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Abstract

We consider probabilistic programming for
birth-death models of evolution and introduce
a new widely-applicable inference method
that combines an extension of the alive
particle filter (APF) with automatic Rao-
Blackwellization via delayed sampling. Birth-
death models of evolution are an important
family of phylogenetic models of the diversifi-
cation processes that lead to evolutionary trees.
Probabilistic programming languages (PPLs)
give phylogeneticists a new and exciting tool:
their models can be implemented as probabilis-
tic programs with just a basic knowledge of
programming. The general inference methods
in PPLs reduce the need for external experts,
allow quick prototyping and testing, and ac-
celerate the development and deployment of
new models. We show how these birth-death
models can be implemented as simple pro-
grams in existing PPLs, and demonstrate the
usefulness of the proposed inference method
for such models. For the popular BiSSE model
the method yields an increase of the effective
sample size and the conditional acceptance rate
by a factor of 30 in comparison with a stan-
dard bootstrap particle filter. Although con-
centrating on phylogenetics, the extended APF
is a general inference method that shows its
strength in situations where particles are of-
ten assigned zero weight. In the case when the
weights are always positive, the extra cost of
using the APF rather than the bootstrap par-
ticle filter is negligible, making our method a
suitable drop-in replacement for the bootstrap
particle filter in probabilistic programming in-
ference.

Stockholm, Sweden

1 INTRODUCTION

The development of new probabilistic models of evo-
lution is an important part of statistical phylogenetics.
These models require inference algorithms that are able
to cope with increased model complexity as well as the
larger amount of observational data available today. Ex-
perts from several fields typically need to be involved,
both to design bespoke inference algorithms, and to im-
plement the new models and the inference algorithms
in existing software or to develop new software from
scratch. Probabilistic programming languages (PPLs)
(e.g., Goodman et al., 2008; Tolpin et al., 2016; Mans-
inghka et al., 2014; Paige and Wood, 2014) have the po-
tential to accelerate this: generative models are specified
as simple programs and compiled into executable appli-
cations that include general inference engines. Writing
models in PPLs requires just basic programming skills,
and thus allows quick prototyping and testing.

Quite a few software applications for statistical phy-
logenetics exist today, including the popular MrBayes
(Huelsenbeck and Ronquist, 2001) and BEAST (Drum-
mond and Rambaut, 2007). They typically take a
Bayesian approach and implement Markov chain Monte
Carlo inference (see review by Nascimento et al., 2017).
Most of these applications do not allow the user to spec-
ify models outside of a predefined model space, which
can be quite narrow. Even when adding new models is
possible, it is usually a challenging task requiring not
only good programming skills but also detailed knowl-
edge of the software design and implementation.

Statistical phylogeneticists recognize the benefits of soft-
ware that supports the addition of new models and in-
ference methods. For example, the design of BEAST 2
(Bouckaert et al., 2014) allows users to create and use
custom modules. RevBayes (Hohna et al., 2016) goes
even further: it uses a domain-specific probabilistic pro-
gramming language for phylogenetics based on prob-
abilistic graphical models (e.g., Koller and Friedman,



2009). However, the language is not Turing-complete,
which means it has some limitations. For example it does
not allow unbounded recursion.

In this paper we concentrate on birth-death models of
evolution, an important family of phylogenetic models.
In these models, births correspond to lineage splits (spe-
ciation events) and deaths to extinction events. These
models specify probability distributions of evolutionary
trees and the task is to infer model parameters given a
part of a complete tree that represents evolution of cur-
rently living species.

We take a step toward using PPLs in statistical phyloge-
netics: our main contribution is a new general inference
algorithm based on an extension of the alive particle fil-
ter (APF) (Del Moral et al., 2015) combined with auto-
matic Rao-Blackwellization via delayed sampling (Mur-
ray et al., 2018). We also show how to implement birth-
death models of evolution in existing PPLs, and show
the usefulness of our inference algorithm for such mod-
els. Interestingly, by using this algorithm we avoid sam-
pling of birth and death rates. We believe that the algo-
rithm may be of interest for other models with highly-
informative observations. Finally, we prove that the esti-
mator of the marginal likelihood in the extended APF is
unbiased.

The rest of the paper is organized as follows: in Section 2
we give a brief recapitulation of basic concepts in evo-
lution and introduce probabilistic programming in more
detail. We derive our inference algorithm and show how
phylogenetic birth-death algorithms can be implemented
in PPLs in Section 3. We give implementations of two
well-known phylogenetic birth-death models and com-
pare several general inference algorithms for these mod-
els in Section 4. We offer some conclusions and ideas for
future research in Section 5.

2 BACKGROUND

2.1 SPECIATION, EXTINCTION AND
PHYLOGENIES

There are two types of events that play a significant role
in the evolution of any species. Speciation occurs when
the population of one species splits and eventually forms
two new species. Extinction occurs when the whole pop-
ulation of one species dies out. Species that are not ex-
tinct, i.e., species with individuals alive at the present
time, are called extant.

In phylogenetics, the before present (BP) time is usually
used for dating, i.e., if an event happened at time 7 it
means it happened 7 time units ago.

The result of an evolutionary process is a binary tree
called the complete phylogeny. A very simple example
of a complete phylogeny is depicted in Figure 1a. The
nodes represent events and species at significant times:

e the root node represents the most recent common
ancestor (MRCA) of all species of interest,

e an internal node represents a speciation event,

e aleaf at 7 = 0 (i.e. the present time) represents an
extant species,

e aleafat” > 0 (i.e. in the past) represents an extinc-
tion event.

The length of edges—or branches as they are called in
phylogenetics—is the difference between the time of the
parent and the child node.

The reconstructed phylogeny is obtained from a com-
plete tree by removing all subtrees that involve only ex-
tinct species. We will refer to this as pruning. An exam-
ple of a reconstructed tree is depicted in Figure 1b.

The reconstructed phylogeny represents the evolution of
the extant species and only contains information that can
be observed directly (the extant species) or reconstructed
by statistical analysis of the DNA sequences of extant
species (the topology of the tree and the times of the spe-
ciation events).

2.2 PROBABILISTIC PROGRAMMING

The development of new probabilistic models and infer-
ence algorithms is a time-consuming and possibly error-
prone process that usually requires skilled experts in
probability, statistics and computer science. Probabilis-
tic programming is a relatively new approach to solve
this problem: generative models are expressed as com-
puter programs in probabilistic programming languages
(PPLs) with support for random variables and operations
on them. Integral to PPLs are general inference engines
that perform the inference in such programs. These en-
gines estimate the distribution of all latent random vari-
ables conditioned on the observed data and use it to an-
swer the queries of interest.

PPLs allow us to define and initialize random variables
with a given distribution, for example:

x ~ Normal(0, 1)

The program may use random variables as though any
ordinary variable, and control the flow of the execution.
Depending on the PPL, conditioning on the observed
data might be specified explicitly or implicitly. The for-
mer means that conditioning on the observed data is a
part of the program, for example:
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Figure 1: Complete (on the left) vs. reconstructed (on the right) tree. The reconstructed tree shows only the evolution

of the extant species.

x ~ Normal(0, 1)
observe 0.892 ~ Normal(z, 1)

The latter implies that observed values of random vari-
ables are not part of the program, but instead specified at
run time (e.g. as arguments).

The main general inference methods used in PPLs are
adaptations of various inference algorithms for the uni-
versal setting described below, including Markov chain
Monte Carlo (MCMC) (Metropolis et al., 1953; Hast-
ings, 1970), sequential Monte Carlo (SMC) (Gordon
et al., 1993; Del Moral et al., 2006), and Hamiltonian
Monte Carlo (HMC) (Neal, 2011).

There already exist quite a few PPLs today based on dif-
ferent programming paradigms, for example functional
PPLs like Anglican (Tolpin et al., 2016) and Venture
(Mansinghka et al., 2014); imperative Probabilistic C
(Paige and Wood, 2014), Turing (Ge et al., 2018), Stan
(Carpenter et al., 2017), Edward (Tran et al., 2016) and
Pyro (Bingham et al., 2019); and object-oriented Birch
(Murray and Schon, 2018).

2.3 PROGRAMMATIC MODEL AND SMC

The execution of a probabilistic program can be modeled
using a programmatic model (Murray and Schon, 2018).
Let {V;}; denote a countable set of all random variables,
both latent and observed, in a probabilistic program. This
set might be infinite due to loops and recursion. Dur-
ing execution, whenever a random variable V; is encoun-
tered, its realization v; is drawn from a distribution asso-
ciated with it.

Multiple executions of the program might in general en-
counter different subsets of the random variables (e.g.,

due to using random variables in conditional expres-
sions) and encounter them in a different order (with the
exception of the first one). For each random variable V
not encountered during the execution we set v; = L (the
symbol L represents an undefined value). We will how-
ever assume that any execution encounters all observed
random variables and that these observations are encoun-
tered in the same order.

Let o denote a sequence of indices into {V;} specifying
the order in which the random variables are encountered
during an execution of the program, and let || denote
the length of this sequence. Also, let {v; };c, denote the
realizations of the random variables indexed by o, i.e.,
V(1] - -+ Vol|o|]- In a similar manner, we will use {V; =
’Ui}ieg to denote Vg[l] =Ug[1] - ) VUHUH = Vg||o|]-

The index of the k-th encountered variable is given by a
deterministic function Ne (for next) of the realizations of
the previously encountered random variables, so that

olk] = Ne({vi}icon:k—11),

where o[1:k—1] denotes the indices of the first £k — 1 en-
countered random variables. The function Ne is uniquely
defined by the probabilistic program. If there are no more
random variables to encounter, Ne returns L.

The k-th encountered random variable, V), is sampled
from

Voik] ~ Poir) (- Pa({vi bicor1:o—1))),

where pg |y is the distribution specified by the program,
Pa (for parents) is a deterministic function returning the
parameters of this distribution, and again, it is a function
of the realizations of the previously encountered random
variables.



Algorithm 1 Bootstrap particle filter (BPF).
forn =1to N do
o oy w(” «— 1/N
fort =1to 1 do
forn =1to N do
an~ Cat({thl)/ 2111 wﬂl m

m=1
o{™ « PROPAGATE(v®,)

w™  py(ye Pa(u™))
o I - v

> Initialize

) > Resample
> Propagate
> Weigh

function PROPAGATE(v) > Run until next observe
k < Ne(v)
while x ¢ v do

v[k] ~ pr(:| Pa(v))

k < Ne(v)

return v

The joint distribution function encoded by the program
can be given recursively (starting with o = []):

p({vitigolo, {Vj = vj}jeo)
p({vitigor |0’ {V; = vj}jeo)

Xpm('”ﬁ| Pa({vj}jeo)) ifk# 1,
Y1 ifr=1lAVido:v; =L,
0 otherwise,

where k = Ne({v;};c,) and o’ is obtained from o by
appending . The first case is the conditional probability
chain rule, the remaining cases cover the situation where
there are no more random variables to encounter.

We wish to sample from the posterior distribution
p({’l}i}igﬂvy[l] = Y1,-- .,VA/[T] = yT), where T' de-
notes the number of observations, y; denotes the ¢-th ob-
servation and y denotes the sequence of indices of the ob-
served random variables in {V;}. The sequential nature
of the joint distribution allows us to employ Sequential
Monte Carlo methods (Del Moral et al., 2006) to sample
from this posterior distribution, including the bootstrap
particle filter (BPF) summarized in Algorithm 1. For the
sake of brevity we have assumed that the last observation
is also the last encountered random variable. In the pseu-
docode, Cat() denotes the categorical distribution with
the given event probabilities. Variables denoted by v are
associative arrays (also known as maps or dictionaries)
used to store the realizations of random variables (v[i
denotes the realization of V;). The PROPAGATE function
runs the program until it encounters an observation.

Samples from the joint distribution and the correspond-
ing weights can be used to estimate the expected value of

a test function h of interest:

R don w(Tn)h (U(T"))

E[h] = o)
Zn wp

as well as to estimate the marginal likelihood p(y1.7):

R T 1 N
Z = HN Zwin)
1 n=1

t=

)

3 METHODS

3.1 EXTENDED ALIVE PARTICLE FILTER

In the bootstrap particle filter, each particle is propagated
by simulating the prior, and may make random choices
that lead to a state with zero weight. In phylogenetic
birth-death models this happens quite often: when simu-
lating the evolution of subtrees that must ultimately be-
come extinct, if any species happen to survive to the
present time, the particle is assigned zero weight. In ex-
treme cases, all particles have zero weight, and the BPF
degenerates.

Del Moral et al. (2015) considered this problem in a set-
ting with indicator potentials (such as in approximate
Bayesian computation), i.e. all weights being either zero
or one. They proposed a modification of the BPF, where
the resampling and propagation steps are repeated for
particles that have weight zero until all particles have
weight one. Details of the resulting alive particle filter
(APF) as well as proofs of some of its theoretical prop-
erties can be found in Del Moral et al. (2015).

Although the original APF was designed specifically for
indicator potentials, we have extended the algorithm to
work with importance weights, see Algorithm 2 (the
PROPAGATE function is the same as in Algorithm 1). The
APF requires N + 1 particles rather than NV in order to
estimate the marginal likelihood without bias.

At the t-th observe statement, if the weight of a particle is
zero, the resampling and propagation steps are repeated.
This procedure is repeated until the weights of all N + 1
particles are positive. The APF counts the total number
of propagations P, for each observation. The algorithm
never uses the states or weights of the N + 1-th particle,
but propagations made using this particle are included
in P;, and used to calculate the unbiased estimate of the
marginal likelihood p(y1.7):

The proof of unbiasedness can be found in Appendix A
in the supplementary material.



Algorithm 2 Alive particle filter (APF).
forn =1to N do
o @y wl™ « 1/N
fort =1to 1 do
Pt 0
forn=1to N + 1do
repeat > Resample
m N l
a ~ Cat({w")/ 5w i)
o{™ « PROPAGATE(v™,)
wtn < Dyt (vt Pa(vtn )

until w\™ >0

v ] < e

> Initialize

> Propagate

> Weigh

Unbiasedness of the marginal likelihood estimate opens
for the possibility to use the APF within particle Markov
chain Monte Carlo methods.

3.2 BIRTH-DEATH MODELS AS
PROBABILISTIC PROGRAMS

Phylogentic birth-death models constitute a family of
models where speciation (birth) events and extinction
(death) events occur along the branches of a phyloge-
netic tree. Typically, the waiting times between events
are exponentially distributed. In general, the rates of
these exponential distributions do not remain constant
but rather change continuously, discontinuously, or both.
Some models assume that these rates further depend on
a state variable that itself evolves discontinuously along
the tree; in some cases the value of this state variable is
given for the extant species.

The constant-rate birth death (CRBD) model (Kendall,
1948) is the simplest birth-death model, where the spe-
ciation rate A\ and extinction rate p remain constant over
time. Pseudocode for generating phylogenetic trees us-
ing the CRBD model can be found in Appendix B in the
supplementary material.

Let 7, denote the subtree rooted at the node r, and
Ch(r) denote the children of this node. The likelihood
of the subtree 7, can be expressed recursively (we have
dropped conditioning on A and g in the notation for
brevity):

2 I »(Te) if r is the root node,

c€Ch(r)

2Xe~A+HWA TT p(T.) if ris a speciation,
p<7;) _ c€Ch(r)

pe~ At if 7 is an extinction,

e~ (Atm)A, if 7 is an extant species,

where A, is the length of the branch between the node
r and its parent. The factor 2 occurs in the formulas
because the orientation of the two child subtrees does
not matter. If r is a speciation event, no extinction oc-
curs along the branch (factor e “##+) and the speciation
happens after a waiting time A, (factor A exp™ &), If
r is an extinction event, no speciation occurs along the
branch (factor e~*#7) and the extinction occurs after
waiting time A, (factor pe ##r). Finally, if 7 is an
extant species, neither extinction nor speciation occurs
along the branch. The likelihood of the complete phy-
logeny T is given by p(Troot)-

The likelihood in other birth-death models that admit
varying rates and/or include the state can be derived in
a similar way.

The likelihood of the complete phylogeny for the CRBD
model can be conveniently written as

p(T) = 25+1)\S’UIX€7()\+;L)L’

where L is the sum of all branch lengths, S the number of
speciation events (excluding the root) and X the number
of extinction events.

The task of interest is to infer model parameters given
a reconstructed tree. Recall that this tree is a part of
the complete tree corresponding to the extant species and
their ancestors. A naive approach to inference is to sim-
ulate trees from the generative model, prune back the ex-
tinct subtrees, and reject those for which the pruned tree
does not equal the observed tree. Such an approach al-
ways results in rejection.

Instead, we turn the problem upside down: starting with
the observed tree and augmenting it with unobserved in-
formation to obtain a complete tree. Recalling Figure 1,
the observed tree is traversed in depth-first order. At the
root node the importance weight is doubled (since the
orientation of the children does not matter). Along each
branch, the generative model is used to simulate:

e changes to the state (in models with state),
e changes to the speciation and extinction rates,

o hidden speciation events.

For each of the hidden speciation events, the model sim-
ulates the evolution of the new species (i.e. a hidden sub-
tree). If any portion of a hidden subtree survives to the
present time, the weight is set to zero. If not, the current
weight is doubled, since the children created by a hidden
speciation event on an observed branch are interchange-
able: either can correspond to the observed subtree, the
other must correspond to the hidden subtree and goes ex-
tinct.



If the examined branch ends with a speciation event,
the algorithm observes 0 ~ Exponential(\) and dou-
bles the weight. Finally, as there were no extinction
events along the processed branch, the algorithm ob-
serves 0 ~ Poisson(pA). In models with state, if the
branch ends at 7 = 0 (i.e. the present time) we also con-
dition on the simulated state being equal to the observed
state. We trigger resampling at the end of each branch.

Let us return to the CRBD model in light of the discus-
sion above. The likelihood of a proposed complete tree
T is given by

q(T/) — )\H/e—)\L“b, > (2)\),5'/’uX’e—(k—i-/L)L’7

where H’ denotes the number of all simulated hidden
speciation events along the observed tree, Lqps the sum
of the branch lengths in the observed tree, S’ the number
of speciation events in all hidden subtrees, X’ the num-
ber of extinction events and finally L’ denotes the sum
of the branch lengths in the hidden subtrees. The factor
MH' =ML jg related to the hidden speciation events, and
the rest is the combined likelihood of all hidden subtrees.

The weight of the proposal 7" that is compatible with the
observation (i.e. without any extant species in the hidden
subtrees) is given by

’
w(T/) — 2H X QSobs+1 X )\Sobs X e_ﬂLobs’

where Sgps is the number of observed speciation events.
The factor 27’ corresponds to doubling the weight for
each hidden subtree, the factor 25est1 corresponds to
doubling the weight at the root node and at all observed
speciations, the factor A is due to observing 0 ~
Exponential(\) at all observed speciations, and finally
the factor e ~#Le is due to observing 0 ~ Poisson(uA)
for all observed branches.

Multiplying the likelihood ¢(7”) and the weight w(7")
of the proposal and summing the event numbers and the
branch lengths we get

o(Tw(T") = p(T").

3.3 DELAYED SAMPLING OF THE RATES

In a Bayesian setting, the parameters are associated with
a prior distribution. Using the gamma distribution (or
the exponential distribution as its special case) as a prior
for the rates of speciation, extinction and state change is
mathematically convenient since the gamma distribution
is a conjugate prior for both the Poisson and the expo-
nential likelihood. Instead of sampling these parameters
from the prior distribution before running the particle fil-
ter (which we refer to as immediate sampling), we can
exploit the conjugacy, which allows us to marginalize out

the parameters and sample them after running the par-
ticle filter. Exploiting the conjugacy in a probabilistic
program can be automated by an algorithm known as de-
layed sampling (Murray et al., 2018).

Consider the following prior:
v ~ Gammal(k, ),

with £ € N. When the program needs to make a draw
from a Poisson distribution

n ~ Poisson(rvA),

it can instead make a draw from the marginalized distri-
bution:

e 1
n ~ NegativeBinomial (k, = AQ) ,
where NegativeBinomial(k, p) is the negative binomial
distribution counting the number of failures given the
number of successes k and the probability of success p
in each trial. The distribution for v is then updated to the
posterior distribution according to

0
v ~ Gamma <k’ + n, ]_—|—A9) .
Similarly for variables distributed according to the expo-
nential distribution, instead of drawing

A ~ Exponential(v),

the program makes a draw from the marginalized distri-
bution:

A ~ Lomax (é, /4;) ,

where the first parameter denotes the scale and the sec-
ond the shape of the Lomax distribution, and the distri-
bution for v is then updated to

0

VNGamma<k+l,1+Ae>.

Using this strategy there is actually no need to sample
the rates at all; all draws involving these rates are re-
placed by draws from the negative binomial and the Lo-
max distributions with a consequent update of the rate
distribution. Details of these conjugacy relationships can
be found in Appendix C in the supplementary material.

4 EXPERIMENTS

We implemented the inference algorithms described
above in the probabilistic programming language



Birch (Murray and Schon, 2018) and added support for
the conjugacy relationships described in the previous
section, so that Birch can provide automated delayed
sampling for these. We also implemented two phyloge-

netic birth-death models, described in Sections 4.1 and
4.2 below.

We ran the inference for these models using differ-
ent combinations of the inference method, the sampling
strategy (immediate or delayed) and different number of
particles V. For each combination we executed the pro-
gram M times, collected the estimates {Z,,}M_, of the
marginal likelihood and calculated the relative effective
sample size (RESS):

2
M 5
RESS — — (Zmzl Zm)
TN M 5y
M Zm:l Z72n
as well as the conditional acceptance ratio (CAR) (see
Murray et al., 2013 for more detail):

1 M
CAR = — (2;@—1),

where c; is the sum of the 7 smallest elements in {Em}m.
We also calculated the sample variance var log Z.

)

For the experiments with the APF we also compared the
total number of propagations with the number of propa-
gations in the BPF by calculating

M
Zm:l Pm
MNT ~°

where P,, is the number of all propagations made during
the m-th execution and 7' is the number of branches in
the observation. Note that NT is the number of propa-
gations in the BPF.

p:

4.1 CONSTANT-RATE BIRTH DEATH MODEL

Pseudocode for the probabilistic program implementing
the constant-rate birth death (CRBD) model is listed as
Algorithm 3. To sample speciation events along a branch
we first sample a number of events from a Poisson dis-
tribution and then sample the time of each event from a
uniform distribution. The implementation in Birch can
be found in the supplementary material.

We used the phylogeny of cetaceans (Steeman et al.,
2009) as the observation. This phylogeny (Figure 2 in
the supplementary material) represents the evolution of
whales, dolphins and porpoises and contains 87 extant
species. We used Gamma(1l,1) as the prior for both
the speciation and extinction rate. The results of exper-
iments comparing BPF and APF with immediate or de-
layed sampling for different number of particles /N, and

Algorithm 3 CRBD model as a probabilistic program.

Input:
e T —apre-ordered list of nodes in the observation

e ky, 0, — the shape and scale of the prior Gamma
distribution for A (k) € N)

e k,,0, — the shape and scale of the prior Gamma
distribution for u (k, € N)

A ~ Gamma(ky, 6,)
p ~ Gamma(k,,, 6,)
forallr € T do
if 7 is the root then
double the weight
continue
¢hs ~ Poisson(AA,.)
for ¢ < 1 to ¢, do
7 ~ Uniform(7,, 7 + A,)
if BRANCHSURVIVES(7) then
set the weight to 0 and return
else
double the weight

if  has children then
observe 0 ~ Exponential(\)
double the weight

observe 0 ~ Poisson(uA,)

function BRANCHSURVIVES(T, A, 1)
A ~ Exponential(u)
if A > 7 then
return true
¢p ~ Poisson (AA)
for i < 1to ¢, do
7/ ~ Uniform(r — A, 1)
if BRANCHSURVIVES(7’, A, 1) then
return true
return false

running M = 200 executions for each combination, are
summarized in Table 1 and Figure 3a.

When using delayed sampling, the speciation and extinc-
tion rates are never sampled; the rates are instead repre-
sented by gamma distributions with parameters that are
updated during the execution. Let kg\m), 95\7”), kfbm) and

Q,Sm) denote the final values of these parameters for a
particle drawn from all particles in the m-th run with
the probabilities proportional to their final weights. The
posterior distributions for A and g can be estimated by
mixtures of gamma distributions:

M
A~ 2M12 Z 2,” Gamma, (kg\m), Qf\m)) ,
m=1

m m=1
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Figure 2: The posterior distributions for the speciation
and extinction rates for the cetaceans using the CRBD
model.

M
1 ~
W~ —— Zm Gamma (k:(m), 9("”)) )
S 7 o

Figure 2 depicts the posterior distributions for the spe-
ciation and extinction rates estimated using M/ = 1000
runs of the APF with N = 4096 particles.

4.2 BINARY-STATE SPECIATION AND
EXTINCTION MODEL

The binary-state speciation and extinction (BiSSE)
model (Maddison et al., 2007) introduces a binary state
for species, denoted by s € {0, 1}. Each state has its own
(but constant) speciation and extinction rates, denoted by
As and pg. The waiting time between switching state
is exponentially distributed with rates gg; for switching
from state O to state 1, and ¢1(¢ from state 1 to state 0. In
our experiments we made a (common) assumption that

qgo1 = qi0 = -

We used the same observation as Rabosky and Goldberg
(2015), i.e., we extended the cetacean phylogeny with the
state variable related to the body length of cetaceans ob-
tained from Slater et al. (2010). Data are available for 74
of the 87 extant species. The binary state 0 and 1 refers
to the length being below and above the median. Again
we used Gamma(1, 1) as the prior for Ag, A1, po and g1,
and Gamma(1,10/820.28) as the prior for ¢ (the num-
ber in the denominator is the sum of all branch lengths).
The initial state at the root is drawn from {0, 1} with
equal probabilities. The results for experiments com-
paring the BPF and the APF with immediate or delayed
sampling for different number of particles N, and run-
ning M = 200 executions for each combination, are
summarized in Table 2 and Figure 3b. When running
the experiments using the BPF and immediate sampling,
a certain fraction of the executions degenerated—from
25% of the executions with 1024 particles down to 1.5%
of the executions with 4096 particles. These executions
were excluded when calculating var log Z.

Our implementation of the BiSSE model can be found in
the supplementary material.

S DISCUSSION AND CONCLUSION

In this paper we introduced a new general inference
method for probabilistic programming combining an ex-
tended alive particle filter (APF) with delayed sampling,
and proved that the resulting estimate of the marginal
likelihood is unbiased. We showed how phylogenetic
birth-death models can be implemented in probabilis-
tic programming languages, in particular, we considered
two models—CRBD and BiSSE and their implementa-
tion in the probabilistic programming language Birch.
We showed the strength of this inference method for
these models compared to the standard bootstrap parti-
cle filter (BPF) (Tables 1 and 2, and Figures 3a and 3b):
for the BiSSE model using 8192 particles we increased
RESS approximately 29 times, CAR approximately 30
times and lowered var log Z more than 1150 times at the
cost of running 3 times more propagations.

The extended APF is a suitable drop-in replacement for
the BPF for black-box probabilistic programs. If a pro-
gram produces only positive weights, the APF produces
the same result as the BPF at the overhead of just one ex-
tra particle, used to estimate the marginal likelihood. On
the other hand, if the program can produce zero weights,
the APF behaves much more reasonably than the BPF:
resampling and propagation are repeated until all parti-
cles have positive weight. This may seem equivalent to
using the BPF with a higher number of particles (p times
more to be precise), but this is not the case: the number
of propagations P; is not the same throughout the exe-
cution, but rather adapted dynamically for each ¢. This
simplifies the tuning of the number of particles for such
models.

The learning of rates in birth-death models sits in the
context of broader problems in phylogenetics, such as
the learning of trees. Interesting future work would be to
consider whether models and methods for learning rates
can be combined with models and methods for learning
tree structures for joint inference.
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Figure 3: Box plot of logZ for the CRBD (on the left) and BiSSE (on the right) model for different number of
particles (/V) and methods. The lower and upper hinges correspond to the first and third quartile, whereas the midhinge
corresponds to the median. Values outside of the interquartile range are shown as dots. The horizontal dashed line
shows the true value of log Z for the CRBD model.

Table 1: Summary of the results of the experiments with the CRBD model using the cetacean phylogeny as the
observation, priors A, 4 ~ Gamma(1l, 1), and M = 200.

Bootstrap particle filter (BPF) Alive particle filter (APF)

Immediate sampling Delayed sampling Immediate sampling Delayed sampling

N | RESS CAR var | RESS CAR  var p RESS CAR  var p RESS CAR var
512 0.02 0.04 3342 0.13 023 316 | 1.8 011 0.15 507 |17 040 046 2.7
1024 0.11 0.12 1175 028 035 129 |18 0.14 018 202 |17 054 055 038
2048 0.14 0.17 522 047 047 87|17 029 032 76|17 073 069 03
4096 0.18 0.23 17.2 0.67 063 07|17 036 042 27|17 084 076 0.2

Table 2: Summary of the results of the experiments with the BiSSE model using the cetacean phylogeny ex-
tended with information about the body length as the observation, priors Ag, A1, o, 11 ~ Gamma(1,1) and
¢ ~ Gamma(1,10/820.28), and M = 200.

Bootstrap particle filter (BPF) Alive particle filter (APF)

Immediate sampling Delayed sampling Immediate sampling Delayed sampling

N | RESS CAR var | RESS CAR  var p RESS CAR var p RESS CAR var
1024 0.01 0.01 33822 006 0.09 724|100 0.01 001 22949 |31 0.10 021 438
2048 0.01 0.01 2954.0 009 0.15 222 | 6.6 0.02 002 10445 |31 0.14 027 29
4096 0.01 0.01 189%4.1 022 027 76| 59 001 001 6143 |31 034 043 13
8192 0.02 0.02 9684 028 035 6.1 | 39 0.02 0.03 1609 | 3.0 054 055 038
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