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Abstract

Unsupervised discovery of interpretable fea-
tures and controllable generation with high-
dimensional data are currently major chal-
lenges in machine learning, with applications
in data visualisation, clustering and artificial
data synthesis. We propose a model based
on variational auto-encoders (VAEs) in which
interpretation is induced through latent space
sparsity with a mixture of Spike and Slab dis-
tributions as prior. We derive an evidence
lower bound for this model and propose a spe-
cific training method for recovering disentan-
gled features as sparse elements in latent vec-
tors. In our experiments, we demonstrate supe-
rior disentanglement performance to standard
VAE approaches when an estimate of the num-
ber of true sources of variation is not available
and objects display different combinations of
attributes. Furthermore, the new model pro-
vides unique capabilities, such as recovering
feature exploitation, synthesising samples that
share attributes with a given input object and
controlling both discrete and continuous fea-
tures upon generation.

1 INTRODUCTION

Variational auto-encoders (VAEs) offer an efficient way
of performing approximate posterior inference with oth-
erwise intractable generative models and yield proba-
bilistic encoding functions that can map complicated
high-dimensional data to lower dimensional representa-
tions (Kingma & Welling| 2013} Rezende et al.l 2014;
Sgnderby et al.l 2016). Making such representations
meaningful, however, is a particularly difficult task and
currently a major challenge in representation learning
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(Burgess et al., 2018; [ Tomczak & Welling, [2018}; | Kim &
Mnih| 2018)). Large latent spaces often give rise to many
latent dimensions that do not carry any information, and
obtaining codes that properly capture the complexity of
the observed data is generally problematic (Tomczak &
Welling| [2018; [Higgins et al.l [2017b; Burgess et al.|
2018).

In the case of linear mappings, sparse coding offers an el-
egant solution to the aforementioned problem; the repre-
sentation space is induced to be sparse. In such a way, the
encoding function can exploit a high-dimensional space
to model a large number of possible features, while being
encouraged to use a small subset of non-zero elements
to describe each individual observation (Olshausen &
Field, [1996ajb). Due to their efficiency of representa-
tion, sparse codes have been used in many learning and
recognition systems, as they provide easier interpretation
when processing natural data (Lee et al., [2007; Bengio
et al.,2013). Biological system have also notably been
proven to exploit signal sparsity for visual perception
(Olshausen & Field, |1996ab).

In this work, we aim to extend the aforementioned ca-
pability of linear sparse coding to non-linear probabilis-
tic generative models thus allowing efficient, informative
and interpretable representations in the general case. To
this end we formulate a new variation of VAEs in which
we employ a sparsity inducing prior and a discrete mix-
ture recognition model based on the Spike and Slab dis-
tribution. We construct a flexible sparse prior as a com-
bination of Spike and Slab recognition models through
auxiliary pseudo-inputs. We derive a non-trivial analyti-
cal evidence lower bound (ELBO) for the model and de-
sign a pre-training procedure that avoids mode collapse

In our experiments, we study feature disentanglement in
the general situation where no estimate of the number of

'An implementation of the VSC model is avail-
able from |https://github.com/ftonolinid5/
Variational_Sparse_Coding.
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ground truth features is available and different features
can be present or absent in each observed data exam-
ple. We show how our model considerably outperforms
traditional disentanglement approaches (Higgins et al.,
2017a;; |Gao et al.l 2019) in such conditions. We then
consider two benchmark data sets, Fashion-MNIST and
UCI HAR, and demonstrate how the variational sparse
coding (VSC) model recovers sparse representations that
properly capture the mixed discrete and continuous na-
ture of their variability. We further show how such repre-
sentations can be used to investigate feature relationships
among different objects and classes and perform condi-
tional generation completely unsupervisedly.

2 BACKGROUND

2.1 SPARSE CODING

Sparse coding aims to approximately represent observed
signals with a weighted linear combination of few un-
known basis vectors (Lee et al. [2007; [Bengio et al.,
2013)). The task of determining the optimal basis is gen-
erally formulated as an optimisation problem, where a
reconstruction cost and a sparsity cost of the embedded
representations are jointly minimised with respect to the
coefficients of a linear transformation. Sparse coding
makes the important realisation that, though large en-
sembles of natural signals need many variables to be de-
scribed, individual samples can be well represented by a
small subset of such variables. This realisation is sup-
ported by substantial empirical evidence and pioneering
work by |Olshausen & Field (1996a) also showed that
the visual cortex in mammals processes information as
sparse signals, demonstrating that biological learning ex-
ploits sparsity in natural images similarly to sparse cod-
ing based models. |Olshausen & Field| (2004) provide a
comprehensive review of linear sparse coding.

Sparse coding can be probabilistically interpreted as a
generative model, where the observed signals are gen-
erated from unobserved latent variables through a linear
process (Lee et al.,2007;|Bengio et al.,|2013). The model
can then be described with a latent prior distribution,
which assigns high density to sparse latent variables, and
a likelihood distribution, which quantifies the reconstruc-
tion density given a latent embedding. In fact, perform-
ing maximum a posteriori (MAP) estimation with such
models recovers the common formulation of sparse cod-
ing described above. Previous work has also demon-
strated variational inference with sparse coding proba-
bilistic models, exploiting algorithms based on EM infer-
ence (Titsias & Lazaro-Gredilla, 20115 /Goodfellow et al.,
2012). However, EM inference becomes intractable for
more complicated non-linear posteriors and a large num-

ber of input vectors (Kingma & Welling} [2013), making
such an approach unsuitable to scale to our target mod-
els.

Conversely, some work has been done in generalising
sparse coding to non-linear transformations, by defin-
ing sparsity on Riemannian manifolds (Ho et al., 2013;
Cherian & Sra, [2017)). These generalisations, however,
are not probabilistic, as they define a non-linear equiv-
alent of MAP inference and are limited to simple mani-
folds due to the need to compute the manifold’s logarith-
mic map.

2.2 VARIATIONAL AUTO-ENCODERS

Variational auto-encoders (VAEs) are models for un-
supervised efficient coding that aim to maximise the
marginal likelihood p(x) = []p(x;) with respect to
some decoding parameters 6 of the likelihood func-
tion pp(x|z) and encoding parameters ¢ of a recogni-
tion model g4 (z|x) (Kingma & Welling (2013); Rezende
et al.|(2014)); [Pu et al.| (2016)).

The VAE model is defined as follows; an observed vec-
tor z; € RM*1 is assumed to be drawn from a likeli-
hood function py(x|z). Common choices are a Gaussian
or a Bernoulli distribution. The parameters of pg(z|z)
are the output of a neural network having as input a la-
tent variable z; € R7*1. The latent variable is assumed
to be drawn from a prior p(z) which can take differ-
ent parametric forms. In the most common VAE im-
plementations, the prior takes the form of a multivariate
Gaussian with identity covariance N (z;0, ) (Kingma
& Welling, [2013}; Rezende et al., 2014; |[Higgins et al.,
2017b; Burgess et al., 2018} [Yeung et al., [2017). The
aim is then to maximise a joint posterior distribution of
the form p(x) = [1, [ po(z;|2)p(z)dz, which for an
arbitrarily complicated conditional p(z|z) is intractable.
To address this intractability, VAEs introduce a recogni-
tion model g4 (z|x) and define an evidence lower bound
(ELBO) to be estimated in place of the true posterior,
which can be formulated as

g () = og [ polas|2)p(:) 24520 >
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The ELBO is composed of two terms; a prior term, which
encourages minimisation of the KL divergence between
the encoding distributions and the prior, and a recon-
struction term, which maximises reconstruction likeli-
hood. The ELBO is then maximised with respect to the
model’s parameters 6 and ¢.



2.2.1 Interpretation in VAEs

Obtaining informative and interpretable representations
of unlabelled data is currently a major objective of un-
supervised learning. VAEs have been recently consid-
ered as ideal models to obtain such representations, as
they rely on a low dimensional latent space that nec-
essarily embeds information about the observation they
model. Inducing interpretation in a VAE latent space is
generally formulated as a feature disentanglement prob-
lem; assuming observed data is generated from hidden
interpretable factors of variation, the task is to obtain a
latent space in which such factors are aligned with the
axis. The commonly adopted method to enhance the dis-
entanglement of features in a VAE is to assign a larger
weight to the KL divergence component in equation [I]
Models following this approach are known as 3-VAEs,
and they allow controllable improvement of latent disen-
tanglement, at the expense of reconstruction likelihood
(Higgins et al., 2017a; Burgess et al.l [2018). Several al-
ternative methods to improve disentanglement have been
proposed. Recent works extended the 5-VAE to explic-
itly control total correlation between latent dimensions,
expressing it as a penalty term that quantifies disentan-
glement (Chen et al., |2018}; |Gao et al., 2019). Kim &
Mnih| (2018) proposed an algorithm to directly induce
factorisation, demonstrating a more favourable trade-off
between disentanglement and reconstruction accuracy.
These approaches have proven promising, however they
rely on the assumption that target features are always
present in every observation with continuously varying
values. Differently from these, the model presented here
relies on the sparse coding realisation of natural signals,
assuming that individual observations are described by
only a small subset of a large ensemble of possible fea-
tures. Furthermore, we assume no knowledge of the
number of source factors.

2.2.2 Discrete Latent Variables and Sparsity in
VAEs

Discrete latent distributions are a closely related theme to
sparsity, as exactly sparse PDFs involve sampling from
some discrete variables. |[Nalisnick & Smyth| (2017) and
Singh et al.| (2017) model VAEs with a Stick-Breaking
Process and an Indian Buffet Process priors respectively
in order to allow for stochastic dimensionality in the la-
tent space. In such a way, the prior can set unused di-
mensions to zero. However, the resulting representations
are not truly sparse; the same elements are set to zero for
every encoded observation. The scope of these works is
dimensionality selection rather than sparsification.

Other models which present discrete variables in their la-
tent space have been proposed in order to capture discrete

features in natural observations. [Rolfe| (2017) models a
discrete latent space composed of continuous variables
conditioned on discrete ones in order to capture both dis-
crete and continuous sources of variation in observations.
Similarly motivated, |van den Oord et al| (2017) per-
form variational inference with a learned discrete prior
and recognition model. The resulting latent spaces can
present sparsity, depending on the choice of prior. How-
ever, they do not induce directly sparse statistics in the
latent space.

Other works model sparsity more directly. [Yeung et al.
(2017) propose to learn a deterministic selection vari-
able that dictates which latent dimensions the recogni-
tion model should exploit in the latent space. In such
a way, different embeddings can exploit different com-
binations of variables, which achieves the goal of coun-
teracting over-pruning. This approach does result into
sparse latent variables. However, only the continuous
components are treated variationally, while the activa-
tion of elements is deterministic. More recently, Mathieu
et al.| (2019) modelled sparsity in the latent space with a
mixture of Gaussians models using a narrow Gaussian
component to encourage elements to be close to zero. In
their work, a continuous relaxation of sparsity is mod-
elled in the latent space, as elements are not encouraged
to be zero exactly, but only close to zero by the narrow
Gaussian component of the prior.

Differently from these prior works, we directly model the
mixed continuous-discrete nature of sparsity in the latent
space through an exactly sparse prior and find a suitable
evidence lower bound and training procedure to perform
approximate variational inference.

3 VARIATIONAL SPARSE CODING

We propose to use the framework of VAEs to perform
approximate variational inference with neural network
sparse coding architectures. With this approach, we aim
to discover and discern the non-linear features that con-
stitute variability in data and represent them as few non-
zero elements in sparse vectors.

3.1 RECOGNITION MODEL

In order to encode observations as sparse vectors in the
latent space, the recognition model is chosen to be a
Spike and Slab distribution. The Spike and Slab dis-
tribution is defined over two variables; a binary spike
variable s; and a continuous slab variable z; (Mitchell
& Beauchampl [1988)). The spike variable is either one
or zero with defined probabilities v and (1 — ) respec-
tively and the slab variable has a distribution which is
either a Gaussian or a Delta function centered at zero,



conditioned on whether the spike variable is one or zero
respectively. The resulting recognition model is
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where the distribution parameters . ; j, o Z i, and i ;
are the outputs of a neural network having parameters ¢
and input x;, J is the number of latent dimensions and
d(+) indicates the Dirac delta function centered at zero.
A description of the recognition model neural network
can be found in supplementary [A.2]

3.2 PRIOR DISTRIBUTION

In order to induce sparsity in the latent space while al-
lowing the model to flexibly adjust to represent differ-
ent combinations of features, we build upon two re-
cent advances in VAEs. Following the prior structure
presented in [Tomczak & Welling (2018), we build the
prior with recognition models ¢4(z|z,) from pseudo-
inputs x,,, which are trained along with the networks’
weights. However, differently from this previous work,
which builds the prior with the sum of all pseudo inputs’
encodings p(2) = & ., ¢ (2|2.), we implement a clas-
sifier u* = C,,(z;) with parameters w to select a specific
pseudo-input z,- and consequentially a single compo-
nent ¢4 (z|z,~) for an observation x;, hence assuming
that each observation x; is generated from a single com-
ponent in the latent space. This feature is similar to the
latent variable selection presented in|Yeung et al.|(2017)),
with the difference that the selector in the VSC model as-
signs a different prior for each observations, rather then
different latent dimensions. The sparse prior is then

Ps(2) = g (z[@u-),
. 3)
u* = Cy(x;),
where C,(x) is a neural network classifier. The use of
the classifier C,,(x) rather than taking the whole ensem-
ble as prior allows us to compute the KL divergence an-
alytically, hence rendering optimisation efficient while
maintaining the flexibility of a prior composed of mul-
tiple PDFs. A detailed description of the selection func-

tion C,, () can be found in supplementary

3.3 VSC OBJECTIVE FUNCTION

As in the standard VAE setting, we aim to perform ap-
proximate variational inference by maximising an ELBO
of the form detailed in equation |1} with the Spike and
Slab probability density function of equation (3| as prior
and the recognition model of equation [2| Additionally,

we need to infer a defined prior sparsity « in the latent
space. This is done by inducing the average Spike prob-
ability of each pseudo-input’s recognition model 7,, to
match the prior one «. a sparsity KL divergence penalty
term D, (7,||c) is then minimised jointly to the max-
imisation of the ELBO

argmaxz —Dr1.(q(2]7i)l|gg (2|T0u))
0,¢,w,xu 4

+ Eq, (212,) log po(i]2)] — J - Dgrp(7,-||c0).

The KL divergence between the pseudo-input’s prior and
target sparsity Dy r,(7,+||«) has a simple form and can
readily be differentiated with respect to the weights and
pseudo-inputs. This term induces the encodings to have
the prior sparsity on average, acting similarly to the ag-
gregate posterior regularisation term described in Math-
ieu et al.|(2019). In the following subsections, we elabo-
rate on the remaining two terms: the reconstruction and
KL divergence terms of the ELBO.

3.3.1 Reconstruction Term

The reconstruction component of the ELBO is estimated
stochastically as follows

By (1) log po(wi]2 Zlogpe (zilzi1), (S

where the samples z;; are drawn from the recognition
model ¢y (z|z;) and L is the number of such draws. As
in the standard VAE, to make the reconstruction term dif-
ferentiable with respect to the encoding parameters ¢, we
employ a reparameterization trick to draw from g (2|x;).
To parametrise samples from the discrete binary compo-
nent of g,(z|z;) we use a continuous relaxation of bi-
nary variables analogous to that presented in Maddison
et al.|(2017) and |[Rolfe|(2017)). We make use of two aux-
iliary noise variables € and 7, normally and uniformly
distributed respectively. € is used to draw from the
Slab distributions, resulting in a reparametrisation analo-
gous to the standard VAE (Kingma & Welling, [2013).
1 is used to parametrise draws of the Spike variables
through a non-linear binary selection function 7'(y; ;).
The two variables are then multiplied together to obtain
the parametrised draw from g4 (z|x;). A more detailed
description of the reparametrisation of sparse samples is
reported in supplementary

3.3.2 Spike and Slab KL Divergence

KL divergences with discrete mixture PDFs have been
used in various discrete latent variables models (Rolfe,
2017; Nalisnick & Smyth, 2017). However, in these
works, they are estimated and optimised stochastically.



Gal| (2016) derives an analytic form for a particular case
in which the recognition model contains the prior. Dif-
ferently form these, we derive a closed-form expression
for the KL divergence between two arbitrary Spike and
Slab distributions, hence rendering the optimisation of
the ELBO for our model of comparable complexity to
the standard VAE case.

By solving the KL divergence between the prior of equa-
tion[3|and the recognition model of equation 2] we derive
with a novel approach the closed-form expression
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A detailed derivation of this expression is reported in
supplementary [Cl This expression naturally presents two
components. The first term in the sum is the negative
KL divergence between the distributions of the Slab vari-
ables, multiplied by the probability of z; ; being non-zero
7i,;- This component gives a similar regularisation to
that of the standard VAE and encourages the Gaussian
components of the recognition model to match those of
the prior, proportionally to the Spike probabilities -; ;.
The second term is the negative KL divergence between
the distributions of the Spike variables, which encour-
ages the probabilities of the latent variables being non-
zero 1y, ; to match those of the pseudo-input prior 7« ;.

3.4 TRAINING

The VSC model is trained by maximizing the objective
function in equation [4] using gradient descent, with the
KL divergence of equation [6] and the empirical recon-
struction term of equationE} As other VAE models, VSC
suffers from the inherent problem of posterior collapse;
during training, certain latent variables tend to store all
information about the encoded observations while the re-
maining ones perfectly satisfy the KL divergence con-
straint. In a VSC model with a very low prior Spike prob-
ability « this results in a dimensionality collapse; some
latent variables are set to zero for almost all encodings,
while others store most of the information necessary to
represent data. This may be desirable in some settings,
such as dimensionality selection, but hinders the ability
to adequately describe observations with different com-
binations of recovered features.

To counteract the aforementioned posterior collapse

Algorithm 1 Training the VSC Model

Inputs: observations x; initial model parameters,
CIORCORAON x,(LO)}; user-defined latent dimensional-

ity, J; user-defined prior sparsity level, a; user-defined
number of warm-up steps, Nyqrmup; user-defined linear
increment in warm-up coefficient A\, A\; user-defined
number of iterations, N;¢,-; user-defined number of sam-
ples, L, used in estimating the reconstruction term.

1: A*=0) ¢ 0

2: for the k’th iteration in [0 : Nyzer — 1]

3:  for the i’th observation

4: Zil ~ q¢(k),)\(k)(z‘xi) Vi e [1 : L] (Eq.

5: Egk) — >, log poi (xi]zi1) (Eq.

6: u* < C ) (.”L’Z) (Eq.
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g0 DY J. Drr(F-llc) (Eq.d)

9: end

;O =3, (B -k - ) (Eq

11: WD pk+D) (k1) (hFD o e max(F(k))
(Eq I

122 it A®) < Tand k> Nuyarmup (Eq

13: AEFD AR+ AN

14:  else

15: AFHD) o A(F)

16: end

17: end

effect, we employ a straightforward Spike variable

warm-up strategy. During a pre-training phase, the
recognition model g4 (z|x;) is modified as follows:

J
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where ) is a constant which is initially set to zero, then
linearly increased from zero to one and lastly set equal
to one throughout training. When ) is equal to zero, the
Slab components of the latent variables is fixed to a zero
mean and unit covariance Gaussian. This implies that the
recognition model can initially store information only in
the Spike variables patterns, similarly to a binary encod-
ing, hence forcing latent vectors from different observa-
tions to activate different elements. As A is increased to
one, the model can store more information in the contin-
uous Slab variables, however maintaining different com-
binations of active latent variables for distinct observa-
tions.



In summary, we contribute two main elements of nov-
elty; the derivation of a closed form expression for the
Spike and Slab KL divergence and the Spike warm-up
strategy to avoid posterior collapse. Both are crucial in
handling the mixed continuous-discrete nature of sparse
representations and efficiently train the proposed model,
hence obtaining sparse probabilistic representation of ob-
servations. For completeness we outline the training pro-
cedure in Algorithm 1. The values for each user defined
parameters we employ in our experiments are reported in
supplementary [D| The maximisation at each iteration is
carried out as an ADAM optimisation step.

4 EXPERIMENTS

4.1 ELBO EVALUATION

We evaluate and compare the ELBO values for VSC
and B-VAE models. S-VAEs are VAEs in which the
KL divergence term of equation [I]is assigned a control-
lable weight 5. Typically, they are used with a coef-
ficient 3 greater than one to induce interpretation Hig-
gins et al.[(2017a). We make use of the Fashion-MNIST
dataset, composed of 28 x 28 grey-scale images of dif-
ferent pieces of clothing (Xiao et al.,2017), and the UCI
HAR dataset, which consists of filtered accelerometer
signals from mobile phones worn by different people
during common activities (Anguita et al., [2012). In all
cases, the latent space is chosen to have 60 latent dimen-
sions and the neural networks of the two models are of
equal capacity. For the 8-VAE we vary the /3 coefficient,
while for the VSC model we vary the prior spike proba-
bility . Further details can be found in supplementary
Results are shown in figure 1.

Overall, the ELBO values for the VSC model are com-
parable to those recovered with 5-VAEs and a standard
VAE (8 = 1). The VSC results in lower ELBO values
at decreasing prior spike probability «, similarly to the
trend experienced by the 3-VAE at increasing KL coef-
ficient 5. In fact, the two models present a similar be-
haviour; as more structure is imposed in the latent space
by enforcing a ‘stronger’ prior, the ELBO is necessarily
reduced. The VSC model, however, imposes structure in
the latent space through sparsity, rather than an increased
weight on the KL divergence term of the ELBO. In the
next subsection we show how this subtle difference re-
sults into important representation advantages.

4.2 FEATURE DISENTANGLEMENT

We investigate the VSC model’s ability to disentangle
generating features and align them with the latent space
axis. To do so, we make use of an artificial dataset, where

the different examples are synthesised from a set of pa-
rameters and therefore the generative source features are
known and can be used as ground truth. Previous work
similarly evaluated disentanglement with artificial sam-
ples (Higgins et al.l 2017a; Kim & Mnihl 2018)). Data
sets used in these investigations, however, contain signals
generated by altering each feature continuously, leading
to all examples expressing variability in all the generat-
ing factors. Following a sparse realisation of natural sig-
nals, we are instead interested in situations where groups
of generating features are present or absent in differ-
ent combination. To this end, we contribute the Smiley
sparse data set, in which four different attributes (mouth,
eyes, hat and bow tie) can be present or absent, each
with 0.5 probability. Each attribute constitutes a features
group and, if present in an example, is controlled by a
different number of continuous source features between
3 and 6, for a total of 18 source variables. Examples from
the Smiley sparse data set are shown in figure [2] while a
detailed description is provided in supplementary

In our investigation, we consider both the situation in
which the total number of source variables is known and
that in which it is unknown. We obtain representations
using 60, 000 examples from the Smiley sparse data set
with both a $-VAE and a VSC and latent spaces of 18

Fashion-MNIST
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Figure 1: ELBO evaluation for 3-VAEs and VSCs (in-
cluding standard deviations over several repetitions with
different random seeds). In both models, the ELBO is re-
duced by imposing an increasingly more stringent struc-
ture in the latent space through the prior, in the 5-VAE
case through the KL divergence coefficient and in the
VSC through the prior sparsity.
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Figure 2: Examples from the Smiley sparse data set.
Each is composed from a sparse superposition of 4 dif-
ferent attributes, including mouth, eyes, hat and bow tie.

dimension, for experiments in which the source dimen-
sionality is assumed to be known, and 60 dimensions,
to test instead the situation in which knowledge of the
source features’ number is not available. The VSC model
is trained in both instances with a purposely low prior
sparsity coefficient « = 0.01. In such a way, the prior
regularisation encourages almost all variables to be inac-
tive and the model activates only those that are needed to
describe each observation.

Both models are given neural networks of equal capac-
ity. We then test features disentanglement with a test set
of 20, 000 new samples by computing the absolute value
of the correlation between each source feature and each
recovered latent variable. Additional details about these
experiments can be found in supplementary [D.2] Abso-
lute value of correlation matrices for the two models are
shown in figure 3] If the number of latent dimensions
is chosen to match that of the generating features, the
(-VAE displays appreciable correlation between the true
attributes and the recovered latent variables. The VSC
model displays higher correlation contrast and hence bet-
ter disentanglement. This is due to the fact that VSC is
able to model with its prior both the presence or absence
of different features in different observations and their
continuous variability, while a 5-VAE attempts to model
the data only with continuous variables.

As shown in figure Ekc), in the situation where the num-
ber of generating dimensions was assumed to be un-
known, the $-VAE did not recover latent variables that
well correlate with each source feature. 3-VAEs encour-
age encoded data to be distributed as a univariate Gaus-
sian distribution which is factorisable along all its latent
space axis. This is effective in situations where the num-
ber of latent variables is chosen to match fairly well the
number of source features, as shown in figure 3(a), and
even more so if such features are all present and contin-
uously distributed in each example, as demonstrated by
Higgins et al.| (2017a)). However, in a more general situa-
tion, where data is described by different superpositions

(a) B-VAE, d, = 18

(b) VSC, d, = 18

QO p— il il
2 : 0.6 06

D e
= 5
w § 0.4 0.4
iy BT
[ O]
cal 0.2 0.2
3] 15
o=
» 3

s 0 0

5 10 15 5 10 15
Latent Variables Latent Variables
(c) B-VAE, d, =60

2Q
82 jos
— o
=)
2o
s 0.4
L w
L 9
& 0.2
> <
33

= 0

10 20 30 40 50 60
Latent Variables

- —_ (d) vsC, d, = 60
83 °°
S5
2o
ok 0.4
[T =)
Q9
) 0.2
>S5 <
3% 15

p=y . 0

10 20 30 40 50 60
Latent Variables
Figure 3: Absolute value of correlation between source
features and latent variables for the Smiley data set. The
x-axis indicates the index of the latent variable. Variables
have been permuted to group dimensions that display the
highest correlation with the same feature. Feature disen-
tanglement is achieved if each latent variable correlates
strongly with one source attribute but weakly with the re-
maining ones thus leading to a block diagonal structure.

of features and their number is not known a priori, en-
forcing a latent distribution that factorises along all axis
does not result into good source features recovery; the
model forces data to stretch along many more dimen-
sions than it is necessary to describe it, dispersing the
correlation with the true sources of variation.

Conversely, as shown in figure Ekd), the VSC model is
able to disentangle well the different features groups.
Because it is designed to model different combinations
of features, it can activate or deactivate latent variables
for each encoding according to the features recognised in
each observation and it successfully disentangles each at-
tribute in distinct sub-spaces with little interdependence,
regardless of the choice of latent space dimensionality.
The VSC model adjusted to a suitable number of latent
variables needed to represent the data. In the matrix of
figure B{(d), the zero columns correspond to collapsed di-



mensions where the latent variables were consistently in-
active. Given 60 latent dimensions prior to training and
no knowledge of the source dimensionality or sparsity,
the model collapsed to 20 exploited dimensions to de-
scribe data generated independently from 18 source vari-
ables. The number of latent variables assigned to each
feature group is also recovered with fairly good accu-
racy, as the VSC correlation matrix in figure [3| presents a
near-block diagonal structure. We also compare feature
disentanglement with the 5-TCVAE (Gao et al. 2019)
and its behaviour at increasing latent space dimensional-
ity was found to be analogous to that of the 5—VAE. The
correlation matrices from these experiments are shown
in full in supplementary [F]

It is not possible to quantify feature disentanglement in
natural data, as the source features are not known. How-
ever, similarly to Kim & Mnih| (2018)), we can qualita-
tively examine the effect of changing single latent vari-
ables on generated samples. To this end, we train a
VSC model with 100,000 examples from the CelebA
data set, encode examples from a test set, alter individu-
ally exploited dimensions in the latent space and finally
generate samples from these altered latent vectors. We
find that several of the dimensions exploited by the VSC
model control interpretable aspects in the generated data,
as shown in the examples of figure [

4.3 FEATURE ACTIVATION RECOVERY

The Spike probabilities retrieved when encoding an ob-
servation can be interpreted as the probabilities of cer-
tain recognised features being present or absent in a
given sample. These activation patterns can be used to
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Figure 4: Examples are generated by altering individ-
ual latent variables in a VSC model trained on the
celebA data set. Individual latent variables control in-

terpretable aspects of the generated images, i.e., inter-
pretable sources of variation are aligned with the repre-
sentation space axis.

investigate what features different objects are expected
to have in common. As an example, we train two VSC
models having 60 latent dimensions with the training sets
from the Fashion-MNIST and UCI HAR data sets re-
spectively, encode the entire test sets and examine the

Fashion-MNIST

30
Latent Variables

UCI HAR

1
30 40 50 60 0

Latent Variables

Figure 5: Average Spike probability per class in (a) Fashion-MNIST and (b) UCI HAR. Black corresponds to 0, or
always inactive, and white to 1, or always active. The Spike probabilities show the recovered features classes have in
common. Objects that are similar, such as T-shirts and shirts in the Fashion-MNIST example, activate mostly the same
latent dimensions, i.e., they can largely be described with the same features. More distinct objects, such as T-shirts
and trousers, activate different latent dimensions, i.e., they exploit different features to express their variability.



Figure 6: Generation conditioned on single observations
with the VSC model. An object is encoded in the latent
space and synthetic examples are then generated by sam-
pling only along the activated latent dimensions. This
makes it possible to generate a variety of objects that
share the same features with the input object without any
supervision.

average Spike probabilities per class recovered by the
recognition model. Results are shown in figure 5] In
the VSC latent space, similar classes present a high over-
lap of active latent variables, while classes that are very
different exploit different sets of latent dimensions to de-
scribe their samples. These Spike variable activation pat-
terns readily provide a visualisation of the similarity of
different objects in terms of the factors of variation they
are described by.

The capability of VSC to recover feature exploitation for
a given observation can also be used to control gener-
ation. For instance, it is possible to generate samples
conditioned on a single object by exploring the subspace
defined by the activated latent variables of such object.
Figure[6]shows examples of images generated by encod-
ing a single observation from Fashion-MNIST and sub-
sequently sample the subspace defined by the resulting
active dimensions. As shown in figure[6] the VSC model
naturally provides a way of performing conditional gen-
eration without the need for any supervision.

The VSC model can also be used to study the nature of
the difference between objects through controlled gener-
ation. Two objects may have some active latent variables
in common, describing characteristics that they both re-
tain, but that might have different values, and some that
are different, describing features that they do not have
in common. For instance, in figure [/} we consider the
features of a T-shirt and a shirt taken from the Fashion-
MNIST test set. The VSC latent variables for the two
observations share some dimensions, which we individ-
ually alter and generate from. Examples are shown on
the left of figure [/l As shown, these dimensions control
features the two objects have in common. Conversely,
there are some latent dimensions that are active for one
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Figure 7: Investigating the difference between two ob-
jects with VSC. Single examples of a T-shirt and a shirt
are encoded in the latent space. On the left, generations
obtained by individually altering two latent dimensions
which are active for both objects. On the right, gener-
ations obtained by activating and deactivating latent di-
mensions exploited by one object, but not the other.

observation, but not the other and vice versa. These di-
mensions correspond to the recovered features the two
objects do not share. The effects on generation of activat-
ing and deactivating two of these for the T-shirt example
are shown on the right of figure[7]

All of the controlled generation examples described
above are carried out without any supervision, but sim-
ply by examining and individually controlling the latent
dimensions activated by single observation examples.

S CONCLUSION

We present a new model to retrieve non-linear sparse rep-
resentations of data through a variational auto-encoding
approach. The proposed VSC model is capable of re-
trieving and disentangling sources of variation from di-
verse data, where attributes can be present and absent in
different combinations and the total number of factors
of variation and their occurrence is unknown a priori.
The sparse representations also offer novel visualisation
and generation capability, thanks to the ability to exam-
ine and exploit latent variable activation. In defining the
VSC model, we also contribute general components and
methods that can be used to perform sparse probabilis-
tic inference in different settings, such as an analytical
expression for the Spike and Slab KL divergence and a
Spike pre-training strategy.
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