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Abstract

Truncated backpropagation through time
(TBPTT) is a popular method for learning in
recurrent neural networks (RNNs) that saves
computation and memory at the cost of bias
by truncating backpropagation after a fixed
number of lags. In practice, choosing the
optimal truncation length is difficult: TBPTT
will not converge if the truncation length is
too small, or will converge slowly if it is too
large. We propose an adaptive TBPTT scheme
that converts the problem from choosing a
temporal lag to one of choosing a tolerable
amount of gradient bias. For many realistic
RNNs, the TBPTT gradients decay geometri-
cally in expectation for large lags; under this
condition, we can control the bias by varying
the truncation length adaptively. For RNNs
with smooth activation functions, we prove
that this bias controls the convergence rate
of SGD with biased gradients for our non-
convex loss. Using this theory, we develop a
practical method for adaptively estimating the
truncation length during training. We evaluate
our adaptive TBPTT method on synthetic
data and language modeling tasks and find
that our adaptive TBPTT ameliorates the
computational pitfalls of fixed TBPTT.

1 INTRODUCTION

Recurrent neural networks (RNNs) are a popular method
of processing sequential data for wide range of tasks
such as language modeling, machine translation and re-
inforcement learning.

As with most deep neural networks, RNNs are typi-
cally trained with gradient descent. These gradients can

be calculated efficiently using backpropagation through
time (BPTT) which applies backpropagation to the un-
rolled network (Werbos et al., 1990). For long se-
quential data, BPTT is both computationally and mem-
ory intensive, hence approximations based on truncat-
ing BPTT (TBPTT) have been proposed (Williams and
Zipser, 1995; Sutskever, 2013). However, this trunca-
tion causes the gradients to be biased. When the trunca-
tion level is not sufficiently large, the bias introduced can
cause SGD to not converge. In practice, a large trunca-
tion size is chosen heuristically (e.g. larger than the ex-
pected ‘memory’ of the system) or via cross-validation.

Quantifying the bias due to truncation is difficult. De-
pending on the parameters of the RNN, the gradi-
ent bounds for backpropagation either explode or van-
ish (Bengio et al., 1994; Pascanu et al., 2013). When
the gradients vanish, the bias in TBPTT can be bounded.
Recent work has analyzed conditions for the parame-
ters of the RNN to enforce this vanishing gradient con-
dition (Miller and Hardt, 2019). However, these ap-
proaches are very restrictive and prevent the RNN from
learning long-term dependencies.

To bound the bias in TBPTT, instead of restricting the
parameters, we formalize the heuristic assumption that
the gradients in backpropagation should rapidly decay
for steps beyond the ‘memory’ of the RNN. Specifically,
we assume gradient bounds that decay exponentially in
expectation rather than uniformly. Under this assump-
tion, we show that the bias in TBPTT decays geometri-
cally and also how to estimate an upper bound for this
bias given a minibatch of backpropagated gradients. Us-
ing this estimated upper bound, we propose an adaptive
truncation scheme to control the bias. In addition, we
prove non-asymptotic convergence rates for SGD when
the relative bias of our gradients is bounded. In partic-
ular, we show that when the relative bias, δ < 1, SGD
with biased gradients converges at the rate (1 − δ)−1

compared to SGD with exact (unbiased) gradients. In
our experiments on synthetic and text data we see that



(i) our heuristic assumption holds empirically for these
tasks, (ii) our adaptive TBPTT method controls the bias,
while fixed TBPTT does not, and (iii) that our adaptive
TBPTT method is competitive with or outperforms the
optimal fixed TBPTT.

The paper is organized as follows. First, we review
generic RNNs and BPTT in Section 2. Then, we develop
our theoretical results in Section 3. Using this theory, we
develop estimators for the bias and propose an adaptive
TBPTT SGD scheme in Section 4. Finally, we test our
proposed adaptive TBPTT training scheme in Section 5
on both synthetic and language modeling data.

2 BACKGROUND

A generic RNN with inputs xt ∈ R dx and hidden states
ht ∈ R dh at time step t evolves as

ht = H(ht−1, xt; θ) (1)

for some function H : R dh×dx → R dh with parame-
ters θ ∈ Θ (e.g, weights and biases) of the model. This
framework encompasses most popular RNNs. We now
present some examples that we use later.

Simple RNN: A simple RNN is a linear map com-
posed with a non-linear activation function ρ

ht = H(ht−1, xt, θ) = ρ(Wht−1 + Uxt) ,

where the weight matrices W,U are the parameters.

Long Short-Term Memory (LSTM): A popular class
of sequence models are LSTMs (Hochreiter and Schmid-
huber, 1997). The hidden state consists of a pair of vec-
tors ht = (ct, h̃t)

ft = σ(Wf h̃t−1 + Ufxt)

it = σ(Wih̃t−1 + Uixt)

ot = σ(Woh̃t−1 + Uoxt)

zt = tanh(Wzh̃t−1 + Uzxt)

ct = it ◦ zt + ft ◦ ct−1

h̃t = ot · tanh(ct) ,

where the eight matrices W∗, U∗, for ∗ ∈ {f, i, o, z}
are the parameters, σ is the logistic function, and ◦ de-
notes elementwise multiplication. LSTMs are examples
of gated-RNNs which capture more complex time depen-
dence through the use of gate variables ft, it, ot.

Stacked RNNs: RNNs can be composed by stacking
the hidden layers. This allows different layers to learn

structure at varying resolutions. Each RNN-layer treats
the output of the previous layer as its input. Specifically,
each layer l = 1, . . . , Nl is described as

h
(l)
t = H(l)(h

(l)
t−1, h

(l−1)
t , θ(l)) ,

where h(0)
t = xt.

2.1 TRAINING RNNs

To train an RNN, we minimize a loss that can be decom-
posed into individual time steps L(θ) = 1

T

∑T
t=1 Lt(θ).

For example, the individual loss at step t may measure
the accuracy of ht at predicting target outputs yt ∈ R dy .

Given X = x1:T and L1:T , gradient descent methods
are typically used to train the RNN to minimize the loss.
To scale gradient descent for large T , we use stochastic
gradient descent (SGD), which uses a random estimator
ĝ for the full gradient g = ∇θL.

We first consider estimating g using the gradient of the
loss at a random individual time step, Ls, where s is a
random index drawn uniformly from {1, . . . , T}. In Sec-
tion 4.1, we discuss efficient ways of computing Eq. (3)
for multiple losses Ls:s+t simultaneously.

Unrolling the RNN, the gradient of Ls is

∇θLs =
∂Ls
∂θ

+

s∑
k=0

∂Ls
∂hs−k

· ∂hs−k
∂θ

, (2)

which can be efficiently computed using backpropaga-
tion through time (BPTT) (Werbos et al., 1990; Williams
and Zipser, 1995).

When s is large, unrolling the RNN is both computation-
ally and memory prohibitive; therefore in practice, the
backpropagated gradients in Eq. (2) are truncated after
K steps (Williams and Zipser, 1995; Sutskever, 2013)

∇̂θLKs =
∂Ls
∂θ

+

K∑
k=0

∂Ls
∂hs−k

∂hs−k
∂θ

, (3)

where K � T .

Let ĝK = ∇̂θLKs be our stochastic gradient estimator
for g truncated at K steps. When K = T , ĝT is an unbi-
ased estimate for g; however in general for K < T , the
gradient estimator ĝK is biased, E [ĝK(θ)] 6= g(θ). In
practice, the truncation length K is chosen heuristically
to be “large enough” to capture the memory in the un-
derlying process, in hope that the bias of ĝK(θ) does not
affect the convergence of SGD. In general, there are no
guarantees on the size of this bias or the convergence of
the overall optimization for fixed K.



2.2 VANISHING AND EXPLODING GRADIENT

Let ‖ · ‖ denote the spectral norm for matrices and Eu-
clidean norm for vectors.

To analyze the bias of ĝK , we are interested in the behav-
ior of ∂Lt

∂ht−k
for large k. Pascanu et al. (2013) observed

∂Lt
∂ht−k

=
∂Lt
∂ht

k∏
r=1

∂ht−r+1

∂ht−r
. (4)

In particular, the repeated product of Jacobian matrices
∂ht
∂ht−1

cause Eq. (4) to tend to explode to infinity or van-
ish to zero. When θ has an exploding gradient, then
the bias of ĝK is unbounded. When θ has a vanishing
gradient, then the bias of ĝK is small; however if the
gradient decays too rapidly, the RNN cannot learn long-
term dependences (Bengio et al., 1994; Pascanu et al.,
2013; Miller and Hardt, 2019). In practice, LSTMs and
other gated-RNNs have been seen to work in a middle
ground where (for appropriate θ and inputs x1:T ) the gate
variables prevent the gradient from exploding or vanish-
ing (Hochreiter and Schmidhuber, 1997; Belletti et al.,
2018). However, gradient bounds, based on the Jacobian
‖ ∂ht
∂ht−1

‖ ≤ λ, either explode or vanish∥∥∥∥ ∂Lt
∂ht−k

∥∥∥∥ ≤ ∥∥∥∥∂Lt∂ht

∥∥∥∥ · λk . (5)

In light of Eq. (5), several approaches have been pro-
posed in the literature to restrict θ to control λ.

Unitary training methods have been proposed to restrict
θ such that λ ≈ 1 for all θ, but do not bound the bias of
the resulting gradient (Arjovsky et al., 2016; Jing et al.,
2017; Vorontsov et al., 2017).

Stable or Chaos-Free training methods have been pro-
posed to restrict θ such that λ < 1 (Laurent and von
Brecht, 2017; Miller and Hardt, 2019). In particular,
Miller and Hardt (2019) call an RNN H stable for pa-
rameters θ if it is a contraction in h, that is

sup
h,h′∈R dh
x∈R dx

‖H(h, x, θ)−H(h′, x, θ)‖
‖h− h′‖

≤ λ < 1 (6)

and call an RNN H data-dependent stable if the supre-
mum over Eq. (6) is restricted to observed inputs x ∈ X .
Let Θλ-Stable be the set of parameters θ satisfying Eq. (6)
and ΘX

λ-Stable be the set of parameters θ satisfying the
data-dependent version.

Miller and Hardt (2019) show that if θ ∈ Θλ-Stable the
RNN gradients have an exponential forgetting property
(as ‖∂H∂h ‖ < λ), which prevents the RNN from learn-
ing long-term dependences. We desire conditions on θ
where we can bound the bias, but are less restrictive than
Eq. (6).

3 THEORY

In this section, we consider bounding the bias in TBPTT
when θ satisfies a relaxation of the contraction restriction
Eq. (6). Under this condition and a bound on ‖∂ht/∂θ‖,
we show that both the absolute bias and relative bias are
bounded and decay geometrically for large K. Finally,
we prove the convergence rate of SGD for gradients with
bounded relative bias. Full proofs of theorems can be
found in the Supplement.

3.1 GEOMETRIC DECAY FOR LARGE LAGS

To reduce notation, we define φk = ‖ ∂Ls
∂hs−k

‖ to be the
gradient norm of loss Ls at time s with respect to the
hidden state k lags in the past. Note that φk is a random
variable as s is a random index.

Our relaxation of Eq. (6) is to assume the norm of the
backpropagated gradient φk decays geometrically, on av-
erage for large enough lags k. More formally,

Assumption (A-1). For θ fixed, there exists β ∈ (0, 1)
and τ ≥ 0 such that

E [φk+1] ≤ β · E [φk] , for all k ≥ τ (7)

This generalizes the vanishing gradient condition to hold
in expectation.

To contrast (A-1) with θ ∈ Θλ-Stable, we observe that if
θ ∈ Θλ-Stable then the gradient norms φk must uniformly
decay exponentially

φk+1 ≤ λ · φk for all k . (8)

Eq. (7) is less restrictive than Eq. (8) as φk+1 ≤ β · φk
only occurs for k > τ and in expectation rather than
uniformly. Denote the set of θ that satisfy (A-1) with β, τ
for inputs X = x1:T as ΘX

β,τ . Then, we have Θλ-Stable ⊆
ΘX
λ-Stable ⊂ ΘX

β,τ for (β, τ) = (λ, 0). Therefore (A-1)
is a more general condition. For illustration, we present
two examples where θ ∈ ΘX

β,τ but θ /∈ ΘX
λ-Stable.

Nilpotent Linear RNN: Consider a simple RNN with
linear activation ht = Wht−1 + Uxt where W is a
nilpotent matrix with index k, that is W k = 0. Then
∂ht/∂ht−k = W k = 0 hence (W,U) ∈ ΘX

0,k; how-
ever the norm ‖∂ht/∂ht−k‖ = ‖W‖ can be arbitrar-
ily large, thus (W,U) /∈ Θλ-Stable. For this example,
although H is not stable, k-repeated composition ht =
(H ◦ · · · ◦H)(ht−k, xt−k+1:t) is stable.

Unstable RNN with Resetting: Consider a generic
RNN with θ chosen such that H is unstable, Lipschitz



with constant λ > 1, but with a resetting property
H(h, x) = 0, whenever x ∈ X0. Then,

E S [φk+1] ≤ Pr(xs, . . . , xs−k+1 /∈ X0) · λ · E S [φk]

Although the RNN is unstable, if the probability
{xs, . . . , xs−k+1} hits the resetting set X0 is greater than
1 − βλ−1 for sufficiently large k and for some β < 1,
then Pr(xs, . . . , xs−k+1 /∈ X0) · λ ≤ β and therefore
θ ∈ Θβ,k with θ /∈ ΘX

λ-Stable. For this example, although
H is not stable, properties of input distribution xt can
lead to H have vanishing gradients in expectation.

3.2 TBPTT BIAS BOUNDS

We now show the usefulness of assumption (A-1), that
is if θ ∈ ΘX

β,τ , then the bias of TBPTT is bounded and
decays geometrically in K. To do so, we additionally
assume the partial derivatives of the hidden state with
respect to the parameters is bounded.
Assumption (A-2). For θ fixed, there exists M < ∞
such that ‖∂H(xt,ht,θ)

∂θ ‖ ≤M for all t.

For most typical RNNs, where θ are weights and bi-
ases, if the inputs xt and ht are bounded then M can
be bounded and assumption (A-2) holds.

We now show both the bias of TBPTT is guaranteed to
decay geometrically for large K.
Theorem 1 (Bias Bound). If (A-1) and (A-2) hold for θ,
then the absolute bias is upper bounded as

‖E [ĝK(θ)]− g(θ)‖ ≤ E(K, θ) ,

where

E(K, θ) =

M · E
[∑τ−1

k=K+1 φk + φτ
1−β

]
, K < τ

M · E [φτ ] · β
K−τ

1−β , K ≥ τ
.

And the relative bias is upper bounded by

‖E [ĝK(θ)]− g(θ)‖
‖g(θ)‖

≤ ∆(K, θ) ,

where

∆(K, θ) =
E(K, θ)

maxk≤K ‖E ĝk(θ)‖ − E(k, θ)
.

when the denominator is positive.

Note that E(K, θ) decays geometrically for K ≥ τ and
therefore ∆(K, θ) decays geometrically for large enough
K (as the denominator is monotone increasing).

Using this upper bound, we define κ(δ, θ) to be the small-
est truncation length for the parameters θ with guaran-
teed relative bias less than δ. That is

κ(δ, θ) = min
K
{∆(K, θ) < δ} . (9)

The geometric decay in ∆(K, θ) ensures κ(δ, θ) is small.

Finally, we define the adaptive TBPTT gradient estima-
tor to be ĝ(θ) = ĝκ(δ,θ)(θ), which truncates BPTT after
κ(δ, θ) steps and therefore has relative bias less than δ.

3.3 SGD WITH BIASED GRADIENTS

We use stochastic gradient descent (SGD) to learn θ

θn+1 = θn − γn · ĝ(θn) , (10)

where {γn}Nn=1 are stepsizes. When using SGD for non-
convex optimization, such as in training RNNs, we are
interested in convergence to stationary points ofL, where
θ is called a ε-stationary point of L(θ) if ‖g(θ)‖2 ≤ ε
(Nesterov, 2013).

Usually the stochastic gradients ĝ are assumed to be un-
biased; however during training RNNs with TBPTT, the
truncated gradients are biased. Based on Section 3.2, we
consider the case when ĝ(θ) has a bounded relative bias,

‖E [ĝ(θ)]− g(θ)‖ ≤ δ‖g(θ)‖, ∀θ . (11)

such as for our adaptive estimator ĝ(θ) = ĝκ(δ,θ)(θ).

For gradients with bounded relative bias δ < 1 (and
the additional assumptions below), Poljak and Tsypkin
(1973) and Bertsekas and Tsitsiklis (1989) prove that the
averaged SGD sequence θn asymptotically converges to
a stationary point when the stepsizes are γn ∝ n−1.
However, non-asymptotic convergence rates are also of
interest, as they are useful in practice to understand the
non-asymptotic performance of the algorithm. Ghadimi
and Lan (2013) prove non-asymptotic convergence rates
for SGD with unbiased gradients. We extend these re-
sults to the case of SGD with biased gradients. Similar
results were previously investigated by Chen and Luss
(2018), but with weaker bounds1.For our SGD conver-
gence bound we need two additional assumptions.

Assumption (A-3). The gradients are L-Lipschitz

‖g(θ)− g(θ′)‖ ≤ L‖θ − θ′‖, ∀θ, θ′ .

This assumption holds for generic RNNs as long as the
activation functions are smooth (e.g. σ or tanh, but
not RELU). Second, we assume that the variance of our
stochastic gradient estimator is uniformly bounded.

Assumption (A-4). E ‖ĝ(θ)− E ĝ(θ)‖2 ≤ σ2 for all θ.

We can now present our main theorem regarding conver-
gence rates of SGD with biased gradients.

1They consider the case of consistent but biased estimators,
where the gradients are uniformly bounded and the relative er-
ror is controlled with high probability (rather than in expecta-
tion). See the Supplement for additional discussion.



Theorem 2 (SGD with Biased Gradients). If the relative
bias of ĝ(θ) is bounded by δ < 1 for all θn and (A-3)
and (A-4) both hold, then SGD, Eq. (10), with stepsizes
γn ≤ 1−δ

L(1+δ)2 satisfies

min
n=1,...,N+1

‖g(θn)‖2 ≤
2DL + Lσ2

∑N
n=1 γ

2
n

(1− δ)
∑N
n=1 γn

, (12)

where DL = (L(θ1)−minθ∗ L(θ∗)).

In particular, the optimal fixed stepsize for N fixed is
γn =

√
2DL/(NLσ2), for which the bound is

min
n=1,...,N+1

‖g(θn)‖2 ≤ 1

1− δ
·
√

8DLLσ2

N
. (13)

When δ = 0, Thm. 2 reduces to the smooth non-convex
convergence rate bound (Ghadimi and Lan, 2013). The
price of biased gradients in SGD is the factor (1− δ)−1.

In practice, when the constants in Thm. 2 are unknown
(e.g. DL), we can use a decaying stepsize γn = γ·n−1/2.
Once γn ≤ 1−δ

L(1+δ)2 , Thm. 2 implies

min
n=1,...,N+1

‖g(θn)‖2 = O
(

1

1− δ
· log n√

n

)
. (14)

Thm. 2 provides bounds of the form minn ‖g(θn)‖2 < ε,
but does not say which iterate is best. This can be ac-
counted for by using a random-stopping time (Ghadimi
and Lan, 2013) or using variance reduction methods such
as SVRG (Reddi et al., 2016). We leave these extensions
as future work. In our experiments, we select θn by eval-
uating performance on a validation set.

What happens when (A-1) is violated? We do not
restrict θ to ΘX

β,τ during training, therefore whenever
θn /∈ Θβ,τ (or in practice when κ(δ, θn) is larger than
our computational budget allows), we are not able to con-
struct ĝ(θn) such that the relative bias is bounded. In
these cases, we use ĝ = ĝKmax

for some large truncation
Kmax. Although ĝKmax does not satisfy (A-1), we as-
sume the stationary points of interest θ∗ are in ΘX

β,τ and
that eventually θn ends in a neighborhood of a θ∗ that is
a subset of Θβ,τ where our theory holds.

The advantage of an adaptive κ(δ, θ) over a fixed K is
that it ensures convergence when possible (relative bias
δ < 1), while being able to get away with using a smaller
K during optimization for computational speed-ups.

4 ADAPTIVE TBPTT

The theory in Sec. 3 naturally suggests an adaptive
TBPTT algorithm that we summarize in Alg. 1. Our

method selects a truncation level by periodically esti-
mating κ(δ, θ) over the course of SGD. In this section,
we describe our implementation and how to estimate the
quantities necessary to choose the truncation level2.

Algorithm 1 Adaptive TBPTT
1: Input: initial parameters θ0, initial truncation K0,

stepsizes γ1:N , relative bias tolerance δ, batch size
S, window size R

2: for n = 0, . . . , N − 1 do
. Compute adaptive truncation

3: Sample random minibatch S of size S
4: Calculate φk using BPTT(R, 1) for Eq. (18)
5: Calculate P̂S [φk] for k ∈ [0, R] using Eq. (20)
6: Estimate β̂ using Eq. (21) or (22)
7: Set Kn = κ̂(δ, θ) using Eq. (25)
. Update θ with streaming gradients

8: for m = 1, . . . , T/Kn do
9: Get minibatch Sm defined in Eq. (17)

10: Calculate ĝ(θn) = BPTT(2Kn,Kn) on Sm
11: Set θn = θn − γn ·

√
Kn · ĝ(θn)

12: end for
13: Set θn+1 = θn
14: end for
15: Return θ1:N .

4.1 COMPUTING TBPTT GRADIENTS

Following Williams and Zipser (1995), we denote
BPTT(K1,K2) to be truncated backpropagation for K2

losses Ls−K2+1:s backpropagated over K1 steps, that is

BPTT(K1,K2) =
1

K2

K2−1∑
k′=0

K1∑
k=s−t

∂Ls−k′
∂hs−k

· ∂hs−k
∂θ

(15)
which can be computed efficiently using the recursion

bk =


bk−1 ·

∂hs−k+1

∂hs−k
+
∂Ls−k
∂hs−k

if k < K2

bk−1 ·
∂hs−k+1

∂hs−k
if k ≥ K2

(16)

with BPTT(K1,K2) = 1
K2

∑K1

k=0 bk ·
∂hs−k
∂θ . It is im-

portant to include the normalization factor 1
K2

, to ensure
regularizations (such as dropout or weight decay) do not
change for different values of K2.

When K1 = K and K2 = 1, then we obtain
BPTT(K, 1) = ĝK . However, individually calculating
S samples of ĝK using BPTT(K, 1) takesO(JK) com-
putation; whereas the same gradients (plus extra lags)

2Code for our implementation and experiments is at
https://github.com/aicherc/adaptive_tbptt.

https://github.com/aicherc/adaptive_tbptt


can be computed using BPTT(J +K,K) inO(J +K)
time. In practice a popular default setting is to set
K1 = K2 = K (as done in TensorFlow (Abadi et al.,
2016)); however this overweights small lags, as the k-th
loss is only backpropagated only K − k steps. To ensure
all K losses are backpropagated at least K steps, in our
experiments we use BPTT(2K,K).

We also scale the gradient updates γnĝ by
√
Kn to ac-

count for the decreasing variance in BPTT(2K,K) as
K increases. If we did not scale the gradient updates,
then as K increases, the resulting increase in the compu-
tational cost per step is not offset.

To handle the initialization of hs−k in Eq. (15), we par-
tition {1, . . . , T} into T/K contiguous subsequences

Sm = [(m− 1) ∗K + 1, . . . ,m ∗K] . (17)

By sequentially processing Sm in order, the final hidden
state of the RNN on Sm can be used as the input for the
RNN on Sm+1.

4.2 ESTIMATING GEOMETRIC DECAY RATE

A prerequisite for determining our adaptive truncation
level is estimating the geometric rate of decay in Eq. (7),
β, and the lag at which it is valid, τ . We consider the
case where we are given a batch of gradient norms φk
for s in a random minibatch S of size |S| = S that are
backpropagated over a window k ∈ [0, R]{

φk =

∥∥∥∥ ∂Ls
∂hs−k

∥∥∥∥ : s ∈ S, k ∈ [0, R]

}
. (18)

The gradient norms φk can be computed iteratively in
parallel using the same architecture as truncated back-
propagation BPTT(R, 1). The window size R should
be set to some large value. This should be larger than the
τ of the optimal θ∗. The window size R can be large,
since we only estimate β periodically.

We first focus on estimating β given an estimate τ̂ > τ .
We observe that if τ̂ ≥ τ and (A-1) holds, then

log β ≥ max
k′>k≥τ̂

logE [φk]− logE [φk′ ]

k − k′
. (19)

Eq. (19) states that log β bounds the slope of logE [φt]
between any pair of points larger than τ .

Using Eq. (19), we propose two methods for estimating
β. We replace the expectation E with the empirical ap-
proximation based on the minibatch S

E [f(s)] ≈ P̂S [f(s)] :=
1

‖S‖
∑
s∈S

f(s). (20)

Substituting the empirical approximation into Eq. (19)
and restricting the points to [τ̂ , R], we obtain

β̂ = log

[
max

τ̂≤k<k′≤R

log P̂S [φk]− log P̂S [φk′ ]

k − k′

]
.

(21)
Because this estimate of β is based on the maximum it
is sensitive to noise: a single noisy pair of P̂S [φk] com-
pletely determines β̂ when using Eq. (21). To reduce this
sensitivity, we could use a (1 − α) quantile instead of
strict max; however, to account for the noise in P̂S [φk],
we use linear regression, which is a weighted-average of
the pairs of slopes

β̃ = log

[∑
k,k′(log P̂S [φk]− log P̂S [φk′ ](k − k′)]∑

k,k′(k − k′)2

]
.

(22)
This estimator is not guaranteed to be consistent for an
upper bound on β (i.e. as |S| → T , β̃ 6≥ β); however,
we found Eq. (22) performed better in practice.

The correctness and efficiency of both methods depends
on the size of both the minibatch S and the window
[τ̂ , R]. Larger minibatches improve the approximation
accuracy of P̂S . Large windows [τ̂ , R] are necessary to
check (A-1), but also lead to additional noise.

In practice, we set τ̂ to be a fraction of R; in our exper-
iments we did not see much variability in β̂ once τ̂ was
sufficiently large, therefore we use τ̂ = 9

10R.

4.3 ESTIMATING THE TRUNCATION LEVEL

To estimate κ(δ, θ) in Eq. (9), we obtain empirical esti-
mates for the absolute and relative biases of the gradient.

Given β̂, τ̂ , our estimated bound for the absolute bias is

Ê(K, θ) =

M̂ · P̂S
[∑τ̂−1

k=K+1 φk +
φS,τ̂

1−β̂

]
, K < τ̂

M̂ · P̂S [φτ̂ ] · β̂
K−τ̂

1−β̂
, K ≥ τ̂

(23)
where we estimate an upper-bound M̂ for M by keeping
track of an upper-bound for hs,t and xs,t during training.

Similarly, our estimated bound for the relative bias is

∆̂(K, θ) =
Ê(K, θ)

‖maxk≤K P̂S [ĝk(θ)]‖ − Ê(k, θ)
(24)

In our implementation, we make the simplifying assump-
tion that ‖P̂S [ĝK/M̂ ]‖ ≈ P̂S‖

∑K
k=0 φk‖, which allows

us to avoid calculating M̂ .

Our estimate for K with relative error δ is

κ̂(δ, θ) = min
K∈[Kmin,Kmax]

{∆̂(K, θ) < δ} , (25)

where Kmin and Kmax are user-specified bounds.



4.4 RUNTIME ANALYSIS OF ALGORITHM 1

Our adaptive TBPTT scheme, Algorithm 1, consists of
estimating the truncation length (lines 3-7) and updat-
ing the parameters with SGD using TBPTT (lines 8-12);
whereas a fixed TBPTT scheme skips lines 3-7.

Updating the parameters with BPTT(2K,K) streaming
over {1, . . . , T} (lines 8-12), takesO(T/K ·K) = O(T )
time and memory3. The additional computational cost of
adaptive TBPTT (lines 3-7) is dominated by the calcula-
tion of gradient norms φk, Eq. (18), using BPTT(R, 1),
which takes O(R) time and memory. If we update the
truncation length α times each epoch, then the total cost
for adaptive TBPTT is O(T +αR). Therefore, the addi-
tional computation cost is negligible when αR << T .

In Algorithm 1, we only update K once per epoch (α =
1); however more frequent updates (α < 1) allow for less
stale estimates at additional computational cost.

5 EXPERIMENTS

In this section we demonstrate the advantages of our
adaptive TBPTT scheme (Algorithm 1) in both synthetic
copy and language modeling tasks. We compare using
fixed TBPTT and our adaptive TBPTT to train RNNs
with SGD. We evaluate performance using perplexity
(PPL) on the test set, for the θn that achieve the best
PPL on the validation set. To make a fair compari-
son, we measure PPL against the number of data passes
(epochs) used in training (counting the data used to esti-
mate κ̂(δ, θn)). In Section 5.3, we demonstrate that the
best θn appear to satisfy (A-1) (e.g., θ ∈ Θβ,λ) by pre-
senting the gradient norms E [φk] against lag k. In the
Supplement we present additional experiments, applying
our adaptive TBPTT scheme to temporal point process
modeling (Du et al., 2016).

5.1 SYNTHETIC COPY EXPERIMENT

The ‘copy’ synthetic task is used to test the RNN’s abil-
ity to remember information seen earlier (Hochreiter and
Schmidhuber, 1997; Arjovsky et al., 2016; Jing et al.,
2017; Vorontsov et al., 2017). We consider a special
variant of this task from (Mujika et al., 2018), which
we review now. Let A = {ai} be a set of symbols,
where the first I represent data and remaining two repre-
sent “blank” and “start recall”. Each input consists of
sequence of m random data symbols followed by the
“start recall” symbol andm−1 more blanks. The desired

3As K increases, BPTT(2K,K) takes more time per step
O(K), but there are less steps per epoch O(T/K); hence the
overall computation time is O(T )

output consists of m blanks followed by the original se-
quence of m data symbols. For example when m = 6
and A = {A,B,C,−,#}

Input: ACBBAB#-----
Output: ------ACBBAB

We concatenate multiple of such inputs to construct x1:T

and multiple outputs to construct y1:T . We expect that
TBPTT with K > m will perform well, while K < m
will perform poorly.

In our experiments, we consider both a fixed m = 10
and a variable m drawn uniformly over [5, 10]. For the
variable copy length experiment, we expect TBPTT to
degrade more gradually as K decreases. We set I = 6
and use training data of length T = 256, 000 and valida-
tion and test data of length T = 64, 000.

Model and Training Setup We train separate 2-layer
LSTMs with a embedding input layer and a linear output-
layer to both the fixed- and variable- copy tasks by min-
imizing the cross-entropy loss. The embedding dimen-
sion is set to 6 and hidden and cell dimensions of the
LSTM layers are set to 50. We train θ using SGD using a
batchsize of S = 64 and a fixed learning rate of γ = 1.0
with fixed TBPTT K ∈ [5, 10, 15, 20, 30] and our adap-
tive TBPTT method δ ∈ [0.9, 0.5, 0.1], W = 100,
K0 = 15 and [Kmin,Kmax] = [2, 100].

Results Figure 1 shows the results for the synthetic
copy task. The left figures present the test set PPL against
the number of data epochs used in training. We see that
adaptive methods (black solid lines) perform as well as
or better than the best fixed methods (colored dashed).
In particular, TBPTT with K = 5 (blue) does not learn
how to accurately predict the outputs as K is too small
5 = K ≤ m = 10. On the other hand, K = 30 (purple)
takes much longer to converge. The center figures show
how κ̂(δ, θn) evolves for the adaptive TBPTT methods
over training. The adaptive methods initially use small
K as the backpropagated gradient vanish rapidly in the
early epochs; however as the adaptive TBPTT methods
learn θ the necessary K for a relative error of δ increases
until they eventually level off at κ(δ, θN ). The right fig-
ures show the estimated relative bias δ of the gradient es-
timates during training. We see that the adaptive methods
are able to roughly control δ to be less than their target
values, while the fixed methods initially start with low δ
and before increasing and leveling off. Additional figures
for the validation PPL and tables of numerical values can
be found in the Supplement.
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Figure 1: Synthetic Copy Results: (left) Test PPL vs epoch, (center) κ̂(δ, θn) vs epoch (right) δ̂(K) vs epoch. (Top)
fixed m = 10, (bottom) variable m ∈ [5, 10]. Error bars are 95 percentiles over 50 minibatch estimates. Solid dark
lines are our adaptive TBPTT methods, dashed colored lines are fixed TBPTT baselines. We see that the adaptive
method converges in fewer epochs (left), while maintaining a controlled relative bias δ(K) ≤ δ (right).

5.2 LANGUAGE MODELING EXPERIMENTS

We also evaluate performance on language modeling
tasks, where the goal is to predict the next word. We train
and evaluate models on both the Penn Treebank (PTB)
corpus (Marcus et al., 1993; Mikolov et al., 2010) and
the Wikitext-2 (Wiki2) corpus (Merity et al., 2016). The
PTB corpus contains about 1 millon tokens with a trun-
cated vocabulary of 10k. The Wikitext-2 is twice the size
of PTB and with a vocabulary of 30k.

Model and Training Setup For both the PTB and
Wiki2 corpus, we train 1-layer LSTMs with a word
embedding layer input and a linear output layer. The
embedding dimension, hidden state, and cell state di-
mensions are all 900 for the PTB following (Lei et al.,
2017) and 512 for the Wiki2 corpus following (Miller
and Hardt, 2019). We use a batchsize of S = 32
and a fixed learning rate of γ = 10 for fixed TBPTT
K ∈ [10, 50, 100, 200, 300] and our adaptive TBPTT
method δ ∈ [0.9, 0.5, 0.1]. We set W = 400, K0 = 100
and [Kmin,Kmax] = [10, 400] for Algorithm 1.

Results Figure 2 (left) presents the test PPL and Kn

against the training epoch for both language modeling
tasks. We again see that our adaptive methods are com-
petitive with the best fixed K methods, while controlling
the relative bias. From theK(δ, θn) vs epoch figures, our
adaptive method seems to quickly converge to a constant.

Therefore, on the real language data task, we have trans-
formed the problem of selecting a fixed-K to choosing a
continuous parameter δ ∈ (0, 1). Additional figures for
the validation PPL and tables of numerical values can be
found in the Supplement.

5.3 EMPIRICALLY CHECKING (A-1)

Figure 3 plots the gradient norm φk = ∂Ls/∂hs−k vs
k evaluated at the best θn (as measured on the valida-
tion set). Note that the y-axis is on a log-scale We see
that the expected norm P̂S [φk] (blue-line) of the gradi-
ents decay geometrically for large k; however any indi-
vidual φk (gray lines) are quite noisy and do not strictly
decay. Therefore it appears that our RNNs satisfy (A-1),
even though they are unstable, and thus the relative bias
can be bounded.

5.4 CHALLENGES IN HIGHER DIMENSIONS

During our experiments, we found that when training
RNNs with high-dimensional h, but without introducing
regularization on θ (in the form of dropout or weight de-
cay), our estimates β̂ were often close to or greater than
1; therefore our conservative relative error bound lead
to extremely large (impractical) truncation estimates K.
During inspection, we found that although most dimen-
sions of ∂Ls

∂hs−k
decay rapidly with k, a few dimensions

did not and these dimensions cause the overall norm
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Figure 2: Language Modeling Results. (left) Test PPL vs epoch, (center) κ̂(δ, θn) vs Epoch, (right) δ̂(K) vs epoch.
(Top) PTB (bottom) Wiki2. Error bars are 95 percentiles over 50 minibatch estimates. Solid dark lines are our adaptive
TBPTT methods, dashed colored lines are fixed TBPTT baselines. Our adaptive methods are competitive with the best
fixed K methods, while controlling the relative bias.
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Figure 3: Gradient Norms φk vs k at the best θ show-
ing geometric decay on average (blue line) for large
k. The gray lines are separate draws of φk. (Top-
left) fixed-length ‘copy’ task, (top-right) variable-length
‘copy’ task, (bottom-left) PTB, (bottom-right) Wiki2.

‖ ∂Ls
∂hs−k

‖ to decay slowly, thus β̂ ≈ 1. However if these

dimensions do not influence ∂L/∂θ (i.e. if ∂ht∂θ is close to
zero), then these dimensions should be ignored. There-
fore, to better apply our results to higher-dimensional h,
we suspect one should replace the Euclidean norm with a
norm that weights dimensions of ∂Ls

∂hs−t
by ∂ht

∂θ (such as
the Mahalanobis norm ‖x‖Σ = xTΣ−1x for some posi-

tive definite matrix Σ), but we leave this for future work.

6 DISCUSSION

In this work, we developed an adaptively truncating
BPTT scheme for RNNs that satistify a generalized van-
ishing gradient property. We show that if the gradi-
ent decays geometrically in expectation (A-1), then we
can control the relative bias of TBPTT (Theorem 1) and
guarantee non-asymptotic convergence bounds for SGD
(Theorem 2). We additionally show how to take advan-
tage of these ideas in practice in Algorithm 1, by devel-
oping estimators for the relative bias based on backprop-
agated gradients. We evaluate our proposed method on
synthetic copy tasks and language modeling and find it
performs similarly to the best fixed-K TBPTT schemes,
while still controlling the relative bias of the gradient es-
timates. In future work, we are interested in methods that
restrict the parameters to Θβ,τ and alternatives to the Eu-
clidean norm for our error bounds in Section 3.2.
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