
A Bayesian Approach to Robust Reinforcement Learning

Esther Derman
Technion, Israel

estherderman@campus.technion.ac.il

Daniel Mankowitz
Deepmind, UK

dmankowitz@google.com

Timothy Mann
Deepmind, UK

timothymann@google.com

Shie Mannor
Technion, Israel

shie@ee.technion.ac.il

Abstract

Robust Markov Decision Processes (RMDPs)
intend to ensure robustness with respect to
changing or adversarial system behavior. In this
framework, transitions are modeled as arbitrary
elements of a known and properly structured
uncertainty set and a robust optimal policy can
be derived under the worst-case scenario. In
this study, we address the issue of learning in
RMDPs using a Bayesian approach. We intro-
duce the Uncertainty Robust Bellman Equation
(URBE) which encourages safe exploration for
adapting the uncertainty set to new observa-
tions while preserving robustness. We propose
a URBE-based algorithm, DQN-URBE, that
scales this method to higher dimensional do-
mains. Our experiments show that the derived
URBE-based strategy leads to a better trade-off
between less conservative solutions and robust-
ness in the presence of model misspecification.
In addition, we show that the DQN-URBE algo-
rithm can adapt significantly faster to changing
dynamics online compared to existing robust
techniques with fixed uncertainty sets.

1 INTRODUCTION

Markov Decisions Processes (MDPs) are used for solv-
ing sequential decision making problems with varying
degrees of uncertainty. Two types of uncertainty are en-
countered: the internal uncertainty due to the stochasticity
of the system and the uncertainty in the transition and re-
ward parameters [17]. In order to mitigate the second
type of uncertainty, the Robust-MDP (RMDP) framework
considers the unknown parameters to be a member of a
known uncertainty set [11; 18; 30]. An optimal solution
to the robust RL problem then corresponds to the strategy

that maximizes the worst-case performance and it can be
derived using dynamic programming [11; 26].

However, planning in RMDPs often leads to overly con-
servative solutions. There are two reasons for this: Firstly,
the uncertainty set has to be rectangular in order for the
problem to be computationally tractable, which means
that it must be structured as sets of MDP models that are
independent for each state [30]. Let give an intuition of
the reason why the resulting policy may be too conser-
vative. Suppose a chess player wants to protect himself
against an adversary he has some prior on, which can
be modeled as a set of transition models. Suppose also
that the agent optimizes its next move according to the
worst-case scenario from the set of models. Then, the
rectangularity assumption implies that the agent consid-
ers the worst-case transition for each game configuration
independently, although there are several chances that
some configurations are incompatible during the same
round of game. It comes out that this robust strategy
is overly conservative. Attempts to circumvent rectan-
gular uncertainty sets in RMDPs include the works of
(author?) [15, 16, 29] and more recently, (author?) [9].

Secondly, the difficulty of constructing uncertainty sets
can result in too large sets and consequently lead to overly-
pessimistic strategies [23]. Proposals for learning an un-
certainty set in a data-driven manner have rarely been
addressed in RL literature. (author?) [23] designed a
robustification procedure that builds safe uncertainty sets
upon optimal value functions. Their Bayesian method
starts from a posterior distribution on transitions and con-
structs possibly discontinuous sets by iteratively solving
optimization problems. Although it leads to tighter uncer-
tainty sets, their algorithm proceeds offline with a fixed
batch of data and is not scalable due to its high computa-
tional complexity. Moreover, their technique assumes the
data to be generated by one fixed but unknown model, so
it has not been tested against changing dynamics.

Previous work [13] has used the “optimism in face of

uncertainty” (OFU) principle [12] to detect adversarial
state-action pairs online and compute an optimistic min-
imax policy accordingly. Although these methods have
been proven to be statistically efficient, they require an ex-
haustive computation for each state-action pair. This leads
to solutions that are intractable for all but small problems.
Also, as is common in optimistic approaches, the result-
ing performance is highly influenced by the underlying
analysis [21].

Based on a Bayesian approach, Thompson sampling [28]
has been shown to be more efficient than OFU methods
in RL problems. Previous work [20] has stressed the
advantages of posterior sampling methods over existing
algorithms driven by optimism. However, most of the ex-
isting work on posterior sampling methods studied finite
tabular MDPs. The Uncertainty Bellman Equation (UBE)
work [19] addressed this shortcoming and proposed an
online algorithm that scales naturally to large domains.
Their method learns the posterior variance of the value
for guiding exploration when the true dynamics of the
MDP are unknown. Yet, their approach does not deal
with adversarial transitions. While better exploration can
potentially lead to more efficient learning and improved
solutions, it cannot protect itself against sudden (poten-
tially) adversarial changes in the underlying dynamics of
the environment. This is especially true when the domain
is large and/or hard to explore efficiently.

In this work, we introduce a Bayesian framework for
robust RL and address the first Bayesian algorithm that
(1) accounts for changing dynamics online and (2) tack-
les conservativeness thanks to a variance bonus that de-
tects changes in the level of adversity. This variance is
proven to satisfy an Uncertainty Robust Bellman Equa-
tion (URBE), that is estimated using dynamic program-
ming. Besides being scalable to complex domains, our
approach leads to less conservative results than existing
planning methods for RMDPs while ensuring robustness
to model misspecification 1. Our experiments illustrate an
improved trade-off between overly conservative, robust
behaviour and less conservative, improved performance
for the resulting DQN-URBE policy.

Main Contributions: To summarize, our specific con-
tributions are: (1) The URBE which encourages safe
exploration and prevents overly conservative solutions;
(2) The DQN-URBE which scales and utilizes URBE to
learn less conservative solutions that are still robust to
model misspecification; (3) Adaptability of DQN-URBE
to changing dynamics online.

1In this work, model misspecification will designate any
perturbation of the system’s dynamics.

2 BACKGROUND

Bayesian Reinforcement Learning Bayesian RL lever-
ages methods from Bayesian inference to incorporate
prior information about the Markov model into the learn-
ing process. Model-based Bayesian RL [3; 21; 25] ex-
press prior information on parameters of the Markov pro-
cess instead. [4] introduced Bayesian Q-learning to learn
the posterior distribution of the Q-values in the model-
free setting. One major advantage of Bayesian RL is that
it can benefit from prior information on the problem to
tackle the exploration-exploitation dilemma (see [7] for a
full review).

Robust MDP A robust MDP is a tuple 〈S,A, r,P〉where
S and A respectively denote state and action spaces. The
mapping r : S ×A → R defines the immediate bounded
reward function and P is a set of transition matrices that
models the ambiguity in the transition distributions. As
common in the robust RL literature, we assume P to be
structured as a cartesian product

⊗
s∈S,a∈A Ps,a, which

is also known as the state-action rectangularity assump-
tion [30]. In RMDPs, this implies that the nature can
choose the worst-transition independently for each state
and action.

Robust DQN The DQN algorithm uses a neural network
as a function approximation of the Q-value and learns
its parameters by optimizing a TD-loss. Similarly, the
robust Bellman equation uses a robust TD-error as a
loss criterion for learning a minimax policy [24]. [6]
introduced the RTD-DQN, a robust counterpart to DQN
that is robust to model misspecification.

3 ROBUST MARKOV DECISION
PROCESSES

We consider a robust MDP 〈S,A, r,P〉 of finite state
and action spaces, where each episode has finite horizon
lengthH ∈ N. At step h, an agent is in state sh, selects an
action ah according to a stochastic policy πh : S → ∆A
that maps each state to a probability distribution over the
action space, ∆A denoting the set of distributions over A.
Thus, for all steps h = 1, · · · , H ,

∑
a∈A π

h
sa = 1. After

choosing an action, the agent gets a deterministic reward
rh bounded by Rmax, and transitions to state sh+1 ac-
cording to an arbitrary transition psh,ah ∈ Psh,ah which
we will rather write as phsa ∈ Phsa with a slight abuse of
notation.

The robust action-value (or robust Q-value) at step h, state
s, action a and under policy π := (π1, · · · , πH) is the
expected discounted return under the worst-case scenario
resulting from taking action a at s and following policy π

thereafter:

Qhsa := inf
p∈P

E

[
H∑
l=h

γl−hrl | sh = s, ah = a, π, p

]
,

with γ ∈ (0, 1]. Likewise, the robust value at state s
under policy π is V h(s) := Ea∼πh

s
[Qhsa]. When it is clear

from the context, we suppress the dependence on π for
notational convenience.

A robust optimal policy is derived by maximizing the
expected worst-case discounted return:

J(π) := inf
p∈P

Eπ,p
[
H∑
h=1

γh−1rh

]
= V 1(s).

Assuming a rectangular structure on P , the robust Bell-
man operator T h for policy π at step h relates the robust
value at h to the robust value at following steps [18]:

T hQh+1
sa = rhsa + γ inf

p∈P

∑
s′∈S,a′∈A

πhs′a′phsas′Qh+1
s′a′ ,

where rhsa denotes the immediate reward at step h while
being in state s and executing action a. Computing the
second term in the robust Bellman operator amounts to
solving a robust optimization problem where the robust
constraints are given by P . In fact, the main challenge of
robust optimization is to build an uncertainty set such that
the solution stays tractable without being overly conser-
vative.

4 THE UNCERTAINTY ROBUST
BELLMAN EQUATION

In this section, we introduce our Bayesian framework for
robust RL where we have a prior over the transition model.
Our approach is based on the following procedures: (a)
building posterior uncertainty sets, (b) approximating pos-
terior distribution over robust Q-values. Next, we intro-
duce an upper bound on the variance of the posterior over
robust Q-values and show that it satisfies a Bellman re-
cursion, which we call the Uncertainty Robust Bellman
Equation (URBE). Proofs are deferred to the Appendix.

4.1 POSTERIOR UNCERTAINTY SETS

Define ϕp as a prior distribution according to which state
transitions are generated. Assume furthermore that ϕp is
a product of |S| · |A| independent Dirichlet priors on each
distribution psa over next states, that is ϕp =

∏
s,a ϕsa,

where ϕsa is Dirichlet. Given an observation historyH =
〈(s1, a1), (s2, a2), . . . , (sh, ah)〉 ∈ (S ×A)h induced by
a policy π and a confidence level ψsa ∈ R+ for each

state-action pair, we can construct a subset of transition
probabilities ∆S :

P̂hsa(ψsa) = {psa ∈ ∆S : ‖psa − p̄sa‖1 ≤ ψsa}

where p̄sa is the nominal transition given by p̄sa =
E[psa | H]. If H is fixed, this construction falls into the
definition of a Bayesian confidence interval introduced in
[23].

Such a construction forms a rectangular uncertainty set
P̂h(ψ) :=

⊗
s,a P̂hsa(ψsa) We call it a posterior uncer-

tainty set and will omit the dependence in ψ for ease of
notation. To derive smaller posterior regions of poste-
rior confidence level α, one can proceed as described in
[10; 23] by minimizing P(‖psa − p̄sa‖1 > ψsa | H) <
α

|S||A| with respect to ψsa that satisfies the constraint.
However, in our case, the data set is not fixed so the nom-
inal transition changes, which raises tractability issues.
Therefore, ψsa is remained fixed without being optimized.

4.2 POSTERIOR OVER ROBUST Q-VALUES

The simulation proceeds as follows: at each episode t, we
sample a transition matrix according to ϕp. For a fixed
policy π, we collect observation history and update the
posterior distribution accordingly. We then construct a
posterior uncertainty set P̂hsa(ψsa) based on all observed
data from all previous episodes. A posterior over robust
Q-values can then be obtained via the following equation:

Q̂hsa = rhsa + γ inf
p∈P̂h

sa

∑
s′,a′

πhs′a′psas′Q̂h+1
s′a′ ,

with Q̂H+1
sa = 0. The quantity Q̂hsa is a random vari-

able whose variability comes from the nominal transition
used in constructing posterior uncertainty sets, from the
stochasticity of the policy and the dynamics of the sam-
pled MDP. We further define

p̂hsa ∈ arg min
p∈P̂h

sa

∑
s′,a′

πhs′a′psas′Q̂h+1
s′a′ (1)

as a worst-case transition at step h.

4.3 POSTERIOR VARIANCE OF ROBUST
Q-VALUES

For the regular MDP setting, [19] showed that the condi-
tional variance of posterior Q-values can be bounded by
a quantity that satisfies a Bellman recursion formula. In
Bayesian robust RL, a similar upper bound by a robust
Bellman update can be derived. The key difference with
[19] is that they evaluate posterior Q-values according to
one transition model whereas we evaluate robust Q-values
according to a posterior uncertainty set.

Let first introduce some notation:

Notation 4.1. DefineFt as a minimal sigma-algebra that
contains all of the available information up to episode t
(e.g. all observed states, actions and rewards). Denote by
Et[X] the expectation of random variable X conditioned
on Ft. Similarly, the conditional variance vart(X) is

defined as: vartX := Et
[
(X − Et[X])2

]
.

As common in literature [19; 22], we make the following
assumptions:
Assumption 4.1. For any episode, the graph resulting
from a worst-case transition model is directed and acyclic.
Assumption 4.2. For all (s, a) ∈ S×A, the rewards are
bounded: −Rmax ≤ rsa ≤ Rmax. This implies that the
robust Q-value is bounded as well: | Qhsa |≤ HRmax =:
Qmax.

These assumptions enable to state the following result.
Lemma 4.1. Under Assumptions 4.1 and 4.2, for any
worst-case transition p̂ as defined in equation (1), the
conditional variance of the robust Q-values under the
posterior distribution satisfies the robust Bellman inequal-
ity:

vartQ̂hsa ≤ νhsa + γ2
∑
s′,a′

πhs′a′Et
(
p̂hsas′

)
vartQ̂h+1

s′a′ ,

with vartQ̂H+1 = 0 and νhsa := Q2
max

∑
s′∈S

vartp̂
h
sas′

Etp̂h
sas′

.

This lemma enables us to establish the Uncertainty Robust
Bellman Equation (URBE).
Theorem 4.1 (Solution of URBE). For any worst-case
transition p̂ as defined in equation (1) and any policy
π, under Assumptions 4.1 and 4.2, there exists a unique
mapping w that satisfies the uncertainty robust Bellman
equation:

whsa = νhsa + γ2
∑

s′∈S,a′∈A
πhs′a′Et(p̂hsas′)wh+1

s′a′ , (2)

for all (s, a) ∈ S×A and h = 1, · · · , H where wH+1 =
0. Furthermore, w ≥ vartQ̂.

A classical difficulty in Bayesian approaches is to com-
pute the posterior distribution. The Bayesian central limit
theorem (Result 8 in [1]) ensures that under smoothness
assumptions on the prior and likelihood functions, the
posterior distribution converges to a Gaussian distribution.
Thus, we get around tractability issues by approximating
the posterior over robust Q-values as N (Q̄,diag(w)),
where w is the solution to URBE and Q̄ is the unique
solution to:

Q̄hsa = rhsa + γ
∑
s′,a′

πhs′a′Et(p̂hsas′)Q̄h+1
s′a′ ,

for h = 1, · · · , H , and Q̄H+1 = 0.

Remark 4.1. We should emphasize that the quantity
Et(p̂hsas′) is the conditional expectation of the worst-case
transition, and depends on the robust Q-values. There-
fore, it is different from the nominal transition which only
depends on observations.

5 ESTIMATION OF THE ROBUST
LOCAL UNCERTAINTY

Lemma 4.1 reveals a quantity ν that only depends on local
state and action pairs. We call it the robust local uncer-
tainty, since it also depends on the worst-case transitions.
In this section, we present a practical method for estimat-
ing this quantity, which will be useful for implementing
learning algorithms that take advantage of Theorem 4.1.
We first present the tabular representation in the robust
setup. We then recall the linear function representation
and neural network architectures from [19] which directly
enable to scale up the robust local uncertainty estimate.

5.1 TABULAR CASE

Assume a Dirichlet prior ϕsa := (ϕsas′)s′∈S on tran-
sitions that depart from (s, a) ∈ S × A. For all h =
1, · · · , H , the posterior distribution is Dirichlet:

phsa | Ft ∼ Dir(ϕsa + nhsa)

where nhsa := (nhsas′)s′∈S is the vector of counts for
observation (s, a, s′) at step h, up to episode t. Therefore,
given a posterior uncertainty set P̂hsa at step h, any phsa ∈
P̂hsa satisfies the following:

vartphsas′ ≤
ϕsas′ + nhsas′(∑

s′∈S(ϕsas′ + nhsas′)
)2 ,

Etphsas′ = ϕsas′ + nhsas′∑
s′∈S(ϕsas′ + nhsas′)

.

Since P̂hsa is a closed set, p̂sas′ also satisfies these inequal-
ities and

vartp̂hsas′

Etp̂hsas′
≤ 1∑

s′∈S(ϕsas′ + nhsas′)
≤ 1
nhsa

,

where nhsa is the visit count of the agent from state s
and action a. It follows that νhsa ≤ Q2

max | S | /nhsa.
Therefore, similarly to the non-robust setup, the robust
local uncertainty can be modeled as a positive constant
β2 divided by the visit count nhsa.

5.2 FUNCTION APPROXIMATION

We now adapt the robust local uncertainty estimate to
function approximation representations. Let Q̂hsa ≈ φTs θa

be a linear function approximation for the robust Q-values,
where φ : S → Rd designates state features and θa are pa-
rameters learned for each action a ∈ A. Using the inverse
count estimator (n̂hsa)−1 = φTs (ΦTaΦa)−1φs introduced
in the work [19], where Φa is the matrix of φs-s stacked
row-wise with action a being taken at s, we estimate the
robust local uncertainty by ν̂hsa = β2φTs (ΦTaΦa)−1φs.
As it receives a new sample φ, the agent needs to update
the matrix Σa := (ΦTaΦa)−1, which can be implemented
efficiently via the Sherman-Morrison-Woodbury formula
[8]:

Σ+
a := Σa − (ΣaφφTΣa)/(1 + φTΣaφ). (3)

The neural network representation proceeds similarly, pro-
vided that we treat all layers as feature extractors and
apply a linear activation function to the last layer. In that
case, we still have Q̂hsa ≈ φTs θa, where φs is the output of
the last network layer for state s and θa are the parameters
of the last layer for action a. We use this technique in
Algorithm 2.

6 URBE-BASED ALGORITHMS

6.1 URBE ALGORITHM

The URBE algorithm is described in Algorithm 1. Its
structure is similar to [21], but involves using robust dy-
namic programming so as to learn a robust policy as
well as posterior variance of the robust Q-values. At the
beginning of each episode, an MDP model is sampled
according to the current posterior distribution. The pos-
terior uncertainty set is also updated according to new
observations. Robust Q-values and its posterior variance
are then computed using dynamic programming. At each
step, the agent acts greedily with respect to the robust
Q-values plus the posterior variance.

6.2 DQN-URBE

Since the URBE algorithm requires solving a robust opti-
mization problem at each episode, it is computationally
costly and not scalable. Therefore, we present our DQN-
URBE algorithm (Algorithm 2), which avoids this prob-
lem by keeping the uncertainty set fixed and finite but
adds the robust local uncertainty as an exploration bonus.

The robust Bellman equation utilizes a robust TD-error
as a loss criterion for learning a minimax policy [6; 24].
The robust TD error to be minimized is defined as:

δh := r(sh, ah) + γ inf
p∈P

∑
s′∈S

p(sh, ah, s′) max
a′∈A

Q(s′, a′)

−Q(sh, ah),

Algorithm 1 URBE
Input: Prior distribution φp, confidence level ψ, t = 1
Initialize: t = 1. State and action (s, a) ∈ S ×A.
for episodes t = 1, · · · do

Sample MDP ∼ φp
Observe s′ and receive reward r
Update posterior ϕp and posterior uncertainty set
P̂h
Compute Q̂hs′b and whs′b for all action b
Sample ζb ∼ N (0, 1) for all b and compute:

a′ = arg max
b

(
Q̂hs′b + ζb

√
whs′b

)
Take action a′

s← s′, a← a′

end for

Algorithm 2 DQN - URBE
Input: Neural network for robust Q and w estimates;
Robust DQN subroutine robustDQN; Hyperparameter
β > 0
Initialize: Σa = µ · I for a ∈ A with µ > 0; Initial
state and action (s, a) ∈ S ×A
for t = 1, · · · do

for h = 2 to H + 1 do
Retrieve φ(s) from robust Q-network
Observe s′ and receive reward r
Compute Q̂hs′b and whs′b for all action b
Sample ζb ∼ N (0, 1) for all b and compute:

a′ = arg max
b

(
Q̂hs′b + βζb

√
whs′b

)
and

y =
{
φ(s)TΣaφ(s) if h = H + 1
φ(s)TΣaφ(s) + γ2whs′a′ otherwise

Take gradient step on w w.r.t. loss (y − wh−1
sa)2

Update robust Q-values using robustDQN
Update Σa according to equation (3)
Take action a′

s← s′, a← a′

end for
end for

where the uncertainty set is fixed. Works [5; 14] used
this method in deep robust RL and considered a finite
uncertainty set of models. The resulting performance
has been shown to lead to robust yet overly conservative
behavior.

In order to generate a less conservative solution, DQN-
URBE takes the posterior variance of the robust Q-values
into account. We should note that several of the assump-

tions that have been made and used for estimating the
robust local uncertainty are being violated in deep set-
tings. Indeed, transition models are no longer acyclic, the
policy we estimate the posterior variance on is no longer
fixed, and URBE is not solved exactly but approximated
by a sub-network of the robust Q-network. However, this
heuristic approach works well in practice, as it will be
shown in the next section.

Figure 1: DQN-URBE architecture

DQN-URBE consists of a neural network architecture
that has two output heads, as shown in Figure 1. The
first head attempts to learn the optimal robust Q-function
of a fixed uncertainty set via the robust-DQN subroutine
described in [6]. It is similar to regular DQN except that
it utilizes the robust TD-error as a loss criterion. The
other head attempts to estimate the robust uncertainty for
the robust Q-function, as mentioned in Section 4.3. The
robust local uncertainty is estimated using the function
approximation method described in Section 5. This de-
fines the loss function to minimize for learning the robust
local uncertainty parameters. We added stop-gradients to
prevent the posterior variance from affecting the robust
Q-network parameters and vice-versa. At each step, the
agent acts greedily with respect to the robust Q-function
plus the robust local uncertainty to encourage exploration.

7 EXPERIMENTS

In this section, we test the performance of our URBE-
based approach on three different domains: a toy MDP,
a Mar’s Rover domain and Cartpole. We first execute
URBE on a toy MDP and analyze its performance un-
der changing dynamics. We then propose DQN-URBE,
a deep RL algorithm that scales our URBE approach to
higher dimensional domains. We run and analyze the
performance of DQN-URBE on a Mar’s rover domain
and Cartpole. In each case, we compare the robust DQN-
URBE policy to three baselines: (1) a vanilla DQN; (2)
an overly conservative, robust DQN agent and (3) a DQN

that uses UBE for exploration [19]. Neural network struc-
tures and hyperparameters can be found in the Appendix.

7.1 SIMPLE MDP

We consider a variant of the 7-state MDP introduced in
[13], which is illustrated in Figure 2(a). The agent starts
from state s0 and chooses one of 4 actions. Action a1
leads to a purely deterministic outcome, whereas a2, a3
and a4 may be subject to adversarial transitions and lead
the agent to either state s3 or s6. The agent is brought
back to the terminating state s0 once it reached s1, s3
or s6. These latter states are the only ones with non-
zero rewards, although in practice, we set R(s6) = 0,
R(s1) = 0.14 and R(s3) = 1.

This MDP captures the main characteristics of a grid-
world domain in which the agent must reach a gold state
under adversarial transitions. At any episode, an adver-
sary can choose any transition probability p(s3) for the
agent to reach the gold state s3 from s2, s4 or s5. If it
behaves nicely and p(s3) = 1, the agent can achieve max-
imal reward. However, if p(s3) = 0, the agent is brought
to the ”bad state” s6 in case it did not choose action a1,
and thus gets minimal reward. For a fixed uncertainty
that accounts for all adversarial transitions, a minimax-
optimal policy corresponds to constantly taking action
a1.

Figure 2(b) shows the accumulated rewards over running
time for the described MDP, and each vertical line marks
a change in the adversarial probability p(s3). We suc-
cessively set such probability to 0.001, 0.8, 0.1 and 0.9.
Cumulative rewards have been averaged over 10 runs for
UBE and URBE, whereas the performance of the robust
policy is deterministic. As we can see in the figure, the
robust agent is overly conservative although its reward is
stable under adversarial transitions. Also, since the UBE-
based agent does not account for adversarial transitions,
it performs worse than URBE.

7.2 MAR’S ROVER

We extend the size of the previous MDP and consider
a 10 × 10 grid-world domain inspired by [2; 27]. A
rover starts at a random state from the top left of the grid
(red zone in Figure 2(c)) and is required to travel to the
goal located in the bottom right corner (orange square
in Figure 2(c)) in less than 200 steps so as to get a high
reward Rsuccess. The transition is stochastic. On each
step, if it chooses to move towards the goal, the agent
may be brought back to a final state and get a negative
reward Rfail with probability p. Otherwise, it moves into
the chosen direction and receives a small negative reward
Rstep.

s0

s1

s2

s3

s4

s5

s6

a1
a2

a3

a4

Rgood

Rbad

Rminimax

(a) (b) (c)

Figure 2: (a) Simple MDP illustration, with initial and terminating state s0. (b) Comparison of the accumulated rewards
on the simple MDP. The vertical lines mark changing dynamics. (c) Mar’s Rover domain. Starting states are randomly
chosen from the red zone. The goal state is in orange.

We trained vanilla DQN, robust DQN, DQN-UBE and
DQN-URBE on a nominal probability of failure p =
0.005. Uncertainty sets were generated by sampling 15
probabilities p in (0, 1). Figure 3 shows the testing per-
formance of each strategy over different probabilities. We
see that the robust agent is unable to reach the goal state,
even on the nominal model. However, it is never brought
back to the failing state but rather avoids moving towards
the goal state, which explains its stable performance. Sim-
ilarly to vanilla DQN, the UBE agent performs well on the
nominal but is most sensitive to changing dynamics. Its
reward gets even worse than robust DQN above p = 0.2,
since it tries to move towards the goal but is barred by ad-
versarial transitions. During testing, DQN-URBE reaches
high reward on the nominal model and shows less sen-
sitivity to increasing probabilities. It is therefore less
conservative than robust DQN but stays robust to model
misspecification.

We further investigated the trajectories of three agents
across the grid, under appropriate dynamics. A number
of 100 testing episodes were run. Figure 4 represents
heatmaps of states that were attained, with their propor-
tion of visits. These are visualized in four colors, ranging
from the lowest to the highest proportion: dark blue, cyan,
yellow and brown. Figures 4(a) and 4(b) correspond to
testing episodes on the nominal model p = 0.005 for
robust DQN and URBE, respectively. The robust agent
never reaches the goal, while URBE shows high propor-
tion of visitation on the winning state. In Figures 4(c)
and 4(d), a higher probability of failure (p = 0.2) has
been used to test the robustness of DQN-UBE against
DQN-URBE. The URBE agent clearly shows more ro-
bustness than UBE, as it reaches the goal state under this
mispecified model.

Figure 3: Testing rewards on Mar’s Rover.

7.3 CARTPOLE

In Cartpole, the agent’s goal is to balance a pole atop a
cart in a vertical position. The system corresponds to a
continuous MDP where each state is a 4-tuple 〈x, ẋ, θ, θ̇〉
representing the cart position, the cart speed, the pole
angle with respect to the vertical and its angular speed
respectively. The agent can make one of two actions:
apply a constant force either to the right or to the left of
the pole. It gets a reward of 1 if the pole has not fallen
down and if it stayed in the boundary sides of the screen.
If it terminates, the agent receives a reward of 0. Each
episode lasts for 200 steps.

All agents have been trained on a nominal pole length
of 0.75. Uncertainty sets were generated by sampling 15
lengths from a normal distribution centered at the nominal.
The agents were then tested over 200 episodes on differ-
ent pole lengths. Figure 5 shows their average reward
during testing. Robust DQN is overly conservative on the
nominal length although it stays robust to model misspec-

(a) (b) (c) (d)

Figure 4: Mar’s Rover heatmaps of state visitations during 100 testing episodes. (a) Robust DQN on p = 0.005. (b)
DQN-URBE on p = 0.005. (c) DQN-UBE on p = 0.2. (d) DQN-URBE on p = 0.2. Robust DQN is too conservative
compared to URBE, while UBE is less robust than URBE.

Figure 5: Testing rewards on Cartpole.

ification, compared to DQN-UBE which is most sensitive
to changing pole lengths. On the other hand, DQN-URBE
shows the best trade-off between less conservativeness on
the nominal and robustness to higher lengths. This leads
it to perform best on the nominal length and on higher
ones as well.

In order to further test the exploration capacity of the ro-
bust agents, we also compared the projected states 〈x, θ〉
attained on the nominal model during 200 testing episodes.
Figures 6(a) and 6(b) show that the span of visited states
for the robust agent is quite limited compared to URBE,
which may explain its overly conservative behavior. We
also compared the sensitivity of robust DQN with that of
DQN-URBE to changing dynamics during training. In
practice, we waited for both agents to converge before
changing the pole length from 0.75 to 1.25. We also
augmented the number of training episodes from 4000
to 5000. Figure 6(c) shows a smoothed version of the
training curve. Changes in dynamics are marked by ver-
tical lines, and each color is that of the corresponding
agent. As can be seen in the figure, although URBE con-

verges more slowly, it recovers much faster than robust
DQN which does not recover at all to its optimal reward.
Moreover, URBE is able to reach maximal reward.

8 RELATED WORK

Several methods have been proposed to mitigate conser-
vativeness in robust RL. These are indicated in Table 1.
These works can be collectively grouped into three dis-
tinct approaches for mitigating the conservativeness of
RMDPs. The first one focuses on circumventing rectan-
gular uncertainty sets. This includes works [15; 16] that
consider coupled uncertainties which still lead to tractable
solutions for the robust RL problem. Similarly, [29] pro-
posed the construction of non-rectangular uncertainty sets
that take advantage of transfer knowledge between states.
More recently, [9] introduced an uncertainty set structured
as an ambiguous linear function of a factor matrix and
showed that the underlying minimax policy is computa-
tionally tractable.

A second approach for overcoming conservativeness of
robust RL is to consider a distribution over the uncertainty
set rather than its worst-case model. In [31; 32], struc-
tural information on parameter distribution is assumed.
It is used for deriving an optimal policy under the worst
parameter distribution using distributionally robust opti-
mization. In [5], the authors showed that if we fix such
a distribution, the corresponding optimal policy interpo-
lates between being aggressive and robust. Nonetheless,
as indicated in the second column of Table 1, all of these
approaches address the problem of planning in robust
MDPs or its variants without learning the uncertainty set
in an online manner. Therefore, they cannot adapt it to
changing dynamics.

Conversely, a third approach involves learning adversarial
transitions and/or rewards. [13] considered the problem
of learning the uncertainty set in a frequentist setting and
used OFU methods for detecting adversarial states and

(a) (b) (c)

Figure 6: (a-b) Cartpole on the nominal model. These figures show the states 〈x, θ〉 attained and the two colors
correspond to the action applied on these states. (a) DQN-URBE; (b) Robust DQN. (c) Training score of DQN-URBE
and robust DQN. Vertical lines mark changes of the pole length. DQN-URBE explores more than robust DQN while it
stays robust to changing dynamics.

Table 1: Comparison of previous approaches with URBE

REFERENCE MITIGATES RMDPS
CONSERVATIVENESS

ONLINE LEARNING OF
AN UNCERTAINTY SET

SCALABILITY

URBE (THIS PAPER)
√ √ √

[9]
√

× ×
[29]

√
×

√

[23]
√

× ×
[5]

√
×

√

[13]
√ √

×
[15; 16]

√
× ×

[31; 32]
√

× ×

updating the uncertainty set accordingly. Although the re-
sulting algorithm is online and provably efficient, it is not
scalable to large domains and its efficiency strongly relies
on the statistical analysis. In a Bayesian setting, [23] ad-
dressed an algorithm that constructs Bayesian uncertainty
sets in a safe manner. However, besides learning an uncer-
tainty set offline with a fixed batch of data, their method
is not scalable because of its computational cost. In con-
trast, our proposed approach aims to adapt the level of
robustness iteratively and online from a dynamic stream
of data.

9 CONCLUSION

We presented a Bayesian approach to learning less con-
servative solutions when solving Robust MDPs. This is
achieved using the Uncertainty Robust Bellman Equa-
tion (URBE), our adaptation of the UBE equation, which
encourages safe exploration and implicitly modifies the
uncertainty set online using new observations. We scale
this approach to higher dimensional domains using the
DQN-URBE algorithm and show the ability of the agent
to learn less conservative solutions in a toy MDP, a Mar’s
rover domain and Open AI gym’s Cartpole domain. Fi-

nally, we show the ability of the agent to adapt to changing
dynamics significantly faster than a robust DQN agent
during training. Our approach shed light on the advan-
tages of adding a variance bonus to robust Q-learning for
encouraging safe exploration in lowering the conserva-
tiveness of robust strategies. Further work should analyze
the asymptotic behavior of our URBE-based method as
well as the impact of the size of the posterior uncertainty
set on the posterior variance of robust Q-values.

Acknowledgements

The authors would like to thank Chen Tessler for his help
and useful comments on this work. E. Derman would
like to acknowledge the support of the Israel Science
Foundation grant.

References

[1] J. BERGER, Statistical Decision Theory and
Bayesian Analysis, Springer Science and Business
Media, 2013.

[2] Y. CHOW, A. TAMAR, S. MANNOR, AND
M. PAVONE, Risk-sensitive and robust decision-

making: a CVaR optimization approach., Advances
in Neural Information Processing Systems, (2015),
pp. 1522–1530.

[3] R. DEARDEN, N. FRIEDMAN, AND D. ANDRE,
Model-based Bayesian exploration, UAI, (1999),
pp. 150–159.

[4] R. DEARDEN, N. FRIEDMAN, AND S. RUS-
SEL, Bayesian Q-learning, Proceedings of the 15th
National Conference on Articificial Intelligence,
(1998).

[5] E. DERMAN, D. MANKOWITZ, AND T. MANN,
Soft-robust actor-critic policy-gradient, AUAI press
for Association for Uncertainty in Artificial Intelli-
gence, (2018), pp. 208–218.

[6] S. DI-CASTRO SHASHUA AND S. MANNOR,
Deep Robust Kalman Filter, arXiv preprint
arXiv:1703.02310v1, (2017).

[7] M. GHAVAMZADEH, S. MANNOR, J. PINEAU,
AND A. TAMAR, Bayesian Reinforcement Learn-
ing: A Survey, Foundations and Trends in Machine
Learning, 8 (2015), pp. 359–492.

[8] G. GOLUB AND C. VAN LOAN, Matrix Computa-
tions, The John Hopkins University Press, 1996.

[9] V. GOYAL AND J. GRAND-CLEMENT, Robust
Markov decision process: Beyond rectangularity,
arXiv preprint arXiv:1811.00215v4, (2019).

[10] V. GUPTA, Near-optimal Bayesian ambiguity sets
for distributionally robust optimization, Manage-
ment Science, (2018).

[11] G. N. IYENGAR, Robust Dynamic Programming,
Mathematics of Operations Research, 30 (2005),
pp. 257–280.

[12] T. JAKSCH, R. ORTNER, AND P. AUER, Near-
optimal regret bounds for reinforcement learning,
Journal of Machine Learning Research, 11 (2010),
pp. 1563–1600.

[13] S. LIM, H. XU, AND S. MANNOR, Reinforcement
Learning in Robust Markov Decision Processes,
Mathematic of Operations Research, 41 (2016),
pp. 1325–1353.

[14] D. J. MANKOWITZ, T. A. MANN, S. MANNOR,
D. PRECUP, AND P.-L. BACON, Learning Robust
Options, in The 32d AAAI Conference on Artificial
Intelligence, 2018.

[15] S. MANNOR, O. MEBEL, AND H. XU, Lightning
Does Not Strike Twice: Robust MDPs with Coupled
Uncertainty, in Proceedings of the 29th International
Conference on Machine Learning, 2012.

[16] , Robust MDPs with k-Rectangular Uncer-
tainty, Mathematics of Operations Research, 41
(2016), pp. 1484–1509.

[17] S. MANNOR, D. SIMESTER, P. SUN, AND J. TSIT-
SIKLIS, Bias and Variance Approximation in Value
Function Estimates, Management Science, 53
(2007), pp. 308–322.

[18] A. NILIM AND L. EL GHAOUI, Robust control of
Markov decision processes with uncertain transition
matrices, Operations Research, 53 (2005), pp. 783–
798.

[19] B. O’DONOGHUE, I. OSBAND, R. MUNOS, AND
V. MNIH, The Uncertainty Bellman Equation and
Exploration, Proceedings of the 35th International
Conference on Machine Learning, (2018).

[20] I. OSBAND AND B. VAN ROY, Why is posterior
sampling better than optimism for reinforcement
learning?, Proceedings of the 34th International
Conference on Machine Learning, (2017), pp. 2701–
2710.

[21] I. OSBAND, B. VAN ROY, AND D. RUSSO, (More)
efficient reinforcement learning via posterior sam-
pling, NIPS, (2013), pp. 3003–3011.

[22] I. OSBAND, B. VAN ROY, AND Z. WEN, General-
ization and exploration via randomized value func-
tions, Proceedings of The 33rd International Con-
ference on Machine Learning, 48 (2016), pp. 2377–
2386.

[23] M. PETRIK AND R. RUSSELL, Beyond Confidence
Regions: Tight Bayesian Ambiguity Sets for Robust
MDPs, arXiv preprint arXiv:1902.07605, (2019).

[24] A. ROY, H. XU, AND S. POKUTTA, Reinforcement
learning under Model Mismatch, 31st Conference
on Neural Information Processing Systems, (2017).

[25] M. STRENS, A Bayesian Framework for Reinforce-
ment Learning, Proceedings of the Seventeenth
International Conference on Machine Learning,
(2000).

[26] A. TAMAR, S. MANNOR, AND H. XU, Scaling
up robust MDPs using function approximation, Pro-
ceedings of the 31st International Conference on
International Conference on Machine Learning, 32
(2014), pp. 1401–1415.

[27] C. TESSLER, D. MANKOWITZ, AND S. MANNOR,
Reward Constrained Policy Optimization, ICLR,
(2019).

[28] W. THOMPSON, On the likelihood that one unknown
probability exceeds another in view of the evidence
of two samples., Biometrika, 25 (1933), pp. 285–
294.

[29] A. TIRINZONI, M. PETRIK, X. CHEN, AND
B. ZIEBART, Policy-Conditioned Uncertainty Sets
for robust Markov Decision Processes, Advances
in Neural Information Processing Systems, (2018),
pp. 8953–8963.

[30] W. WIESEMANN, D. KUHN, AND B. RUSTEM,
Robust Markov Decision Processes, Mathematics of
Operations Research, 38 (2013), pp. 153–183.

[31] H. XU AND S. MANNOR, Distributionally Robust
Markov Decision Processes, Mathematics of Opera-
tions Research, 37 (2012), pp. 288–300.

[32] P. YU AND H. XU, Distributionally Robust Coun-
terpart in Markov Decision Processes, IEEE Trans-
actions on Automatic Control, 61 (2016), pp. 2538 –
2543.

	INTRODUCTION
	BACKGROUND
	ROBUST MARKOV DECISION PROCESSES
	THE UNCERTAINTY ROBUST BELLMAN EQUATION
	POSTERIOR UNCERTAINTY SETS
	POSTERIOR OVER ROBUST Q-VALUES
	POSTERIOR VARIANCE OF ROBUST Q-VALUES

	ESTIMATION OF THE ROBUST LOCAL UNCERTAINTY
	TABULAR CASE
	FUNCTION APPROXIMATION

	URBE-BASED ALGORITHMS
	URBE ALGORITHM
	DQN-URBE

	EXPERIMENTS
	SIMPLE MDP
	MAR'S ROVER
	CARTPOLE

	RELATED WORK
	CONCLUSION

