
On Densification for Minwise Hashing

Tung Mai
Adobe

Anup Rao
Adobe

Matt Kapilevich
Adobe

Ryan Rossi
Adobe

Yasin Abbasi-Yadkori
VinAI

Ritwik Sinha
Adobe

Abstract

One Permutation Hashing (OPH) is a signif-
icantly more efficient alternative to the popu-
lar minwise hashing. To produce a sketch of
size k, OPH requires just one hash function
whereas the classical minwise hashing requires
k hash functions. However, OPH does not have
the desirable locality sensitive hashing (LSH)
property that is important for indexing. [Sri-
vastava and Li 2014] proposed the novel idea
of densification to produce LSH sketches from
OPH sketches, and gave the first densification
routine. In this paper, we give a necessary
and sufficient condition for a densification rou-
tine to result in LSH sketches when applied to
OPH sketches. Furthermore, we give a novel
densification routine that for every input, takes
O(k log k) time in expectation and achieves
better variance than the previous best bound
obtained by [Srivastava 2017]. The running
time of the densification routine given in [Sri-
vastava 2017] for worst case inputs isO(k2) in
expectation.

1 INTRODUCTION

Many modern data sets are often large but have features
that are sparse and binary. Examples include textual doc-
uments [Henzinger, 2006], images [Chum et al., 2008]
or video frames [Chum et al., 2007] (represented as bags
of words) and web behavioural data, for instance com-
putational advertising [Shi et al., 2018] (where categori-
cal data is converted by using one hot encoding). Binary
data can be expressed as sets. A widely used metric for
set similarity is Jaccard similarity. Given two sets A and
B, Jaccard similarity is defined as

J(A,B) =
|A ∩B|
|A ∪B|

.

Often the modern datasets are huge in both the number
of data points and the number of features. Sketching is
a popular way to effectively reduce the dimensionality
of the data while preserving key statistics. Minhash is a
widely used method to reduce dimensionality while pre-
serving Jaccard similarity. This has many applications
[Broder, 1997, Broder et al., 1997, Bayardo et al., 2007]
including duplicate detection [Henzinger, 2006], nearest
neighbor search [Indyk and Motwani, 1998] and large
scale learning [Li et al., 2011]. In this paper, we con-
sider a more efficient way to sketch sets to obtain con-
stant sized vectors which approximately preserves Jac-
card similarity.

Given a set A, we denote its sketch vector by s(A) =
(s(A)1, ..., s(A)k). In this paper, we only consider
sketches which have the alignment or LSH property,

Pr(s(A)i = s(B)i) = J(A,B),

for all i. The alignment property is important
[Shrivastava, 2017, Dahlgaard et al., 2017] for large
scale machine learning and answering approximate
nearest neighbor queries. When this holds, an un-
biased estimate of the Jaccard similarity of sets
A and B is given by 1

k

∑
i 1(s(A)i = s(B)i).

We will assume throughout that all the sets are
subsets of [n] for some big integer n. Minhash
[Broder, 1997, Broder et al., 1997] is given by s(A) =
(mina∈A π1(a),mina∈A π2(a), ...,mina∈A πk(a)),
where πi : [n] → [n], i = 1, ..., k are random per-
mutations. This takes O(k|A|) to sketch a set A.
One often needs to take k to be around several thou-
sands to get satisfyingly accurate estimate in practice
[D. Ondov et al., 2016]. Given the huge amount of
data, evaluating k hash function is computationally very
expensive, and it is highly desirable to remove the factor
k from the running time.

Bottom-k sketch and one permutation hashing scheme
(OPH) [Li et al., 2012] are two alternatives that over-
come this bottleneck. Both require just one hash eval-

uation. Bottom-k sketch has a worst case running time
of O(|A| ln k) time and OPH takes O(|A|) time. But
neither has the LSH property that is important for many
downstream tasks. OPH produces a k dimensional vec-
tor where some of the coordinates can be empty. This
will be the case when |A| = o(k log k). To address
this, in a series of papers [Shrivastava and Li, 2014a,
Shrivastava and Li, 2014b, Shrivastava, 2017], the au-
thors give various densification routines to fill in the
empty positions by copying values from the non-empty
positions. They also show that the resulting sketch has
the LSH property. Since one replicates values from
non-empty bins, the copying procedure affects the vari-
ance of the Jaccard estimate. The densification rou-
tine producing the current best variance is given in
[Shrivastava, 2017]. The running time of this procedure
for worst case inputs is O(k2) in expectation (the algo-
rithm is randomized), which is attained when the size of
the set is very small compared to k. When this densi-
fication routine is used along with OPH, the worst case
expected running time to sketch a set A is O(|A| + k2).
We also note that in practice one might want to just store
and update the sketches produced by OPH (due to poten-
tial space savings for small sets), and run the densifica-
tion routine only when required by certain downstream
tasks. In these cases, the running time of the densifica-
tion routine of [Shrivastava, 2017] for worst case inputs
isO(k2) in expectation (over the randomness in the algo-
rithm). In this paper, we give a much faster densification
routine. Our main result is:

Theorem 1.1. The densification given in Algorithm 1
takes O(k log k) expected time, produces sketches with
LSH property and achieves better variance than the den-
sification proposed in [Shrivastava, 2017].

Finally, we would like to note that in
[Chen and Shrivastava, 2016] the authors apply the
densification idea to Winner Takes All (WTA) sketches
and show that the resulting densified sketch has a
significantly better performance in image search and
classification. One can use the densification routine we
propose in this paper without affecting their accuracy
gains, but obtaining significant computational gains in
the very sparse regime.

1.1 OUR CONTRIBUTIONS

The contribution of this paper is two fold. First, we
identify a notion of consistency that characterizes valid
densification routines. A valid densification routine
is a procedure to fill in the empty coordinates by
copying values from non-empty coordinates such that
the sketch so produced has LSH property. All the
densification routines in [Shrivastava and Li, 2014a,

Shrivastava and Li, 2014b, Shrivastava, 2017] satisfy
this consistency property and hence leads to unbiased
estimators. Second, we give a new densification routine
whose variance is better than the current best one given
in [Shrivastava, 2017], and runs in expected O(k log k)
time. We note that [Shrivastava, 2017] proves that the
variance of the densification routine given there is opti-
mal for a restricted class of algorithms. Our algorithm
does not belong to the class considered there and hence,
we are able to achieve a slightly better variance and
achieve nearly linear runtime as a function of k.

In [Dahlgaard et al., 2017], the authors give an algo-
rithm that computes a sketch of A in expected time
O(|A| + k log k), and achieves superior concentration
guarantees than the methods based on one permutation
hashing. But the algorithm there needs full access to A
at the start and is not designed to be a one pass algo-
rithm. In many practical applications, the set of interest
keeps growing. A particular example is computational
advertising datasets where new users with various cat-
egorical attributes get added every day. We would like
to maintain a sketch of the sets, updating it using only
the current day’s data and not have to look back at data
already processed once. OPH is well suited in these situ-
ations when the set is updated continuously, and we want
to continuously maintain a sketch. OPH is a single pass
algorithm, and using the densification routine given in
this paper, we can compute a sketch in O(|A|+ k log k)
expected time and achieve better variance than previous
densification routines.

1.2 PRELIMINARIES AND NOTATIONS

LetU denote the population set which we assume is finite
in size. When k is a positive integer, we use Uk to denote
the set of all k dimensional vectors whose coordinates are
in U . Without loss of generality, we assume U = [n] for
a large integer n. Let π a random permutation π : U →
U . For a set A ⊂ U , we let π(A) = {π(a) |a ∈ A}. We
will also use the notation min(A) = mina∈A a. . Let π
be a random permutation. A minhash sketch of size one
of a set A ⊆ U is given by π(A). Then, it is not hard to
show that the collision probability is given by

Pr
(
min(π(A)) = min(π(B))

)
=
|A ∩B|
|A ∪B|

= J(A,B).

(1)
Let 1(·) be a function that takes value 1 when
the argument is true, and zero otherwise. Hence,
1
(
min(π(A)) = min(π(B))

)
is an unbiased estima-

tor of J(A,B). A k-minhash sketch s : 2U →
Uk is a random function obtained by sampling k
random permutations π1, ..., πk and defining s(A) =

(min(π1(A)), ...,min(πk(A))). We have

J̃(s) =
1

k

∑
i∈[k]

1
(
s(A)i = s(B)i

)
(2)

is also an unbiased estimator of J(A,B). In other words,
the sketches s(A), s(B) of sets A,B can be used to es-
timate J(A,B) by doing a pair-wise comparison of the
coordinates. For any sketch mentioned in the paper, ex-
pectation and variance are with respect to that estimator.

1.2.1 One Permutation Hashing

One permutation hashing (OPH) is an efficient way to
generate a sketch of size k by partitioning U into k equal
sized bins. Formally, let Ui denote the ith partition of U .
Then the ith coordinate of the sketch of a set A is given
by:

OPH(A)i =

{
min

(
π(A) ∩ Ui

)
, if π(A) ∩ Ui 6= ∅

e, otherwise.

Here e is special element denoting the empty item. Let
Ue = U ∪ {e}. Then OPH(A) ∈ Uke for any A ⊆ U .

For v ∈ Uke , denote by Ev the set of empty coordi-
nates/bins and Nv the set of non-empty coordinates/bins
of v. In other words, Ev = {i : vi = e} and Nv = {i :
vi 6= e}.

Consider applying one permutation hashing on A,B ⊆
U . We say that a bin (or an index) i is simultaneously
empty if the ith coordinates of the sketches of both A
and B are empty. To be precise, EA,B = EOPH(A) ∩
EOPH(B) is the set of all simultaneously empty bins.
Similarly, a bin is simultaneously non-empty if either
OPH(A)i or OPH(B)i (or both) is non-empty. For-
mally, NA,B = [k] \ EA,B = NOPH(A) ∪NOPH(B).

It is proven in [Li et al., 2012] that for all i ∈ NA,B , the
property stated in Equation 1 holds:

Pr
(
OPH(A)i = OPH(B)i

)
= J(A,B). (3)

However, it does not necessarily hold for i ∈ EA,B .
Therefore, even though OPH is computationally effi-
cient, it does not have the desirable LSH property.

1.2.2 Densification

The authors of [Shrivastava and Li, 2014a] presented a
novel idea of reassigning the values of non-empty bins to
empty bins so that the resulting sketch has the LSH prop-
erty. This is called a densification routine. In the paper,
the process they proposed is fast and simple: every empty
bin gets assigned the value of the nearest non-empty bin
on the circular right. The densification produces a sketch

having LSH property. However, the variance of the cor-
responding estimator is unnecessarily high.

In [Shrivastava and Li, 2014b], the authors showed that
utilizing k random bits could improve the variance, while
achieving the same running time. In particular, every
empty bin receives a random bit and gets assigned the
value of the nearest non-empty bin toward circular right
(or left) if the bit is 0 (or 1).

However, there is still an issue with the variance obtained
by the densification given in [Shrivastava and Li, 2014b],
as pointed out by [Shrivastava, 2017]. Specifically,
the variance does not go to 0 as k goes to ∞.
Hence, [Shrivastava, 2017] proposed another densifica-
tion scheme, in which the reassigment process is done
using 2-universal hash functions. [Shrivastava, 2017]
showed that the scheme improved the variance over
[Shrivastava and Li, 2014b], and is optimal if the reas-
sigments of any two empty bins are independent.

1.2.3 Consistent Sampling

Consistent sampling is a technique for sampling a
subset of elements from a given set so that samples
from similar sets are likely to be similar. Minhash
sketch, in particular, is consistent. Consistent sampling
has crucial applications in estimation of set similarity
[Manasse et al., 2010] and number of distinct items in a
data stream. In this paper, we are only interested in sam-
pling one element from a set.

Definition 1.2 (Consistent Sampling of One Element).
Consistent sampling is a sampling process that returns
an element from a given set and satisfies the following:
whenever x ∈ S is sampled from T and S ⊆ T then x is
also sampled from S.

1.3 NEW DENSIFICATION ROUTINE

As noted above, the worst case running time of the den-
sification routine given in [Shrivastava, 2017] is O(k2),
which occurs when number of non-empty bins is small
compared to k. The reason is, when that happens, an
empty bin would need O(k) expected hash functions to
find a non-empty bin, since there are few of them. More-
over, this observation holds at every step of the densifi-
cation.

To circumvent that, we apply hash functions from non-
empty bins to empty ones instead. When the number of
empty bins becomes small, the expected time needed to
fill a bin is also O(k). However, such bad cases only
happen toward the end of the routine as opposed to the
densification in [Shrivastava, 2017].

Reversing the direction of hash functions can also reduce

the variance. In particular, it prevents two empty bins to
copy values from the same non-empty bin, in the same
round. Hence, the values copied in the same round are
more balancedly distributed.

2 DENSIFICATION
CHARACTERIZATION

In this section we give a formal definition for densifica-
tion and a characterization of densification routines that
result in sketches with LSH property when applied to the
output of OPH.

2.1 Formalization

We define a densification process as follows:

Definition 2.1 (Densification). A densification is a func-
tion D : Uke → Uk such that ∀v ∈ Uke :

• ∀i ∈ Nv : D(v)i = vi

• ∀i ∈ Ev,∃j ∈ Nv : D(v)i = vj . We say that
fv(i) = j, where fv is a function from Ev to Nv .

In other words, D is a rule that when applied on a vector
v ∈ Uke , copies values in non-empty bins to empty bins.
Given D and v, fv is the reassignment function such that
fv(i) is the bin whose value is copied to i, for every i ∈
Ev .

Definition 2.2 (Consistent Densification). A densifica-
tion process is consistent if ∀v, i ∈ Ev , fv(i) is chosen
from Nv according to a consistent sampling.

The process of reassigning values from non-empty bins
to empty-bins can be viewed as a sampling process. In
particular, each empty bin samples a bin from the set of
non-empty ones to copy from. A consistent densification
guarantees that the sampling process is consistent. Note
that we use ’sampling’ even when the procedure is po-
tentially deterministic, and not just uniformly randomly.

It can be checked that all densifications proposed in
[Shrivastava and Li, 2014a, Shrivastava and Li, 2014b,
Shrivastava, 2017] are consistent. For example, in
[Shrivastava and Li, 2014a] the desification process fills
an empty bin by using value from the nearest non-empty
bin toward circular right. Consider u, v ∈ Uke such that
Nu ⊆ Nv , and i ∈ Ev . We claim that the sampling
process to fill bin i is consistent. To see this, assume
fv(i) ∈ Nu. Then fv(i) is the bin in Nv that is nearest
to i and towards the circular right. Now, if fv(i) ∈ Nu,
then since Nu ⊆ Nv , it must also be the nearest bin in
Nu. Hence, fu(i) = fv(i) as desired.

2.2 A NECESSARY AND SUFFICIENT
CONDITION

In this section we give a necessary and sufficient condi-
tion for a densification scheme to produce a sketch that
has LSH property when applied to OPH sketch. We show

Theorem 2.3. A densificationD is consistent if and only
if for all 1 ≤ i ≤ k, and all A,B ⊆ U

Pr
(
D(A)i = D(B)i

)
= J(A,B).

We first state and prove some lemmas from which the
proof of the above theorem will be immediate. For
simplicity of notations, we will use throughout the pa-
per D(A) and D(B) to represent D(OPH(A)) and
D(OPH(B)), where A and B are subsets of U .

Lemma 2.4. For any densification D,

Pr
(
D(A)i = D(B)i|i ∈ NA,B

)
= Pr

(
OPH(A)i = OPH(B)i|i ∈ NA,B

)
= J(A,B).

This is just Lemma 2 in [Li et al., 2012] paraphrased us-
ing our notation. For completeness, we give the proof in
Appendix.

The next lemma presents a critical property of a con-
sistent densification scheme. Specifically, for any given
simultaneously empty bin i, the assignment of i should
mirror the collision probability of a simultaneously non-
empty bin j. When that happens, we say that i replicates
j.

Lemma 2.5. Let i be a bin in EA,B . For any consistent
densification scheme D, there exists j ∈ NA,B such that

1
(
D(A)i = D(B)i

)
= 1

(
OPH(A)j = OPH(B)j

)
.

Proof. For i ∈ EA,B , let j be a bin sampled from
NA,B = NOPH(A) ∪ NOPH(B) using the same consis-
tent sampling process of D. We first show D(A)i =
D(B)i if and only if OPH(A)j = OPH(B)j by con-
sidering two cases:

• If j ∈ NOPH(A)∩NOPH(B) then both fOPH(A)(i)
and fOPH(B)(i) are equal to j by consistency.
Hence, D(A)i = OPH(A)j and D(B)j =
OPH(B)j . Hence, 1

(
D(A)i = D(B)i

)
=

1
(
OPH(A)j = OPH(B)j

)
in this case.

• If j 6∈ NOPH(A) ∩ NOPH(B), we may assume
without loss of generality that j ∈ NOPH(A) \
NOPH(B). Then OPH(A)j 6= e = OPH(B)j .
Moreover, fOPH(A)(i) = j by consistency. There-
fore, D(A)i = OPH(A)j . Since j 6∈ NOPH(B),

OPH(B)l 6= OPH(A)j for all l ∈ NOPH(B).
Therefore, 1

(
D(A)i = D(B)i

)
= 0 =

1
(
OPH(A)j = OPH(B)j

)
.

The lemma follows from these two cases. �

From Lemma 2.4 and Lemma 2.5, we have

Lemma 2.6. If D is a consistent densification, for all
1 ≤ i ≤ k, Pr

(
D(A)i = D(B)i

)
= J(A,B).

The next lemma says that consistency is a condition that
every densification must satisfy to create sketches having
LSH property.

Lemma 2.7. If D is a not consistent densification, there
exists 1 ≤ i ≤ k and A,B ⊆ U such that Pr

(
D(A)i =

D(B)i
)
< J(A,B).

Proof. First we show that for any densification D,
Pr
(
D(A)i = D(B)i

)
≤ J(A,B). We consider two

cases:

• For i ∈ NA,B , by Lemma 2.4,

Pr
(
D(A)i = D(B)i | i ∈ NA,B

)
= J(A,B).

• For i ∈ EA,B ,

Pr
(
D(A)i = D(B)i | i ∈ EA,B

)
=

{
J(A,B), if fOPH(A)(i) = fOPH(B)(i)

0, otherwise.

Therefore, we get Pr
(
D(A)i = D(B)i

)
≤

J(A,B).

Since D is not consistent, there exist S ⊆ T ⊂ [k],
i ∈ [k] \ T such that j ∈ S is sampled from T but
j is not sampled from S in the process of filling bin i.
Clearly, we can construct sets A,B large enough such
that NOPH(A) = S and NOPH(B) = T with positive
probability. Since fOPH(B)(i) = j 6= fOPH(A)(i),

Pr
(
D(A)i = D(B)i

∣∣NOPH(A) = S,NOPH(B) = T
)

is equal to 0.

If we modify D so that fOPH(A)(i) = j and keep
all other functions fixed, the above probability will
increase to J(A,B). Since the event NOPH(A) =
S,NOPH(B) = T occurs with a non-zero probability, the
overall probability will increase. Hence, Pr

(
D(A)i =

D(B)i
)
< J(A,B) before modification. �

Combining Lemma 2.6 and Lemma 2.7 immediately
gives Theorem 2.3.

3 A FASTER DENSIFICATION SCHEME

In this section we present a new densification scheme
and prove Theorem 1.1. In particular, we show that
our densification scheme takes O(k log k) expected time
(Lemma 3.1), produces sketches with LSH property
(Lemma 3.2) and has smaller variance than the one pro-
posed in [Shrivastava, 2017] (Lemma 3.4).

Let h0, h1, . . . : [k] → (0, k] be random hash functions
mapping every element 1 ≤ i ≤ n to an independent
uniform random value in (0, k]. For each i ∈ [k], let

Sαi = {j ∈ [k] : dhα(j)e = i}.

The sets Sαi can be viewed as a partition of the range
space of hα into k equal bins. Then for each hα, define
gα : [k]→ [k] ∪ e as follows:

gα(j) =

{
i, if j = argminj∈Si

hα(j)

e, otherwise.

In words, gα(j) takes value i if and only if hα(j) attains
the smallest value in bin i. Our densification process is
given in Algorithm 1.

Algorithm 1 Faster Densification
input: v, {hα}
output: D(v)

1: for j ∈ Nv do
2: D(v)j ← vj

3: E ← Ev
4: α← 0
5: while E 6= ∅ do
6: for j ∈ Nv do
7: if gα(j) = i ∈ E then
8: D(v)i ← vj
9: E ← E \ {i}

10: if E = ∅ then break
11: α← α+ 1

12: return D(v)

At a high level, the algorithm fills empty bins in Ev with
values from bins in Nv using a family of hash functions.
In each round α, a hash function hα (or equivalently the
corresponding mapping function gα) is utilized. In par-
ticular, the value of bin j ∈ Nv is copied to bin i ∈ Ev
using {gα} if gα(j) = i and i is empty at the beginning
of round α. A set E of the currently empty bins is main-
tained. The algorithm terminates after the round when
there are no more empty bins, i.e., E = ∅.

Next we give the running time and correctness analysis
of our densification.

3.1 RUNNING TIME

Lemma 3.1. The proposed densification in Algorithm 1
takes O(k log k) time in expectation.

Proof. Let x be the number of empty bins that are
mapped to by some hash functions in {hα} at any step
of our algorithm. The probability that an empty bin is
found (the probability that hα(i) maps to an empty bin
among k bins) is x/k. Therefore, the expected time that
an empty bin is found, given x, is k/x. The total ex-
pected number of steps until all bins are mapped to by
some hash function is:

|Ev|∑
x=1

k

x
= kH|Ev|,

where H|Ev| is the harmonic number of order |Ev|. Af-
ter all bins are found, there are at most k more steps in
the current round. Hence the total expected densification
time is:

k + kH|Ev|.

Since H|Ev| ≤ Hk = O(log k), the running time is
O(k log k). �

3.2 LSH PROPERTY

Lemma 3.2. Let D be densification produced by Algo-
rithm 1. Then

Pr
(
D(A)i = D(B)i

)
= J(A,B)

for any A,B ⊆ U .

Proof. By Theorem 2.3, it suffices to show that D is a
consistent densification. Let v be a vector in Uke . For
each i ∈ Ev , let fv(i) = j ∈ Nv be the bin in Nv
from which i is assigned value according to D. Then
j = g−1α (i) where α is the earliest round such that
i ∈ gα(Nv). Let u be another vector in Uke such that
Nu ⊆ Nv and assume that j ∈ Nu. Since Nu ⊆ Nv ,
the earliest round such that i ∈ gα(Nv) must also be α.
Therefore, fu(i) = j as desired. �

3.3 VARIANCE

We give a variance analysis for our densification scheme.
Most of the analysis is analogous for those presented
in [Shrivastava and Li, 2014b] and [Shrivastava, 2017].
Recall that the estimator of J(A,B) after densifying is
given by

J̃ =
1

k

∑
i∈[k]

1
(
D(A)i = D(B)i

)
.

Define the events MN
i and ME

i as:

MN
i = 1

(
i ∈ NA,B and D(A)i = D(B)i

)
,

ME
i = 1

(
i ∈ EA,B and D(A)i = D(B)i

)
.

In words,MN
i = 1 if and only if i is simultaneously non-

empty and matched after densification, and ME
i = 1 if

and only if i is simultaneously empty and matched after
densification.

With respect to the above events, J̃ can be written as

1

k

∑
i∈[k]

(
MN
i +ME

i

)
.

The variance is then

Var
(
J̃
)
= E


1

k

∑
i∈[k]

(
MN
i +ME

i

)2
− J2.

We will use m to denote the event |NA,B | = m and let

F (m) = E


1

k

∑
i∈[k]

(
MN
i +ME

i

)2 ∣∣∣∣∣m
 .

By linearity of expectation,

k2F (m) = E

∑
i 6=j

MN
i M

N
j

∣∣∣∣m
+ E

∑
i 6=j

MN
i M

E
j

∣∣∣∣m


+E

∑
i 6=j

ME
i M

E
j

∣∣∣∣m
+ E

[∑
i

[
(MN

i)2 + (ME
i)2

] ∣∣∣∣m
]

Since MN
i and ME

i are indicator variables,

E

[∑
i

[(
MN
i

)2
+
(
ME
i

)2] ∣∣∣∣m
]
= kJ.

For i, j ∈ NA,B , MN
i M

N
j = 1 with probability JĴ ,

where

Ĵ =

∣∣A ∩B∣∣− 1∣∣A ∪B∣∣− 1
.

Therefore,

E

∑
i 6=j

MN
i M

N
j

∣∣∣∣m
 = m(m− 1)JĴ.

For i ∈ NA,B and j ∈ EA,B , MN
i M

E
j = 1 with prob-

ability JĴ if j replicates i′ 6= i and MN
i M

E
j = 1 with

probability J if j replicates i. Hence,

E

∑
i 6=j

MN
i M

E
j

∣∣∣∣m


= 2m(k −m)

(
J

m
+

(m− 1)JĴ

m

)
.

Similarly, for i, j ∈ EA,B , ME
i M

E
j = 1 with probabil-

ity JĴ if i and j replicate different bins in NA,B and
MN
i M

E
j = 1 with probability J if they replicate the

same bin. Therefore,

E

∑
i 6=j

ME
i M

E
j

∣∣∣∣m


= (k −m)(k −m− 1)
(
pJ + (1− p)JĴ

)
,

where p is the probability that two simultaneously empty
bins replicate the same non-empty bin in the densifica-
tion process. Since pJ − pJ · Ĵ = pJ(1 − Ĵ) ≥ 0,

E
[∑

i 6=jM
E
i M

E
j

∣∣∣∣m] increases as p increases. Since

the other terms are independent with p, F (m) also in-
creases as p increases. The next lemma gives an upper-
bound on p.
Lemma 3.3. In Algorithm 1, the probability that two si-
multaneously empty bins replicate the same simultane-
ously non-empty bin, given |NA,B | = m, is(

1− 1

k

)m−1
1

m
<

1

m
.

Proof. Notice that two simultaenously empty bins i, j ∈
EA,B replicate different bins if they are filled in the same
round. The reason is gα(i) = gα(j) = l implies dhα(l)e
is equal to both i and j, which is a contradiction.

Assume i is filled in round α and j is not filled before the
α. The probaility that j is not filled in the same round is
the probability that hα(l) does not map to bin j for all l ∈
NA,B \{dhα(i)e}. This probability equals

(
1− 1

k

)m−1
.

Conditioning on the event that i and j are filled in differ-
ent rounds, we may assume that i is filled before j from
bin l. The probability that j is filled from l is exactly 1

m .
To see this, observe that every bin in NA,B has an equal
chance of being copied to j. �

The values of p for densification shemes in
[Shrivastava and Li, 2014a, Shrivastava and Li, 2014b,
Shrivastava, 2017] are 2

m+1 ,
1.5
m+1 ,

1
m respectively. By

Lemma 3.3, we have:
Lemma 3.4. Our densification routine achieves smaller
variance than the one proposed in [Shrivastava, 2017].

4 EXPERIMENTS

In this section we describe experiments and present
results that highlight the advantages of the densifi-
cation routine proposed in the paper. These exper-
iments closely resemble those in [Shrivastava, 2017].
We implemented three densification routines h+

[Shrivastava and Li, 2014b], h∗ [Shrivastava, 2017] and
ours, denoted here by ho. We could not find any code
for the previous methods (the link was broken), but
we implemented these methods, faithfully following the
pseudo-code provided in these papers. The code was im-
plemented in C++ and we use the popular MurmurHash1

for all the methods. All the experiments were performed
on a laptop (MacBook Pro 2015, i7 4770HQ 2.2 GHz,
16 GB RAM).

4.1 VARIANCE AND TIME FOR PAIRS

Table 1: Pair statistics including similarity and sparsity

|S1| |S2| J

Pair 1 195 106 0.535714

Pair 2 649 452 0.045584

Pair 3 307 349 0.863636

Pair 4 303 156 0.207895

In this experiment, we chose four pairs of words from
News20, represented as vectors using the term-document
representation. These pairs were of varying Jaccard sim-
ilarity, we ran each experiment 2000 times. The sizes of
these word pairs and their Jaccard similarities are given
in Table 1. We plot the mean squared error of h+, h∗ and
ho for several values of k. As a baseline, we estimate
Jaccard similarity straight from one permutation hashing
without any densification routine as in [Li et al., 2012].
This is a valid baseline because all densification routines
copy values from non empty bins to empty bins. Hence,
without using any further information, the variance of
the estimate of the Jaccard similarity can only increase
after densification. We note that the baseline used in
[Shrivastava, 2017] is the theoretical variance of vanilla
minwise hashing algorithm and is different from ours.
Since all the routines are unbiased, the mean squared er-
ror corresponds to the variance of the estimators. The
results of these experiments are shown in Figure 1.

We also noticed the effect of k on running time while do-
ing these experiments. We give one such plot in Figure 2
for one of the word pairs. All plots we generated show
a similar behavior. This plot shows the quadratic scaling

1https://en.wikipedia.org/wiki/MurmurHash

101 102 103 104 105

Number of hashes

10− 6

10− 5

10− 4

10− 3

10− 2

M
S
E

J = 0.535714

Shrivastava and Li 2014 (h +)

Shrivastava 2017 (h *)

This paper (ho)

OPH

101 102 103 104 105

Number of hashes

10− 6

10− 5

10− 4

10− 3

M
S
E

J = 0.045584

Shrivastava and Li 2014 (h +)

Shrivastava 2017 (h *)

This paper (ho)

OPH

101 102 103 104 105

Number of hashes

10− 6

10− 5

10− 4

10− 3

10− 2

M
S
E

J = 0.863636

Shrivastava and Li 2014 (h +)

Shrivastava 2017 (h *)

This paper (ho)

OPH

101 102 103 104 105

Number of hashes

10− 6

10− 5

10− 4

10− 3

10− 2

M
S
E

J = 0.207895

Shrivastava and Li 2014 (h +)

Shrivastava 2017 (h *)

This paper (ho)

OPH

Figure 1: Average MSE in Jaccard Similarity Estimation as a function of (k). Estimates are averaged over 2000
repetitions. The accuracy of the proposed method is better than previous densification methods, as shown in theory.
OPH is the error without any densification, but the sketch so produced does not have LSH property.

with k of h∗ and nearly linear scaling of the proposed
method.

0 20000 40000 60000 80000 100000

Number of hashes

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 t

im
e

J = 0.207895

Shrivastava and Li 2014 (h +)

Shrivastava 2017 (h *)

This paper (ho)

OPH

Figure 2: Time (in seconds) taken by various sketching
routines for a word pair with similarity 0.207895, aver-
aged over 2000 repetitions. Similar plots generated for
other word pairs show similar behavior.

Conclusion 1 The variance ho is at least as good as pre-
vious densification routines. The variance of h∗, ho

is much better than h+; and ho is better than h∗ as
k increases.

Conclusion 2 The running time of ho scales nearly lin-
early with k.

4.2 TIME FOR SKETCHING FULL DATASETS

In this experiment, we run all the densification routines
on three publicly available text datasets: News20, URL
and RCV1. For the URL dataset, we only take the first
100000 samples. The details of the data sets are given
in Table 4. We note the running time from start to finish
(except the data loading time) for various values of k in
Table 2. We clearly see the faster running times for our
densification routine for large k. Since the running time
depends on machines and code optimizations, we also
give number of hash evaluations by the routines h∗ and
ho incurred in the densification step. This is indepen-
dent of the particular implementation. These numbers
are normalized for each dataset and value of k such that
the entry corresponding to ho is always 1. We note that
h+ doesn’t need any hash evaluations and hence, we do
not include it in this table.

Conclusion 1 The time required by ho scales nearly
linearly with k whereas h∗ performs increasingly
worse as k increases. Since most datasets found in
practice often contain many sparse sets, the perfor-
mance of h∗ is worse than ho when the value of k
is in the range (several thousands) that is often used
in practice.

Conclusion 2 The performance gains achieved by ho

compared to h∗ are larger for sparser data.

Conclusion 3 Compared to h∗ that achieves state-of-

Table 2: Time (in seconds) required to compute k = {100, 1000, 10000} hashes using the two existing densification
routines and the proposed one, h∗ can be much slower than ho. While h+ is very fast, it has a huge variance as
discussed in [Shrivastava, 2017] and seen from the variance experiment in this paper.

RCV1 URL News20

k h+ h∗ ho h+ h∗ ho h+ h∗ ho

102 0.04 0.29 0.32 0.20 0.96 1.96 0.10 0.17 0.4
103 0.19 7.05 2.21 0.82 23.08 11.93 0.32 3.53 2.94
104 2.20 458.91 24.23 11.11 971.84 124.97 2.22 141.39 24.7

Table 3: Number of hash evaluations for computing
k = {100, 1000, 10000} hashes for h∗ and ho. We have
normalized each combination of dataset and k so that the
number of evaluations for ho is one.

RCV1 URL News20

k h∗ ho h∗ ho h∗ ho

102 0.41 1 0 .09 1 0.19 1
103 2.92 1 1.14 1 0.78 1
104 22.72 1 8.95 1 6.15 1

Table 4: Data statistics

Data Avg. non-zeros Dim. Samples

RCV1 73 47,236 20,242
URL 115 3,231,961 100,000
News20 402 1,355,191 19,996

the-art variance, ho is 6×−19× faster for k = 104

(while always achieving a lower variance according
to experiments carried on Section 4.1).

5 DISCUSSION

An undesirable property of our densification and the one
given in [Shrivastava, 2017] is that the running time can
be unbounded. This happens when the hash functions
from the non-empty bins do not fully map into empty
bins in our case (or the opposite direction in the case
of [Shrivastava, 2017]). The issue, however, can be cir-
cumvented with a small cost in the variance guarantee.
Specifically, we can restrict the number of hash func-
tions described at the beginning of this section to k and
add an extra k hash functions at the end to ansure that
all the bins are completely filled. In partiticular, for
1 ≤ α ≤ k the hash funcitons remain unchanged, and
for k + 1 ≤ α ≤ 2k, hα(i) maps a bin i in [k] to the
range (α − k, α − k + 1]. Hence, all hash functions are
mapped to the same bin in the last k rounds. The non-
empty bin whose hash attains the minimum value is cho-

sen for reasignment. Since each bin i is guaranteed to be
filled in round k + i, all bins are filled at the end.

With a more involved analysis, the running time can be
proven to be O(k log k). It can also be seen that this
modified densification is consistent. The variance, how-
ever, increases as it still remains under 1

m . To see this,
notice that if two bins are filled in the last k rounds, their
reasigments are completely independent. Hence, we do
not have the guarantee that two bins filled in the same
round replicate different non-empty bins.

Another drawback of our densification is the use of mul-
tiple hash functions. It is not hard to see that, given any
set A, with probability at least 1− 1

k we only need k log k
|A|

hash functions to fill A. If we apply the above modifica-
tion, the number of hash functions needed is 2k. This can
be avoided by utilizing a mixed tabulation in the man-
ner as proposed in [Dahlgaard et al., 2017]. In particu-
lar, the mixed tabulation h has size 2k log k, and takes
on input a pair (α, i). In other words, our algorithm re-
mains unchanged after replacing hα(i) with h(α, i). By
[Dahlgaard et al., 2015], the keys in {0, . . . , bk log k

|A| c} ×
A are mapped independently with high probability, pre-
serving our results.

References

[Bayardo et al., 2007] Bayardo, R. J., Ma, Y., and
Srikant, R. (2007). Scaling up all pairs similarity
search. In Proceedings of the 16th international con-
ference on World Wide Web, pages 131–140. ACM.

[Broder, 1997] Broder, A. Z. (1997). On the resem-
blance and containment of documents. In Compres-
sion and complexity of sequences 1997. proceedings,
pages 21–29. IEEE.

[Broder et al., 1997] Broder, A. Z., Glassman, S. C.,
Manasse, M. S., and Zweig, G. (1997). Syntactic clus-
tering of the web. Computer Networks and ISDN Sys-
tems, 29(8):1157–1166.

[Chen and Shrivastava, 2016] Chen, B. and Shrivastava,
A. (2016). Revisiting winner take all (WTA) hashing
for sparse datasets. CoRR, abs/1612.01834.

[Chum et al., 2007] Chum, O., Philbin, J., Isard, M., and
Zisserman, A. (2007). Scalable near identical image
and shot detection. pages 549–556.

[Chum et al., 2008] Chum, O., Philbin, J., and Zisser-
man, A. (2008). Near duplicate image detection: min-
hash and tf-idf weighting.

[D. Ondov et al., 2016] D. Ondov, B., J. Treangen, T.,
Melsted, P., B. Mallonee, A., Bergman, N., Koren,
S., and M. Phillippy, A. (2016). Mash: Fast genome
and metagenome distance estimation using minhash.
Genome Biology, 17.

[Dahlgaard et al., 2015] Dahlgaard, S., Knudsen, M.
B. T., Rotenberg, E., and Thorup, M. (2015). Hash-
ing for statistics over k-partitions. In Proc. 56th
IEEE Symposium on Foundations of Computer Sci-
ence, pages 1292–1310. ACM.

[Dahlgaard et al., 2017] Dahlgaard, S., Knudsen, M.
B. T., and Thorup, M. (2017). Fast similarity sketch-
ing. In Foundations of Computer Science (FOCS),
2017 IEEE 58th Annual Symposium on, pages 663–
671. IEEE.

[Henzinger, 2006] Henzinger, M. (2006). Finding near-
duplicate web pages: a large-scale evaluation of al-
gorithms. In Proceedings of the 29th annual interna-
tional ACM SIGIR conference on Research and de-
velopment in information retrieval, pages 284–291.
ACM.

[Indyk and Motwani, 1998] Indyk, P. and Motwani, R.
(1998). Approximate nearest neighbors: towards re-
moving the curse of dimensionality. In Proceedings
of the thirtieth annual ACM symposium on Theory of
computing, pages 604–613. ACM.

[Li et al., 2012] Li, P., Owen, A., and Zhang, C.-H.
(2012). One permutation hashing. In Advances in
Neural Information Processing Systems, pages 3113–
3121.

[Li et al., 2011] Li, P., Shrivastava, A., Moore, J. L., and
König, A. C. (2011). Hashing algorithms for large-
scale learning. In Advances in neural information pro-
cessing systems, pages 2672–2680.

[Manasse et al., 2010] Manasse, M., McSherry, F., and
Talwar, K. (2010). Consistent weighted sampling.

[Shi et al., 2018] Shi, Y., Cost, R., Perlich, C., Hook, R.,
Martin, W., Han Williams, M., Moynihan, J., Mc-
Carthy, P., Lenz, P., and Daniel-Weiner, R. (2018).
Audience size forecasting: Fast and smart budget
planning for media buyers. pages 744–753.

[Shrivastava, 2017] Shrivastava, A. (2017). Optimal
densification for fast and accurate minwise hashing.
In Precup, D. and Teh, Y. W., editors, Proceedings of
the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learn-
ing Research, pages 3154–3163, International Con-
vention Centre, Sydney, Australia. PMLR.

[Shrivastava and Li, 2014a] Shrivastava, A. and Li, P.
(2014a). Densifying one permutation hashing via ro-
tation for fast near neighbor search. In International
Conference on Machine Learning, pages 557–565.

[Shrivastava and Li, 2014b] Shrivastava, A. and Li, P.
(2014b). Improved densification of one permuta-
tion hashing. In Proceedings of the Thirtieth Confer-
ence on Uncertainty in Artificial Intelligence, UAI’14,
pages 732–741, Arlington, Virginia, United States.
AUAI Press.

