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Abstract

Optimal transport o↵ers an alternative to
maximum likelihood for learning generative
autoencoding models. We show that mini-
mizing the p-Wasserstein distance between
the generator and the true data distribution
is equivalent to the unconstrained min-min
optimization of the p-Wasserstein distance
between the encoder aggregated posterior
and the prior in latent space, plus a recon-
struction error. We also identify the role of
its trade-o↵ hyperparameter as the capac-
ity of the generator: its Lipschitz constant.
Moreover, we prove that optimizing the en-
coder over any class of universal approxima-
tors, such as deterministic neural networks,
is enough to come arbitrarily close to the
optimum. We therefore advertise this frame-
work, which holds for any metric space and
prior, as a sweet-spot of current generative
autoencoding objectives.
We then introduce the Sinkhorn auto-
encoder (SAE), which approximates and
minimizes the p-Wasserstein distance in la-
tent space via backprogation through the
Sinkhorn algorithm. SAE directly works
on samples, i.e. it models the aggregated
posterior as an implicit distribution, with
no need for a reparameterization trick for
gradients estimations. SAE is thus able to
work with di↵erent metric spaces and priors
with minimal adaptations.
We demonstrate the flexibility of SAE on
latent spaces with di↵erent geometries and
priors and compare with other methods on
benchmark data sets.
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1 INTRODUCTION

Unsupervised learning aims at finding the underlying
rules that govern a given data distribution PX . It can
be approached by learning to mimic the data genera-
tion process, or by finding an adequate representation
of the data. Generative Adversarial Networks (GAN)
(Goodfellow et al., 2014) belong to the former class,
by learning to transform noise into an implicit dis-
tribution that matches the given one. AutoEncoders
(AE) (Hinton and Salakhutdinov, 2006) are of the
latter type, by learning a representation that maxi-
mizes the mutual information between the data and
its reconstruction, subject to an information bottle-
neck. Variational AutoEncoders (VAE) (Kingma and
Welling, 2013; Rezende et al., 2014), provide both a
generative model — i.e. a prior distribution PZ on
the latent space with a decoder G(X|Z) that models
the conditional likelihood — and an encoder Q(Z|X)
— approximating the posterior distribution of the
generative model. Optimizing the exact marginal
likelihood is intractable in latent variable models
such as VAE’s. Instead one maximizes the Evidence
Lower BOund (ELBO) as a surrogate. This objec-
tive trades o↵ a reconstruction error of the input
distribution PX and a regularization term that aims
at minimizing the Kullback-Leibler (KL) divergence
from the approximate posterior Q(Z|X) to the prior
PZ .

An alternative principle for learning generative au-
toencoders comes from the theory of Optimal Trans-
port (OT) (Villani, 2008), where the usual KL-
divergence KL(PX , PG) is replaced by OT-cost diver-
gences Wc(PX , PG), among which the p-Wasserstein
distances Wp are proper metrics. In the papers
Tolstikhin et al. (2018); Bousquet et al. (2017) it
was shown that the objective Wc(PX , PG) can be
re-written as the minimization of the reconstruction
error of the input PX over all probabilistic encoders



Q(Z|X) constrained to the condition of matching
the aggregated posterior QZ — the average (approx-
imate) posterior EPX [Q(Z|X)] — to the prior PZ

in the latent space. In Wasserstein AutoEncoders
(WAE) (Tolstikhin et al., 2018), it was suggested,
following the standard optimization principles, to
softly enforce that constraint via a penalization term
depending on a choice of a divergence D(QZ , PZ)
in latent space. For any such choice of divergence
this leads to the minimization of a lower bound of
the original objective, leaving the question about the
status of the original objective open. Nonetheless,
WAE empirically improves upon VAE for the two
choices made there, namely either a Maximum Mean
Discrepancy (MMD) (Gretton et al., 2007; Sripe-
rumbudur et al., 2010, 2011), or an adversarial loss
(GAN), again both in latent space.

We contribute to the formal analysis of autoencoders
with OT. First, using the Monge-Kantorovich equiva-
lence (Villani, 2008), we show that (in non-degenerate
cases) the objective Wc(PX , PG) can be reduced to
the minimization of the reconstruction error of PX

over any class containing the class of all deterministic

encoders Q(Z|X), again constrained to QZ = PZ .
Second, when restricted to the p-Wasserstein dis-
tance Wp(PX , PG), and by using a combination of
triangle inequality and a form of data processing
inequality for the generator G, we show that the
soft and unconstrained minimization of the recon-
struction error of PX together with the penalization
term � · Wp(QZ , PZ) is actually an upper bound
to the original objective Wp(PX , PG), where the
regularization/trade-o↵ hyperparameter � needs to
match at least the capacity of the generator G, i.e.
its Lipschitz constant. This suggests that using a p-
Wasserstein metric Wp(QZ , PZ) in latent space in the
WAE setting (Tolstikhin et al., 2018) is a preferable
choice.

Third, we show that the minimum of that objective
can be approximated from above by any class of
universal approximators for Q(Z|X) to arbitrarily
small error. In case we choose the Lp-norms k ·kp and
corresponding p-Wasserstein distances Wp one can
use the results of (Hornik, 1991) to show that any
class of probabilistic encoders Q(Z|X) that contains
the class of deterministic neural networks has all
those desired properties. This justifies the use of such
classes in practice. Note that analogous results for
the latter for other divergences and function classes
are unknown.

Fourth, as a corollary we get the folklore claim that
matching the aggregated posterior QZ and prior PZ

is a necessary condition for learning the true data
distribution PX in rigorous mathematical terms. Any
deviation will thus be punished with a poorer perfor-
mance. Altogether, we have addressed and answered
the open questions in (Tolstikhin et al., 2018; Bous-
quet et al., 2017) in detail and highlighted the sweet-
spot framework for generative autoencoder models
based on Optimal Transport (OT) for any metric
space and any prior distribution PZ , and with special
emphasis on Euclidean spaces, Lp-norms and neural
networks.

The theory supports practical innovations. We are
now in a position to learn deterministic autoencoders,
Q(Z|X), G(X|Z), by minimizing a reconstruction
error for PX and the p-Wasserstein distance on the
latent space between samples of the aggregated poste-
rior and the prior Wp(Q̂Z , P̂Z). The computation of
the latter is known to be di�cult and costly (cp. Hun-
garian algorithm (Kuhn, 1955)). A fast approximate
solution is provided by the Sinkhorn algorithm (Cu-
turi, 2013), which uses an entropic relaxation. We fol-
low (Frogner et al., 2015) and (Genevay et al., 2018),
by exploiting the di↵erentiability of the Sinkhorn
iterations, and unroll it for backpropagation. In ad-
dition we correct for the entropic bias of the Sinkhorn
algorithm (Genevay et al., 2018; Feydy et al., 2018).
Altogether, we call our method the Sinkhorn Au-

toEncoder (SAE).

The Sinkhorn AutoEncoder is agnostic to the ana-
lytical form of the prior, as it optimizes a sample-
based cost function which is aware of the geometry
of the latent space. Furthermore, as a byproduct
of using deterministic networks, it models the ag-
gregated posterior as an implicit distribution (Mo-
hamed and Lakshminarayanan, 2016) with no need of
the reparametrization trick for learning the encoder
(Kingma and Welling, 2013). Therefore, with essen-
tially no change in the algorithm, we can learn models
with normally distributed priors and aggregated pos-
teriors, as well as distributions living on manifolds
such as hyperspheres (Davidson et al., 2018) and
probability simplices.

In our experiments we explore how well the Sinkhorn
AutoEncoder performs on the benchmark datasets
MNIST and CelebA with di↵erent prior distributions
PZ and geometries in latent space, e.g. the Gaussian
in Euclidean space or the uniform distribution on a
hypersphere. Furthermore, we compare the SAE to
the VAE (Kingma and Welling, 2013), to the WAE-
MMD (Tolstikhin et al., 2018) and other methods of
approximating the p-Wasserstein distance in latent
space like the Hungarian algorithm (Kuhn, 1955)



and the Sliced Wasserstein AutoEncoder (Kolouri
et al., 2018). We also explore the idea of matching
the aggregated posterior QZ to a standard Gaussian
prior PZ via the fact that the 2-Wasserstein distance
has a closed form for Gaussian distributions: we esti-
mate the mean and covariance of QZ on minibatches
and use the loss W2(Q̂Z , PZ) for backpropagation.
Finally, we train SAE on MNIST with a probability
simplex as a latent space and visualize the matching
of the aggregate posterior and the prior.

2 PRINCIPLES OF
WASSERSTEIN
AUTOENCODING

2.1 OPTIMAL TRANSPORT

We follow Tolstikhin et al. (2018) and denote with
X ,Y,Z the sample spaces and with X,Y, Z and
PX , PY , PZ the corresponding random variables and
distributions. Given a map F : X ! Y we denote by
F# the push-forward map acting on a distribution
P as P �F�1. If F (Y |X) is non-deterministic we de-
fine the push-forward F (Y |X)#PX of a distribution
P as the induced marginal of the joint distribution
F (Y |X)PX . For any measurable non-negative cost

c : X ⇥ Y ! R+ [ {1}, one can define the following
OT-cost between distributions PX and PY via:

Wc(PX , PY ) = inf
�2⇧(PX ,PY )

E(X,Y )⇠�[c(X,Y )], (1)

where ⇧(PX , PY ) is the set of all joint distributions
that have PX and PY as the marginals. The elements
from ⇧(PX , PY ) are called couplings from PX to PY .
If c(x, y) = d(x, y)p for a metric d and p � 1 then
Wp := p

p
Wc is called the p-Wasserstein distance.

Let PX denote the true data distribution on X . We
define a latent variable model as follows: we fix a
latent space Z and a prior distribution PZ on Z
and consider the conditional distribution G(X|Z)
(the decoder) parameterized by a neural network
G. Together they specify a generative model as
G(X|Z)PZ . The induced marginal will be denoted
by PG. Learning PG such that it approximates the
true PX is then defined as:

min
G

Wc(PX , PG). (2)

Because of the infimum over ⇧(PX , PG) inside Wc,
this is intractable. To rewrite this objective we con-
sider the posterior distribution Q(Z|X) (the encoder)
and its aggregated posterior QZ :

QZ = Q(Z|X)#PX = EX⇠PXQ(Z|X), (3)

the induced marginal of the joint Q(Z|X)PX .

2.2 THE WASSERSTEIN
AUTOENCODER (WAE)

Tolstikhin et al. (2018) show that if the decoder
G(X|Z) is deterministic, i.e. PG = G#PZ , or in
other words, if all stochasticity of the generative
model is captured by PZ , then:

Wc(PX , PG) = inf
Q(Z|X):
QZ=PZ

EX⇠PXEZ⇠Q(Z|X)[c(X,G(Z))].

(4)
Learning the generative model G with the WAE
amounts to the objective:

min
G

min
Q(Z|X)

EX⇠PXEZ⇠Q(Z|X)[c(X,G(Z))]

+� ·D(QZ , PZ), (5)

where � > 0 is a Lagrange multiplier and D is any
divergence measure on probability distributions on
Z. The specific choice for D is left open. WAE uses
either MMD (Gretton et al., 2012) or a discriminator
trained adversarially for D. As discussed in Bousquet
et al. (2017), Eq. 5 is a lower bound of Eq. 4 for any
choice of D and any value of � > 0. Minimizing this
lower bound does not ensure a minimization of the
original objective of Eq. 4.

2.3 THEORETICAL CONTRIBUTIONS

We improve upon the analysis of Tolstikhin et al.
(2018) of generative autoencoders in the framework
of Optimal Transport in several ways. Our contribu-
tions can be summarized by the following theorem,
upon which we will comment directly after.

Theorem 2.1. Let X , Z be endowed with any met-

rics and p � 1. Let PX be a non-atomic distribution
1

and G(X|Z) be a deterministic generator/decoder

that is �-Lipschitz. Then we have the equality:

Wp(PX , PG) = inf
Q2F

p

q
EX⇠PXEZ⇠Q(Z|X) [d(X,G(Z))p]

+ � ·Wp(QZ , PZ) , (6)

where F is any class of probabilistic encoders that

at least contains a class of universal approximators.

If X , Z are Euclidean spaces endowed with the Lp-

norms k · kp then a valid minimal choice for F is the

class of all deterministic neural network encoders Q

1
A probability measure is non-atomic if every point

in its support has zero measure. It is important to distin-

guish between the empirical data distribution P̂X , which

is always atomic, and the underlying true distribution

PX , only which we need to assume to be non-atomic.



(here written as a function), for which the objective

reduces to:

Wp(PX , PG) = inf
Q2F

p

q
EX⇠PX [kX �G(Q(X))kpp]

+ � ·Wp(QZ , PZ).

The proof of Theorem 2.1 can be found in Appendix
A, B and C. It uses the following three arguments:

i.) It is the Monge-Kantorovich equivalence (Villani,
2008) for non-atomic PX that allows us to restrict to
deterministic encoders Q(Z|X). This is a first theo-
retical improvement over the Eq. 4 from Tolstikhin
et al. (2018).

ii.) The upper bound can be achieved by a simple
triangle inequality :

Wp(PX , PG)  Wp(PX , P̃X) +Wp(P̃X , PG),

where P̃X := G#Q(Z|X)#PX = G#QZ is the recon-
struction of PX . Note that the triangle inequality is
not available for other general cost functions or diver-
gences. This might be a reason for the di�culty of
getting upper bounds in such settings. On the other
hand, if a divergence satisfies the triangle inequality
then one can use the same argument to arrive at new
variational optimization objectives and principles.

iii.) We then prove the data processing inequality for
the Wp-distance:

Wp(G#QZ , G#PZ)  � ·Wp(QZ , PZ),

with any � � kGkLip, the Lipschitz constant of G.
Such an inequality is available and known for several
other divergences usually with � = 1.

Putting all three pieces together we immediately
arrive at the equality (upper and lower bound) of
the first part of Theorem 2.1. This insight directly
suggests that using the divergence Wp(QZ , PZ) in
latent space with a hyperparameter � � kGkLip in
the WAE setting is a preferable choice. These are two
further improvements over Tolstikhin et al. (2018).
Note that if G is a neural network with activation
function g with kg0k1  1 (e.g. ReLU, sigmoid, tanh,
etc.) and weight matrices (B`)`=1,...,L, then G is �-
Lipschitz for any � � kB1kp · · · kBLkp, where the
latter is the product of the Lp-matrix norms (cp.
Balan et al. (2017)).

iv.) For the second part of Theorem 2.1 we use the
universal approximator property of neural networks
(Hornik, 1991) and the compatibility of the Lp-norm
k·kp-norm with the p-Wasserstein distance Wp. Prov-
ing such statements for other divergences seems to
require much more e↵ort (if possible at all).

When the encoders are restricted to be neural net-
works of limited capacity, e.g. if their architecture is
fixed, then enforcing QZ ⇡ PZ might not be feasible
in the general case of dimensionality mismatch be-
tween X and Z (Rubenstein et al., 2018). In fact,
since the class of deterministic neural networks (of
limited capacity) is much smaller than the class of
deterministic measurable maps, one might consider
adding noise to the output, i.e. use stochastic net-
works instead. Nonetheless, neural networks can
approximate any measurable map up to arbitrarily
small error (Hornik, 1991). Furthermore, in practice
the encoder Q(Z|X) maps from the high dimensional
data space X to the much lower dimensional latent
space Z, suggesting that the task of matching dis-
tributions in the lower dimensional latent space Z
should be feasible. Also, in view of Theorem 2.1 it
follows that learning deterministic autoencoders is
su�cient to approach the theoretical bound and thus
will be our empirical choice.

Theorem 2.1 certifies that, failing to match aggre-
gated posterior and prior makes learning the data
distribution impossible. Matching in latent space
should be seen as fundamental as minimizing the
reconstruction error, a fact known about the perfor-
mance of VAE (Ho↵man and Johnson, 2016; Higgins
et al., 2017; Alemi et al., 2018; Rosca et al., 2018).
This necessary condition for learning the data distri-
bution turns out to be also su�cient assuming that
the set of encoders is expressive enough to nullify the
reconstruction error.

With the help of Theorem 2.1 we arrive at the follow-
ing unconstrained min-min-optimization objective
over deterministic decoder and encoder neural net-
works (Q written as a function here):

min
G

min
Q

p

q
EX⇠PX [kX �G(Q(X))kpp]

+ � ·Wp(QZ , PZ),

with � � kGkLip for all occuring G.

3 THE SINKHORN
AUTOENCODER

3.1 ENTROPY REGULARIZED
OPTIMAL TRANSPORT

Even though the theory supports the use of the p-
Wasserstein distanceWp(QZ , PZ) in latent space, it is
notoriously hard to compute or estimate. In practice,
we will need to approximate Wp(QZ , PZ) via samples

from QZ (and PZ). The sample version Wp(Q̂Z , P̂Z)



with P̂Z = 1
M

PM
m=1 �zm and Q̂Z = 1

M

PM
m=1 �z̃m

has an exact solution, which can be computed using
the Hungarian algorithm (Kuhn, 1955) in nearO(M3)
time (time complexity). Furthermore, Wp(Q̂Z , P̂Z)

will di↵er from Wp(QZ , PZ) in size of about O(M� 1
k )

(sample complexity), where k is the dimension of Z
(Weed and Bach, 2017). Both complexity measures
are unsatisfying in practice, but they can be improved
via entropy regularization (Cuturi, 2013), which we
will explain next.

Following Genevay et al. (2018, 2019); Feydy et al.
(2018) we define the entropy regularized OT cost with
" � 0:

S̃c,"(PX , PY ) := inf
�2⇧(PX ,PY )

E(X,Y )⇠�[c(X,Y )]

+ " ·KL(�, PX ⌦ PY ). (7)

This is in general not a divergence due to its entropic
bias. When we remove this bias we arrive at the
Sinkhorn divergence:

Sc,"(PX ,PY ) := S̃c,"(PX , PY )

� 1

2

⇣
S̃c,"(PX , PX) + S̃c,"(PY , PY )

⌘
. (8)

The Sinkhorn divergence has the following limiting
behaviour:

Sc,"(PX , PY )
"!0�! Wc(PX , PY ),

Sc,"(PX , PY )
"!1�! MMD�c(PX , PY ).

This means that the Sinkhorn divergence Sc," interpo-
lates between OT-divergences and MMDs (Gretton
et al., 2012). On the one hand, for small " it is known
that Sc," deviates from the initial objective Wc by
about O(" log(1/")) (Genevay et al., 2019). On the
other hand, if " is big enough then Sc," will have

the more favourable sample complexity of O(M� 1
2 )

of MMDs, which is independent of the dimension,
and was proven in Genevay et al. (2019). Further-
more, the Sinkhorn algorithm (Cuturi, 2013), which
will be explained in the section 3.3, allows for faster
computation of the Sinkhorn divergence Sc," with
time complexity close to O(M2) (Altschuler et al.,
2017). Therefore, if we balance " well, we are close
to our original objective and at the same time have
favourable computational and statistical properties.

3.2 THE SINKHORN AUTOENCODER
OBJECTIVE

Guided by the theoretical insights, we can restrict the
WAE framework (Tolstikhin et al., 2018) to Sinkhorn

divergences with cost c̃ in latent space and c in data
space to arrive at the objective:

min
G

min
Q(Z|X)

EX⇠PXEZ⇠Q(Z|X)[c(X,G(Z))]

+ � · Sc̃,"(QZ , PZ), (9)

with hyperparameters � � 0 and " � 0.
Restricting further to p-Wasserstein distances, corre-
sponding Sinkhorn divergences and deterministic en-
/decoder neural networks, we arrive at the Sinkhorn

AutoEncoder (SAE) objective:

min
G

min
Q

p

q
EX⇠PX [kX �G(Q(X))kpp]

+ � · Sk·kp
p,"(QZ , PZ)

1
p , (10)

which is then up to the "-terms close to the original
objective. Note that for computational reasons it is
sometimes convenient to remove the p-th roots again.
The inequality p

p
a+ p

p
b  2 p

p
a+ b shows that the

additional loss is small, while still minimizing an
upper bound (using � := �p).

3.3 THE SINKHORN ALGORITHM

Now that we have the general Sinkhorn AutoEncoder
optimization objective, we need to review how the
Sinkhorn divergence Sc̃,"(QZ , PZ) can be estimated
in practice by the Sinkhorn algorithm (Cuturi, 2013)
using samples.

If we take M samples each from QZ and PZ , we
get the corresponding empirical (discrete) distribu-

tions concentrated on M points: P̂Z = 1
M

PM
m=1 �zm

and Q̂Z = 1
M

PM
m=1 �z̃m . Then, the optimal cou-

pling of the (empirical) entropy regularized OT-cost
S̃c̃,"(Q̂Z , P̂Z) with " � 0 is given by the matrix:

R⇤ := argmin
R2SM

1
M hR, C̃iF � " ·H(R), (11)

where C̃ij = c̃(z̃i, zj) is the matrix associated to the
cost c̃, R is a doubly stochastic matrix as defined
in SM = {R 2 RM⇥M

�0 | R1 = 1, RT1 = 1}, and
h·, ·iF denotes the Frobenius inner product; 1 is the

vector of ones and H(R) = �
PM

i,j=1 Ri,j logRi,j is
the entropy of R.

Cuturi (2013) shows that the Sinkhorn Algorithm
1 (Sinkhorn, 1964) returns its "-regularized optimum
R⇤ (see Eq. 11) in the limit L ! 1, which is also
unique due to strong convexity of the entropy. The
Sinkhorn algorithm is a fixed point algorithm that is
much faster than the Hungarian algorithm: it runs
in nearly O(M2) time (Altschuler et al., 2017) and



Algorithm 1 Sinkhorn

Input: {z̃i}
M
i=1 ⇠ QZ , {zj}

M
j=1 ⇠ PZ , ", L

8i, j : C̃ij = c̃(z̃i, zj)
K = exp(�C̃/"), u 1 # elem-wise exp

repeat until convergence, but at most L times:

v  1/(K>u) # elem-wise division

u 1/(Kv)
R⇤
 Diag(u)K Diag(v) # plus rounding step

Output: R⇤
, C̃.

can be e�ciently implemented with matrix multipli-
cations; see Algorithm 1. For better di↵erentiability
properties we deviate from Eq. 8 and use the unbi-

ased sharp Sinkhorn loss (Luise et al., 2018; Genevay
et al., 2018) by dropping the entropy terms (only) in
the evaluations:

S c̃,"(Q̂Z ,P̂Z) :=
1

M
hR⇤, C̃iF

� 1

2M

⇣
hR⇤

Q̂Z
, C̃Q̂Z

iF + hR⇤
P̂Z

, C̃P̂Z
iF

⌘
,

(12)

where the indices Q̂Z , P̂Z refer to Eq. 11 applied to
the samples from QZ in both arguments and then
PZ in both arguments, respectively.

Since this only deviates from Eq. 8 in "-terms we
still have all the mentioned properties, e.g. that the
optimum of this Sinkhorn distance approaches the op-
timum of the OT-cost with the stated rate (Genevay
et al., 2018; Cominetti and San Mart́ın, 1994; Weed,
2018). Furthermore, for numerical stability we use
the Sinkhorn algorithm in log-space (Chizat et al.,
2016; Schmitzer, 2016). In order to round the R that
results from a finite number L of Sinkhorn iterations
to a doubly stochastic matrix, we use the procedure
described Algorithm 2 of (Altschuler et al., 2017).

The smaller the ", the smaller the entropy and the
better the approximation of the OT-cost. At the
same time, a larger number of steps O(L) is needed
to converge, while the rate of convergence remains
linear in L (Genevay et al., 2018). Note that all
Sinkhorn operations are di↵erentiable. Therefore,
when the distance is used as a cost function, we can
unroll O(L) iterations and backpropagate (Genevay
et al., 2018). In conclusion, we obtain a di↵eren-
tiable surrogate for OT-cost between empirical dis-
tributions; the approximation arises from sampling,
entropy regularization and the finite amount of steps
in place of convergence.

Algorithm 2 SAE Training round

Input: encoder weights A, decoder weights B, ", L, �
Minibatch: x = {xi}

M
i=1 ⇠ PX , z = {zj}

M
j=1 ⇠ PZ

z̃  QA(x), x̃ GB(z̃)
D =

1
M kx� x̃kpp

S = SinkhornLoss(z̃, z, ", L), # 3 xAlg. 1+Eq. 12

Update: A,B with gradient r(A,B)(D + � · S).

3.4 TRAINING THE SINKHORN
AUTOENCODER

To train the Sinkhorn AutoEncoder with encoder QA,
decoder GB and with weights A, B, resp., we sample
minibatches x = {xi}Mi=1 from the data distribution
PX and z = {zi}Mi=1 from the prior PZ . After encod-
ing x we then run the Sinkhorn Algorithm 1 three
times (for (x, z), (x, x) and (z, z)) to find the optimal
couplings and then compute the unbiased Sinkhorn-
Loss via Eq. 12. Note that the L Sinkhorn steps
in Algorithm 1 are di↵erentiable. The weights can
then be updated via (auto-)di↵erentiation through
the Sinkhorn steps (together with the gradient of
the reconstruction loss). One training round is sum-
marized in Algorithm 2. Small " and large L worsen
the numerical stability of the Sinkhorn. In most ex-
periments, both c and c̃ will be k ·k22. Experimentally
we found that the re-calculation of the three opti-
mal couplings at each iteration is not a significant
overhead.

SAE can in principle work with arbitrary priors. The
only requirement coming from the Sinkhorn is the
ability to generate samples. The choice should be
motivated by the desired geometric properties of the
latent space.

4 CLOSED FORM OF THE
2-WASSERSTEIN DISTANCE

The 2-Wasserstein distance W2(QZ , PZ) has a closed
form in Euclidean space if both QZ and PZ are Gaus-
sian (Peyré and Cuturi (2018) Rem. 2.31):

W 2
2 (N (µ1,⌃1),N (µ2,⌃2)) = kµ1 � µ2k22

+ tr

✓
⌃1 + ⌃2 � 2

⇣
⌃

1
2
2 ⌃1 ⌃

1
2
2

⌘ 1
2

◆
, (13)

which will further simplify if PZ is standard Gaussian.
Even though the aggregated posterior QZ might not
be Gaussian we use the above formula for matching
and backpropagation, by estimating µ1 and ⌃1 on
minibatches of QZ via the standard formulas: µ̂1 :=
1
M

PM
i=1 z̃i and ⌃̂1 := 1

M�1

PM
i=1(z̃i � µ̂1)(z̃i � µ̂1)T .

We refer to this method as W2GAE (Wasserstein
Gaussian AutoEncoder). We will compare this
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Figure 1: a) Swiss Roll and its b) squared and c) spherical embeddings learned by Sinkhorn encoders. MNIST
embedded onto a 10D sphere viewed through t-SNE, with classes by colours: d) encoder only or e) encoder +
decoder.

method against SAE and other baselines as discussed
next in the related work section.

5 RELATED WORK

The Gaussian prior is common in VAE’s for the
reason of tractability. In fact, changing the prior
and/or the approximate posterior distributions re-
quires the use of tractable densities and the appropri-
ate reparametrization trick. A hyperspherical prior
is used by Davidson et al. (2018) with improved
experimental performance; the algorithm models a
Von Mises-Fisher posterior, with a non-trivial pos-
terior sampling procedure and a reparametrization
trick based on rejection sampling. Our implicit en-
coder distribution sidesteps these di�culties. Recent
advances on variable reparametrization can also sim-
plify these requirements (Figurnov et al., 2018). We
are not aware of methods embedding on probability
simplices, except the use of Dirichlet priors by the
same Figurnov et al. (2018).

Ho↵man and Johnson (2016) showed that the objec-
tive of a VAE does not force the aggregated posterior
and prior to match, and that the mutual informa-
tion of input and codes may be minimized instead.
Just like the WAE, SAE avoids this e↵ect by con-
struction. Makhzani et al. (2015) and WAE improve
latent matching by GAN/MMD. With the same goal,
Alemi et al. (2017) and Tomczak and Welling (2017)
introduce learnable priors in the form of a mixture
of posteriors, which can be used in SAE as well.

The Sinkhorn (1964) algorithm gained interest after
Cuturi (2013) showed its application for fast compu-
tation of Wasserstein distances. The algorithm has
been applied to ranking (Adams and Zemel, 2011),
domain adaptation (Courty et al., 2014), multi-label
classification (Frogner et al., 2015), metric learning
(Huang et al., 2016) and ecological inference (Muzel-
lec et al., 2017). Santa Cruz et al. (2017); Linderman
et al. (2018) used it for supervised combinatorial
losses. Our use of the Sinkhorn for generative mod-
eling is akin to that of Genevay et al. (2018), which

matches data and model samples with adversarial
training, and to Ambrogioni et al. (2018), which
matches samples from the model joint distribution
and a variational joint approximation. WAE and
WGAN objectives are linked respectively to primal
and dual formulations of OT (Tolstikhin et al., 2018).

Our approach for training the encoder alone qualifies
as self-supervised representation learning (Donahue
et al., 2017; Noroozi and Favaro, 2016; Noroozi et al.,
2017). As in noise-as-target (NAT) (Bojanowski and
Joulin, 2017) and in contrast to most other methods,
we can sample pseudo labels (from the prior) inde-
pendently from the input. In Appendix D we show
a formal connection with NAT.

Another way of estimating the 2-Wasserstein distance
in Euclidean space is the Sliced Wasserstein AutoEn-
coder (SWAE) (Kolouri et al., 2018). The main idea
is to sample one-dimensional lines in Euclidean space
and exploit the explicit form of the 2-Wasserstein
distance in terms of cumulative distribution functions
in the one-dimensional setting. We will compare our
methods to SWAE as well.

6 EXPERIMENTS

6.1 REPRESENTATION LEARNING
WITH SINKHORN ENCODERS

We demonstrate qualitatively that the Sinkhorn dis-
tance is a valid objective for unsupervised feature
learning by training the encoder in isolation. The
task consists of embedding the input distribution
in a lower dimensional space, while preserving the
local data geometry and minimizing the loss function
L = 1

M hR⇤, C̃iF , with c̃(z, z0) = kz � z0k22. Here M
is the minibatch size.

We display the representation of a 3D Swiss Roll
and MNIST. For the Swiss Roll we set " = 10�3,
while for MNIST it is set to 0.5, and L is picked to
ensure convergence. For the Swiss roll (Figure 1a),
we use a 50-50 fully connected network with ReLUs.



MNIST CelebA

method prior cost � MMD RE FID � MMD RE FID

VAE N KL 1 0.28 12.22 11.4 1 0.20 94.19 55

�-VAE N KL 0.1 2.20 11.76 50.0 0.1 0.21 67.80 65

WAE N MMD 100 0.50 7.07 24.4 2000
⇤

0.21 65.45 58

SWAE N SW 100 0.32 7.46 18.8 100 0.21 65.28 64

W2GAE (ours) N W 2
2 1 0.67 7.04 30.5 1 0.20 65.55 58

HAE (ours) N Hungarian 100 5.79 11.84 16.8 100 32.09 84.51 293

SAE (ours) N Sinkhorn 100 5.34 12.81 17.2 100 4.82 90.54 187

HVAE
†

H KL 1 0.25 12.73 21.5 - - - -

WAE H MMD 100 0.24 7.88 22.3 2000
⇤

0.25 66.54 59

SWAE H SW 100 0.24 7.80 27.6 100 0.41 63.64 80

HAE (ours) H Hungarian 100 0.23 8.69 12.0 100 0.26 63.49 58

SAE (ours) H Sinkhorn 100 0.25 8.59 12.5 100 0.24 63.97 56

Table 1: Results of the autoencoding task. Top 3 results for the FID scores are indicated with boldface
numbers. We compute MMD in latent space to evaluate the matching between the aggregated posterior
and prior. MMD results are reported times 102. Note that MMD scores are not comparable for di↵erent
priors. For SAE and the Gaussian prior, we used ✏ = 10 as lower values led to numerical instabilities. For the
hypersphere we set ✏ = 0.1. *The value of � = 2000 is similar to the value � = 100 as used in (Tolstikhin
et al., 2018), as a prefactor of 0.05 was used there for the reconstruction cost. †Comparing with Davidson
et al. (2018) in high-dimensional latent spaces turned out to be unfeasible, due to CPU-based computations.

Figures 1b, 1c show that the local geometry of the
Swiss Roll is conserved in the new representational
spaces — a square and a sphere. Figure 1d shows
the t-SNE visualization (Maaten and Hinton, 2008)
of the learned representation of the MNIST test set.
With neither labels nor reconstruction error, we learn
an embedding that is aware of class-wise clusters.
Minimization of the Sinkhorn distance achieves this
by encoding onto a d-dimensional hypersphere with
a uniform prior, such that points are encouraged to
map far apart. A contractive force is present due
to the inductive prior of neural networks, which are
known to be Lipschitz functions. On the one hand,
points in the latent space disperse in order to fill up
the sphere; on the other hand, points close on image
space cannot be mapped too far from each other.
As a result, local distances are conserved while the
overall distribution is spread. When the encoder is
combined with a decoder G the contractive force is
enlarged: they collaborate in learning a latent space
which makes reconstruction possible despite finite
capacity; see Figure 1e.

6.2 AUTOENCODING EXPERIMENTS

For the autoencoding task we compare SAE against
(�)-VAE, HVAE, SWAE and WAE-MMD. We fur-
thermore denote the model that matches the samples
in latent space with the Hungarian algorithm with
HAE. Where compatible, all methods are evaluated
both on the hypersphere and with a standard normal
prior. Results from our proposed W2GAE method as
discussed in section 4 for Gaussian priors are shown
as well. We compute FID scores (Heusel et al., 2017)
on CelebA and MNIST. For MNIST we use LeNet as

proposed in (Bińkowski et al., 2018). For details on
the experimental setup, see Appendix E. The results
for MNIST and CelebA are shown in Table 1. Ex-
trapolations, interpolations and samples of WAE and
SAE for CelebA are shown in Fig. 2. Visualizations
for MNIST are shown in Appendix D. Interpolations
on the hypersphere are defined on geodesics connect-
ing points on the hypersphere. FID scores of SAE
with a hyperspherical prior are on par or better than
the competing methods. Note that although the FID
scores for the VAE are slightly better than that of
SAE/HAE, the reconstruction error of the VAE is
significantly higher. Surprisingly, the simple W2GAE
method is on par with WAE on CelebA.

For the Gaussian prior on CelebA, both HAE and
SAE perform very poorly. In appendix F we analyzed
the behaviour of the Hungarian algorithm in isola-
tion for two sets of samples from high-dimensional
Gaussian distributions. The Hungarian algorithm
finds a better matching between samples from a
smaller variance Gaussian with samples from the
standard normal distribution. This behaviour gets
worse for higher dimensions, and also occurs for the
Sinkhorn algorithm. This might be due to the fact
that most probability mass of a high-dimensional
isotropic Gaussian with standard deviation � lies on
a thin annulus at radius �

p
d from its origin. For a fi-

nite number of samples the L2
2 cost function can lead

to a lower matching cost for samples between two an-
nuli of di↵erent radii. This e↵ect leads to an encoder
with a variance lower than one. When sampling from
the prior after training, this yields saturated sampled
images. See Appendix D for reconstructions and sam-
ples for HAE with a Gaussian prior on CelebA. Note
that neither SWAE and W2GAE su↵er from this



Figure 2: From left to right: CelebA extrapolations, interpolations, and samples. Models from Table 1: WAE
with a Gaussian prior (top) and SAE with a uniform prior on the hypersphere (bottom).

problem in our experiments, even though these meth-
ods also provide an estimate of the 2-Wasserstein
distance. For W2GAE this problem does start at
even higher dimensions (Appendix F).

6.3 DIRICHLET PRIORS

We further demonstrate the flexibility of SAE by
using Dirichlet priors on MNIST. The prior draws
samples on the probability simplex; hence we con-
strain the encoder by a final softmax layer. We
use priors that concentrate on the vertices with the
purpose of clustering the digits. A 10-dimensional
Dir(1/2) prior (Figure 3a) results in an embedding
qualitatively similar to the uniform sphere (1e). With
a more skewed prior Dir(1/5), the latent space could
be organized such that each digit is mapped to a
vertex, with little mass in the center. We found that
in dimension 10 this is seldom the case, as multiple
vertices can be taken by the same digit to model
di↵erent styles, while other digits share the same ver-
tex. We therefore experiment with a 16-dimensional
Dir(1/5), which yields more disconnected clusters

(3b); the e↵ect is evident when showing the prior
and the aggregated posterior that tries to cover it
(3c). Figure 3d (leftmost and rightmost columns)
shows that every digit 0� 9 is indeed represented on
one of the 16 vertices, while some digits are present
with multiple styles, e.g. the 7. The central sam-
ples in the Figure are the interpolations obtained by
sampling on edges connecting vertices – no real data
is autoencoded. Samples from the vertices appear
much crisper than other prior samples (3e), a sign of
mismatch between prior and aggregated posterior on
areas with lower probability mass. Finally, we could
even learn the Dirichlet hyperparameter(s) with a
reparametrization trick (Figurnov et al., 2018) and
let the data inform the model on the best prior.

7 CONCLUSION

We introduced a generative model built on the prin-
ciples of Optimal Transport. Working with empirical
Wasserstein distances and deterministic networks pro-
vides us with a flexible likelihood-free framework for
latent variable modeling.

(a) (b) (c) (d) (e)

Figure 3: t-SNEs of SAE latent spaces on MNIST: a) 10-dim Dir(1/2) and b) 16-dim Dir(1/5) priors. For the
latter: c) aggregated posterior (red) vs. prior (blue), d) vertices interpolation and e) samples from the prior.
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