T—O(loglog ('OZHS))

iterations to guarantee that the output solution 6 satisfies

2T
) Ls+ 405 *
16 —06]3=0 ((ﬁ) €As ) and

2T
Fa0) = Fa(®) =0 <<2Ll+) 5A5*> :

* 425

where 6 is the unique sparse global optimum to (1.4).

The proof is provided in Appendix D. Theorem 3.4 guar-
antees that when properly initialized, the Prox-Newton
algorithm also iterates within the smooth region, main-
tains the solution sparsity, and achieves a local quadratic
convergence to the unique sparse global optimum to
(1.4).

Remark 3.5. Our analysis can be further extended to the
proximal quasi-Newton algorithm. The only technical
difference is controlling the error of the Hessian approx-
imation under restricted spectral norm.



3.3 STATISTICAL PROPERTIES
Next, we characterize the statistical properties for the
output solutions of the proximal algorithms.

Theorem 3.6. Suppose X, and n satisfy conditions in
Lemma 3.2. Given A = Cy+/logd/n, if the output so-

lution  obtained from Algorithm 1 and 2 satisfies the
approximate KKT condition,

or@) <2 =0 (TR,

n

then we have:

16 — 6%y = Op (m/s”;;gd) and
16— 6%, = Op (as*w/logd> :

Moreover, we have

~ *logd ~
o —o| =0p (Us 8 ) , where 0 =
n

ly — X8|
NI

The proof is provided in Appendix E. Recall that we
use Op(-) to denote the limiting behavior in probabil-
ity. Theorem 3.6 guarantees that the output solution
0 obtained from Algorithm 1 and 2 achieves the mini-
max optimal rate of convergence in parameter estimation
[20, 21]. Note that in the stopping criteria w,\(@\) <egeis
not a tuning parameter, where O (%) only serves
as an upper bound and we can choose a small ¢ as de-
sired. This is fundamentally different with the optimal
ALasso that tightly depends on o.

4 BOOSTING PERFORMANCE VIA
PATHWISE OPTIMIZATION
SCHEME

We then apply the pathwise optimization scheme to the
proximal algorithms, which extends the local fast con-
vergence established in Section 3 to the global setting'.
The pathwise optimization is essentially a multistage op-
timization scheme for boosting the computational perfor-
mance [13, 16, 12].

Specifically, we solve (1.4) using a geometrically de-
creasing sequence of regularization parameters
)\[0] > )\[1] >0 > )\[N],
where A[n) is the target regularization parameter of
SQRT-Lasso. This yields a sequence of output solutions
00> Opps -+ -5 Oy
also known as the solution path. At the K-th optimiza-
tion stage, we choose 0| _1; (the output solution of the

'We only provide partial theoretical guarantees.

(K — 1)-th stage) as the initial solution, and solve (1.4)
with A = Ak using the proximal algorithms. This is
also referred as the warm start initialization in existing
literature [13]. Details of the pathwise optimization is
summarized in Algorithm 3. In terms of €[K]» because
we only need high precision for the final stage, we set
€1x] = AK]/4 > ey for K < N.

Algorithm 3 The pathwise optimization scheme for the
proximal algorithms. We solve the optimization problem
using a geometrically decreasing sequence of regulariza-
tion parameters.

Input: y, X, N, A\\n), €[

2~

Initialize: 1) < 0, Ajg) < [[VL(0)][ocs i (A)\[[Z']])
For: K =1,...,N

Ak) = ANk -1, () Bire1)s €] €l

Ok < Prox-Alg (y, X, A1 9[(;)()]75[K])

End For N
Return: 0|y,

As can be seen in Algorithm 3, the pathwise optimization
scheme starts with

Aoy = (VL)oo = ‘

fllyllz

which yields an all zero solution 9[0] = 0 (null fit). We
then gradually decrease the regularization parameter, and
accordingly, the number of nonzero coordinates gradu-
ally increases.

The next theorem proves that there exists an N1 < N
such that the fast convergence of the proximal algorithms
holds for all A\(k1’s, where K € [Ny + 1,.., N].

Theorem 4.1. Suppose the design matrix X is sub-
Gaussian, and A\ = C1y/logd/n. Forn > Cys*logd
andn € (2,1), the following results hold:

(I) There exists an N7 < N such that
N _ N2
r>s (8)\N1/ps*+g) ;

(D) Forany K € [N1+1, .., N, we have |0} — 0|3 <
[?()] € B+ whp.;

5" (8Aix1/ P i) - O]

(IIT) Theorems 3.3 and 3.4 hold for all Ax’s, where K €

The proof is provided in Appendix G. Theorem 4.1 im-
plies that for all A\x’s, where K € [Ny, Ny +1,.., N],
the regularization parameter is large enough for ensuring
the solution sparsity and preventing overfitting. There-
fore, the fast convergence of proximal algorithms can be
guaranteed. For Ao to A[y,], we do not have theoreti-
cal justification for the fast convergence due to the limit
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Figure 2: A geometric illustration for the fast conver-
gence of the proximal algorithms. The proximal algo-
rithms combined with the pathwise optimization scheme
suppress the overfitting and yield sparse solutions along
the solution path. Therefore, the nonsmooth region of
the /5 loss, i.e., the set {6 : y — X6 = 0}, is avoided, and
LRSC, LRSS, and LRHS enable the proximal algorithms
to achieve fast convergence.

of our proof technique. However, as A[g),..., A[n,) are
all larger than Ay, 41}, we can expect that the obtained
model is very unlikely to be overfitted. Accordingly,
we can also expect that all intermediate solutions 5[ K]S
stay out of the nonsmooth region, and LRSC, LRSS,
and LRHS properties should also hold along the solu-
tion path. Therefore, the proximal algorithms achieve
fast convergence in practice. Note that when the design
X is normalized, we have A\ = O(d), which implies
that the total number N of regularization parameter sat-

isfies N = O(log d).

A geometric illustration of the pathwise optimization is
provided in Figure 2. The supporting numerical experi-
ments are provided in Section 6.

S EXTENSION TO CMR AND SPME

We extend our algorithm and theory to calibrated multi-
variate regression (CMR, [3]) and sparse precision ma-
trix estimation (SPME, [7]). Due to space limit, we only
provide a brief discussion and omit the detailed theoreti-
cal deviation.

Extension to CMR. Recall that CMR solves

m

CMR

) zargmm—ZHY*k — XOukll2 + Acmr|O] 1,2

peRraxm /1 £

Similar to SQRT-Lasso, we choose a sufficiently large
AcmR to prevent overfitting. Thus, we can expect

|V — XOuk|l2 #O0forallk =1,...,m,

and treat the nonsmooth loss of CMR as a differentiable
function. Accordingly, we can trim our algorithms and
theory for the nonsmooth loss of CMR, and establish fast
convergence guarantees, as we discussed in §4.

Extension to SPME. [7] show that a d x d sparse preci-
sion matrix estimation problem is equivalent to a collec-
tion of d sparse linear model estimation problems. For
each linear model, we apply SQRT-Lasso to estimate the
regression coefficient vector and the standard deviation
of the random noise. Since SQRT-Lasso is adaptive to
imhomogenous noise, we can use one singular regular-
ization parameter to prevent overfitting for all SQRT-
Lasso problems. Accordingly, we treat the nonsmooth
loss function in every SQRT-Lasso problem as a differ-
entiable function, and further establish fast convergence
guarantees for the proximal algorithms combined with
the pathwise optimization scheme.

6 NUMERICAL EXPERIMENTS

We compare the computational performance of the prox-
imal algorithms with other competing algorithms using
both synthetic and real data. All algorithms are imple-
mented in C++ with double precision using a PC with
an Intel 2.4GHz Core i5 CPU and 8GB memory. All al-
gorithms are combined with the pathwise optimization
scheme to boost the computational performance. Due to
space limit, we omit some less important details.

Synthetic Data: For synthetic data, we generate a train-
ing dataset of 200 samples, where each row of the design
matrix X,,is independently from a 2000-dimensional
normal distribution N (0, 3) where ¥;; = 1 and X5, =
0.5 for all k£ # j. We set s* = 3 with 67 = 3, 05 = —2,
and 0y = 1.5, and 07 = O for all j # 1,2,4. The re-
sponse vector is generated by y = X6* + €, where € is
sampled from N (0, 0%1).

We first show the fast convergence of the proximal al-
gorithms at every stage of the pathwise optimization
scheme. Here we set ¢ = 0.5, N = 200, A\y =
Vl9ogd/n, exx = 107C forall K = 1,..., N. Figure 3
presents the objective gap versus the number of itera-
tions. We can see that the proximal algorithms achieves
linear (prox-GD) and quadratic (prox-Newton) conver-
gence at every stage. Since the solution sparsity levels
are different at each stage, the slopes of these curves are
also different.

Next, we show that the computational performance of
the pathwise optimization scheme under different set-
tings. Table 2 presents the timing performance of Prox-
GD combined with the pathwise optimization scheme.
We can see that N = 10 actually leads to better timing
performance than N = 1. That is because when N = 1,
the solution path does not fall into the local fast conver-
gence region as illustrated in Figure 2. We can also see
that the timing performance of Prox-GD is not sensitive
to 0. Moreover, we see that the minimal residual sum
of squares along the solution path is much larger than 0,
thus the overfitting is prevented and the Prox-GD algo-



A A2
A Ao A100
-
108 F R Ao + A120
m AT —F— A5 S —— Ao
| =3 o /\;(1 ‘T*\k\.\,. K N0
e \ N A AU S A170
% g0 |\ . 100 \’\\
N 1 S A150 \ S~ —+— 180
| ‘ - S R e | VR A190
N - 200 N\ X
Sxto0r | i ORI . 20
By \ ! s <
— * N—
X ' ~ X
< . \
B o2 N B e b
10714 . . . . . ) 107 L L . L : !
5 10 15 20 25 30 0 5 10 15 20 25 30 35 40

Number of Iterations

Number of Iterations

Figure 3: The objective gap v.s. the number of iterations. We can see that the Prox-GD (Left) and Prox-Newton
(Right) algorithms achieve linear and quadratic convergence at every stage respectively.

Table 2: Computational performance of Prox-GD on synthetic data under different choices of variance o, the number
of stages IV, and the stopping criterion €. The training time is presented, where each entry is the mean execution
time in seconds over 100 random trials. The minimal mean square error (MSE) is %Hy — X0k |2, where Ok is the

optimal solution that attains min Fy , (¢) for all stages K =1,..., N.
N EN Minimal EN Minimal
g 1072 10—° 10~° MSE g 1074 10—° 10°° MSE
1 0.372 | 0.372 | 0.365 0.285 | 0.295 | 0.289
0.1 ] 10| 0.275 | 0.276 | 0.280 0.013 0.5 | 0.165 | 0.170 | 0.175 0.305
30 | 0.336 | 0.345 | 0.351 0.221 | 0.225 | 0.228
1 0.235 | 0.248 | 0.262 0.432 | 0.470 | 0.479
1 10 | 0.104 | 0.103 | 0.109 1.183 2 0.166 | 0.191 | 0.211 4.220
30 | 0.217 | 0.222 | 0.220 0.270 | 0.296 | 0.313

Table 3: Timing comparison between multiple algorithms on real data. Each entry is the execution time in seconds.

All experiments are conducted to achieve similar suboptimality.

Data Set SQRT-Lasso . Lasso
Prox-GD | Newton | ADMM | ScalReg | CD AltMin | PISTA

Greenhouse 5.812 1.708 1027 3181 14.31 99.81 5.113
DrivFace 0.421 0.426 18.88 124.0 3.138 17.69 0.414

rithm enjoys the smoothness of the /5 loss.

Real Data: We adopt two data sets. The first one is
the Greenhouse Gas Observing Network Data Set [22],
which contains 2921 samples and 5232 variables. The
second one is the DrivFace data set, which contains 606
samples and 6400 variables. We compare our proximal
algorithms with ADMM in [8], Coordinate Descent (CD)
in [9], Prox-GD (solving Lasso) in [16] and Alternating
Minimization (Alt.Min.) [4] and ScalReg (a simple vari-
ant of Alt. Min) in [23]. Table 3 presents the timing
performance of the different algorithms. We can see that
Prox-GD for solving SQRT-Lasso significantly outper-
forms the competitors, and is almost as efficient as Prox-
GD for solving Lasso. Prox-Newton is even more effi-
cient than Prox-GD.

Sparse Precision Matrix Estimation. We compare the
proximal algorithms with ADMM and CD over real data
sets for precision matrix estimation. Particularly, we use
four real world biology data sets preprocessed by [24]:
Arabidopsis (d = 834), Lymph (d = 587), Estrogen
(d = 692), Leukemia (d = 1, 225). We set three different
values for A\ such that the obtained estimators achieve
different levels of sparse recovery. We set N = 10, and
ex = 10~* for all K’s. The timing performance is sum-
marized in Table 4. Prox-GD for solving SQRT-Lasso
significantly outperforms the competitors, and is almost
as efficient as Prox-GD for solving Lasso. Prox-Newton
is even more efficient than Prox-GD.

Calibrated Multivariate Regression. We compare the
proximal algorithms with ADMM and CD for CMR on
both synthetic data and DrivFace data. For synthetic



Table 4: Timing comparison between multiple algorithms for sparse precision matrix estimation on biology data
under different levels of sparsity recovery. Each entry is the execution time in seconds. All experiments are conducted
to achieve similar suboptimality. Here CD failed to converge and the program aborted before reaching the desired

suboptimality. Scalreg failed to terminate in 1 hour for Estrogen.

Sparsit Arabidopsis
PASIY ™ Prox-GD | Newton | ADMM | ScalReg | CD | AltMin
1% 5.099 1.264 292.0 411.7 12.02 183.6
3% 6.201 2.088 339.2 426.1 18.18 217.7
5% 7.122 2.258 366.7 4355 | 28.60 | 257.0
Sparsity Estrogen
1% 108.2 3.099 1597 >3600 | 1362 | 634.1
3% 130.9 7.101 1846 >3600 | 332.0 | 662.2
5% 1435 10.12 2030 >3600 | 588.4 | 739.5
Sparsity Lymph
1% 3.709 0.625 256.4 354.9 7.208 120.2
3% 4.819 0.905 289.1 355.3 10.51 130.6
5% 4.891 1.123 310.2 358.7 14.95 148.9
Sparsity Leukemia
1% 8.542 2.715 331.3 610.1 173.3 239.2
3% 10.56 3.935 384.7 766.1 1743 | 2852
5% 10.77 4.712 442.5 1274 | 288.9 | 333.6

Table 5: Timing comparison between multiple algorithms for calibrated multivariate regression on synthetic and real
data with different values of A\ . Each entry is the execution time in seconds. All experiments are conducted to achieve
similar suboptimality. Here CD failed to converge and the program aborted before reaching the desired suboptimality.

Ay Synthetic (o = 1) DrivFace
Prox-GD | Newton | ADMM CD Prox-GD | Newton | ADMM CD
\/log d/n 0.2964 0.0320 14.83 2.410 9.562 0.2186 158.9 12.77
2\/10g d/m | 0.1725 0.0213 2.231 2.227 8.688 0.1603 129.4 20.42
4\/10g d/n | 0.0478 0.0112 1.868 1.366 1.824 0.0924 94.37 19.17

data, the data generating scheme is the same as [3]. Table
5 presents the timing performance. Prox-GD for solving
SQRT-Lasso significantly outperforms the competitors,
and is almost as efficient as Prox-GD for solving Lasso.
Prox-Newton is even more efficient than Prox-GD. CD
failed to converge and the program aborted before reach-
ing the desired suboptimality.

7 DISCUSSION AND CONCLUSION

This paper shows that although the loss function in the
SQRT-Lasso optimization problem is nonsmooth, we can
directly apply the proximal gradient and Newton algo-
rithms with fast convergence. First, the fast convergence
rate can be established locally in a neighborhood of 6*.
Note that, due to the limited analytical tools, we are not
able to directly extend the analysis to establish a global
fast convergence rate. Instead, we resort to the pathwise
optimization scheme, which helps establishing empirical
global fast convergence for the proximal algorithms as
illustrated in Figure 2. Specifically, in the early stage of

pathwise scheme, with a large regularization parameter
A, the solution quickly falls into the neighborhood of 6%,
where the problem enjoys good properties. After that,
the algorithm can quickly converges to 6* thanks to the
fast local convergence property. Our results corroborate
that exploiting modeling structures of machine learning
problems is of great importance from both computational
and statistical perspectives.

Moreover, we remark that to establish the local fast con-
vergence rate, we prove the restricted strong convex-
ity, smoothness, and Hessian smoothness hold over a
neighborhood of #*. Rigorously establishing the global
fast convergence, however, requires these conditions to
hold along the solution path. We conjecture that these
conditions do hold because our empirical results show
the proximal algorithms indeed achieve fast convergence
along the entire solution path of the pathwise optimiza-
tion. We will look for more powerful analytic tools and
defer a sharper characterization to the future effort.



References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

L. Wang, “The 11 penalized lad estimator for high
dimensional linear regression,” Journal of Multi-
variate Analysis, vol. 120, pp. 135-151, 2013.

A. Belloni, V. Chernozhukov, and L. Wang,
“Square-root Lasso: pivotal recovery of sparse sig-
nals via conic programming,” Biometrika, vol. 98,
no. 4, pp. 791-806, 2011.

H. Liu, L. Wang, and T. Zhao, “Calibrated multi-
variate regression with application to neural seman-
tic basis discovery.” Journal of Machine Learning
Research, vol. 16, pp. 1579-1606, 2015.

T. Sun and C.-H. Zhang, “Scaled sparse linear re-
gression,” Biometrika, vol. 99, no. 4, pp. 879-898,
2012.

S. N. Negahban, P. Ravikumar, M. J. Wain-
wright, and B. Yu, “A unified framework for high-
dimensional analysis of m-estimators with decom-
posable regularizers,” Statistical Science, vol. 27,
no. 4, pp. 538-557, 2012.

R. Tibshirani, “Regression shrinkage and selection
via the lasso,” Journal of the Royal Statistical Soci-
ety. Series B (Methodological), pp. 267-288, 1996.

H. Liu, L. Wang et al., “Tiger: A tuning-insensitive
approach for optimally estimating gaussian graph-
ical models,” Electronic Journal of Statistics,
vol. 11, no. 1, pp. 241-294, 2017.

X. Li, T. Zhao, X. Yuan, and H. Liu, “The flare
package for high dimensional linear regression and
precision matrix estimation in R,” The Journal of

Machine Learning Research, vol. 16, no. 1, pp.
553-557, 2015.

E. Ndiaye, O. Fercoq, A. Gramfort, V. Leclere,
and J. Salmon, “Efficient smoothed concomitant
lasso estimation for high dimensional regression,”

in Journal of Physics: Conference Series, vol. 904,
no. 1. IOP Publishing, 2017, p. 012006.

Y. Nesterov, “Gradient methods for minimizing
composite functions,” Mathematical Programming,
vol. 140, no. 1, pp. 125-161, 2013.

J. D. Lee, Y. Sun, and M. A. Saunders, “Prox-
imal newton-type methods for minimizing com-
posite functions,” SIAM Journal on Optimization,
vol. 24, no. 3, pp. 1420-1443,2014.

T. Zhao, H. Liu, T. Zhang et al., “Pathwise coor-
dinate optimization for sparse learning: Algorithm
and theory,” The Annals of Statistics, vol. 46, no. 1,
pp- 180-218, 2018.

[13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

J. Friedman, T. Hastie, H. Hofling, and R. Tibshi-
rani, “Pathwise coordinate optimization,” The An-
nals of Applied Statistics, vol. 1, no. 2, pp. 302—
332, 2007.

D. P. Bertsekas, Nonlinear programming. Athena
scientific Belmont, 1999.

A. Agarwal, S. Negahban, and M. J. Wainwright,
“Fast global convergence rates of gradient methods
for high-dimensional statistical recovery,” in Ad-

vances in Neural Information Processing Systems,
2010, pp. 37-45.

L. Xiao and T. Zhang, “A proximal-gradient homo-
topy method for the sparse least-squares problem,”
SIAM Journal on Optimization, vol. 23, no. 2, pp.
1062-1091, 2013.

A. Nemirovski, “Interior point polynomial time
methods in convex programming,” Lecture Notes,
2004.

S. Boyd and L. Vandenberghe, Convex Optimiza-
tion. Cambridge University Press, 2009.

P. J. Bickel, Y. Ritov, and A. B. Tsybakov, “Simul-
taneous analysis of Lasso and Dantzig selector,”
The Annals of Statistics, vol. 37, no. 4, pp. 1705—
1732, 2009.

G. Raskutti, M. J. Wainwright, and B. Yu, “Mini-
max rates of estimation for high-dimensional linear
regression over-balls,” Information Theory, IEEE
Transactions on, vol. 57, no. 10, pp. 6976-6994,
2011.

F. Ye and C.-H. Zhang, “Rate minimaxity of the
Lasso and Dantzig selector for the £, loss in £,

balls,” The Journal of Machine Learning Research,
vol. 11, pp. 3519-3540, 2010.

D. D. Lucas, C. Yver Kwok, P. Cameron-Smith,
H. Graven, D. Bergmann, T. P. Guilderson,
R. Weiss, and R. Keeling, “Designing optimal
greenhouse gas observing networks that consider
performance and cost,” Geoscientific Instrumenta-
tion, Methods and Data Systems, vol. 4, no. 1, pp.
121-137, 2015. [Online]. Available: https://www.
geosci-instrum-method-data-syst.net/4/121/2015/

T. Sun and M. T. Sun, “Package ‘scalreg’,” 2013.

L. Li and K.-C. Toh, “An inexact interior point
method for ¢ -regularized sparse covariance selec-
tion,” Mathematical Programming Computation,
vol. 2, no. 3-4, pp. 291-315, 2010.


https://www.geosci-instrum-method-data-syst.net/4/121/2015/
https://www.geosci-instrum-method-data-syst.net/4/121/2015/

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

M. Wainwright, “High-dimensional statistics: A
non-asymptotic viewpoint,” preparation. Univer-
sity of California, Berkeley, 2015.

M. Rudelson and S. Zhou, “Reconstruction from
anisotropic random measurements,” Information
Theory, IEEE Transactions on, vol. 59, no. 6, pp.
3434-3447, 2013.

E. J. Candeés and T. Tao, “Decoding by linear
programming,” IEEE Transactions on Information
Theory, vol. 51, no. 12, pp. 4203-4215, 2005.

G. Raskutti, M. J. Wainwright, and B. Yu, “Re-
stricted eigenvalue properties for correlated Gaus-
sian designs,” The Journal of Machine Learning
Research, vol. 11, no. 8, pp. 2241-2259, 2010.

Y. Ning, T. Zhao, and H. Liu, “A likelihood ra-
tio framework for high-dimensional semiparamet-
ric regression,” The Annals of Statistics, vol. 45,
no. 6, pp. 2299-2327, 2017.

Y. Nesterov, Introductory lectures on convex opti-
mization: A basic course. Springer, 2004, vol. 87.

P. Biihlmann and S. Van De Geer, Statistics for
high-dimensional data: methods, theory and appli-
cations. Springer Science &amp; Business Media,
2011.

J. Fan, H. Liu, Q. Sun, and T. Zhang, “I-lamm
for sparse learning: Simultaneous control of algo-
rithmic complexity and statistical error,” Annals of
statistics, vol. 46, no. 2, p. 814, 2018.



