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Abstract

We propose an approach to fair classification
that enforces independence between the classi-
fier outputs and sensitive information by mini-
mizing Wasserstein-1 distances. The approach
has desirable theoretical properties and is ro-
bust to specific choices of the threshold used
to obtain class predictions from model outputs.
We introduce different methods that enable hid-
ing sensitive information at test time or have
a simple and fast implementation. We show
empirical performance against different fair-
ness baselines on several benchmark fairness
datasets.

1 INTRODUCTION

The increasing use of machine learning in decision-
making scenarios that have serious implications for in-
dividuals and society, such as health care, criminal risk
assessment, social services, hiring, financial lending, and
online advertising (De Fauw et al., 2018; Dieterich et al.,
2016; Eubanks, 2018; Hoffman et al., 2018; Malekipir-
bazari and Aksakalli, 2015; Perlich et al., 2014), is raising
concern that bias in the data and model inaccuracies can
lead to decisions that are “unfair” towards unrepresented
or historically discriminated groups.

This concern has motivated researches to investigate ways
of ensuring that sensitive information (e.g. race and gen-
der) does not unfairly influence the decisions. In the clas-
sification case considered in this paper, the most widely
used approach is to enforce statistical independence be-
tween class predictions and sensitive attributes, a criterion
called demographic parity (Feldman et al., 2015).
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In the common scenario in which the model outputs con-
tinuous values from which class predictions are obtained
through thresholds, this approach would however ensure
fairness only with respect to the particular choice of
thresholds. Furthermore, as independence constraints
on the class predictions are difficult to impose in practice,
uncorrelation constraints on the model outputs are often
imposed instead.

In this paper, we propose an approach that overcomes
these limitations by imposing independence constraints
directly on the model outputs. This is achieved through
enforcing small Wasserstein distances between the distri-
butions of the model outputs corresponding to groups of
individuals with different sensitive attributes. We demon-
strate that using Wasserstein-1 distances to the barycenter
is optimal, in the sense that it achieves independence
with minimal changes to the class predictions that would
have been obtained without constraints. We introduce a
Wasserstein-1 penalized logistic regression method that
learns the optimal transport map in the logistic model
parameters, with a variation that has the advantage of
being demographically blind at test time. In addition,
we provide a simpler and faster post-processing method.
We show that the proposed methods outperform previous
approaches in the literature on four benchmark fairness
datasets.

2 STRONG DEMOGRAPHIC PARITY

Let D = {(a™, z",y")}\_, be a sequence of N i.id.
samples drawn from an unknown probability distribution
over A x X x Y = NF x R? x {0, 1}. Each datapoint
(a™, x",y™) corresponds to information from an individ-
ual (or community): y™ indicates a binary class, each
element a} of a™ corresponds to a different sensitive at-
tribute, e.g. to the gender of the individual, and ” is a
feature vector that, possibly together with @™, can be used
to form a prediction §" € {0, 1} of the class y". We de-
note with Dy = {(a™, z",y") € D s.t. a™ = a} the set



of N, individuals belonging to group a. We indicate with
A, X,Y and Y the random variables corresponding to
a™, y™ and §", and with p(-) or px (-) probability density
functions (pdfs), where the latter is used to emphasize the
associated random variable.

Many classifiers, rather than a binary class prediction ",
output a non-binary value s”. In the logistic regression
case considered in this paper, s” € Q = [0, 1] indicates
the model belief that individual n belongs to class 1,
ie.s" = P(Y = 1|A = @™, X = z")'. From 5", a
class prediction §™ € {0, 1} is obtained using a threshold
T € Q,ie " := lgns,, where Lgn~ . equals to one if
s > 7 and zero otherwise. We call the random variable
S corresponding to s™ the belief variable, and denote
with S, the belief variable for group a, i.e. with pdf
p(Sa) = p(S|A = a).

We are interested in ensuring that sensitive information
does not influence the decisions. This is often achieved
by imposing that the model satisfies a fairness criterion
called demographic parity (DP), defined as

P(Y=1A=a)=P(Y =1/A=a), Ya,ac A.

DP can equivalently be expressed as requiring statistical
independence between Y and A, denoted as Y 1L A.

Enforcing demographic parity at a given threshold 7
does not necessarily imply that the criterion is satisfied
for other thresholds. Furthermore, to alleviate difficul-
ties in optimizing on the class prediction Y, relaxations
are often considered, such as imposing the constraint
E[S|A = a] = E[S|A = a] Ya,a € A, where E[-]
denotes expectation (Goh et al., 2016; Zafar et al., 2017).

To deal with these limitations, we propose an approach
that enforces statistical independence between S and A,
S 1 A. We call this fairness criterion strong demo-
graphic parity (SDP), as it ensures that the decision does
not depend on the sensitive attribute regardless of the
threshold 7 used, since S 1L A implies Y 1 A for any
value of 7. SDP can be defined as

In Remark 1, we prove that this definition is equivalent
to?

ETNU(Q)“P(SG > T) 7IP(S;1 > T)| =0, Va,a € A,

'Throughout the paper, we use IP(-) to indicate probability
measures associated with the corresponding probability spaces
(O, F,P(-)) where F is a o-algebra on the sample output space
0.

>We omit the brackets from the expectation to simplify the
notation.

where U (£2) denotes the uniform distribution over 2. This
result leads us to use

> Erep(@)P(Sa>17) —P(Sa > 7)),
a,acA
5.l a#a
as a measure of dependence of S on A, the we call strong
pairwise demographic disparity (SPDD).

3 WASSERSTEIN FAIR
CLASSIFICATION

We suggest to achieve SDP by enforcing the model output
pdfs corresponding to groups of individuals with differ-
ent sensitive attributes, {pg, }qc.4, to coincide with their
Wasserstein-1 barycenter distribution pg. The use of the
Wasserstein distance is motivated because this distance is
defined and computable even between distributions with
disjoint supports. This is critical because the empirical
estimates {ps, }, pg of {ps, } and pg used to implement
the methods and their supports are typically disjoint.

3.1 OPTIMALITY OF WASSERSTEIN-1
DISTANCE

Preliminary. Given two pdfs px and py on & and
Y, a transportation map 7" : X — ) is defined by
Jspy (Y)dy = [ 1 ) Px (x)dz for any measurable sub-
set B C ) (indicating that the mass of the set B with re-
spect to the density py equals the mass of the set T—1(B)
with respect to the density px). Let 7 be the set of trans-
portation maps from X to Y, andc : X x Y — [0, o]
be a cost function such that ¢(x, T'(z)) indicates the cost
of transporting z to T'(x). In the original formulation
(Monge, 1781), the optimal transport map 7™ is the one
that minimizes the total transportation cost, i.e.

T = arg min/ c(z, T(z))px (z)dx.
TeT rEX

To address limitations of this formulation, Kantorovich

(1942) reformulated the optimal transport problem as

finding an optimal pdf pxy in the set I'(px,py) of

joint pdfs on X x ) with marginals over Y and X given

by px and py such that

*

v* = argmin

/ c(z,y)px xydedy.
YL (fx,fy) J X XY

The p-Wasserstein distance is defined as
min z, P xz )
YE (fx,fy) XY Yrpxxy Y

where X = )/, d is a distance on X', and p > 1.

WP(vapY) =



Fair Optimal Post-Processing. Let us first consider
the problem of post-processing the beliefs of a model
to achieve SDP while making minimal model class pre-
diction changes.

Let S7 and S; be two belief variables with values in
Q = [0,1] and pdfs ps, and ps,, and let T : Q —
Q be a transportation map satisfying fB ps, (y)dy =
fT 1(B) ps, (x)dx for any measurable subset B C (.
Let 7 be the set of all such transportation maps. A
class prediction § = 14, -, changes due to transporta—
tion T'(s1) if and only if 7 € (ml , M!) where m] =
min(sy, T(s1)] and M) = max[s1,T(s1)]. This obser-
vation leads to the following result.

Proposition 1. Given two belief variables S, and S5 in
0 = [0,1] with pdfs ps, and ps,, the following three
quantities are equal:

T(z)lps, (x)dz.

—IP(SQ > T)l

(1) Wl(pS17psz) = ,lqlel%l—fxeﬂ |£L’ -
(i) E,wproy|P(S1 > 1)

(iii) Expected class prediction changes due to transport-
ing ps, into pg, through the map T*

ETNU(Q),mNpsl ]P(T € (mg* ) MxT* )) :

Proof. In the one-dimensional case of ps, and pg,, the
total transportation cost Wi (ps, , s, ) can be written as

1
Walps,.ps) =* [ |P5! (@) - P (@)lda
=0
1
— [ 1Ps () - P (olar
7=0
(by Lemma 6 in Appendix C)
=E, u@lP(S1 <71) —P(S2 < 7)
= ETNU(Q)‘IP(Sl > 7') — IP(SQ > T)| s
where Pg, and Pg, are the cumulative distribution func-
tions of S7 and S, respectively. This prove that (i) equals
(ii).
The expected class prediction changes due to applying
the transportation map 7' is given by

ETNU(Q)]P(T € (mgv Mg))

T~ps,

3The proof of this equality can be found in Rachev and
Riischendorf (1998).

Thus,
Wilps,.ps) = pin [ | = T(@)lps,(a)da
— [l =" @)lps. (o)
= ETNU(Q)IP(T S (mg* , Mg*)) .
T~psy
This prove that (i) equals (iii). O]

Remark 1. Notice that (ii) = E.y)|P(S1 > 7) —
P(Se > 7)| = 0if and only if ps, = ps,. Indeed, by
Proposition 1 and the property of the W metric, (ii) = 0
< Wi(ps,,ps,) =0 <= ps, = Ds,.

To reach SDP, we need to achieve ps, = p* Va € A,
where p* € P(Q), the space of pdfs on 2. We would like
to choose transportation maps 7" and a target distribution
p* such that the transportation process from pg_ to p* in-
curs minimal total expected class prediction changes. As-
sume that the groups are all disjoint, so that the per-group
transportation maps 7" are independent from each other.
Let T'(p*) be the set of transportation maps with elements
T such that, restricted to group a, T is a transportation
map from pg, to p* (i.e. T(p*) = {T € T(ps,p*) |

N see = Ta € Ta = T(ps,,p*)} where T(ps,p*)
denotes the space of transportation maps from pg to p*).
We would like to obtain

min E P(re(ml, Ml
TeT(p™) 71~U(Q)
P EP(Q) z~ps

E P(7 € (mg, M)
T~U(Q)
I~PSq

min E P(r € (ml, MT))
TeTaTNU(Q)
TPSq

. p(A=a)
TET(p") S
P eP(Q)“EA Pa

= min
*€P(Q
preP( )aeA

= min min x—T(x x)dx
p*EP(Q) Pa 1ET. /IEQ| @lps. (@)
= min E PaWi(Ps,, P

ore (Q) aVV1\PSq» )

Therefore we are interested in

ps = argmin Y paWi(ps,,p"), (1)
P EP(Q) ge g

which coincides with the Wasserstein-1 barycenter with
normalized subgroup size as weight to every group distri-
bution pg, (Agueh and Carlier, 2011).

In summary, we have demonstrated that the optimal post-
processing procedure that minimizes total expected model
prediction changes is to use the Wasserstein-1 optimal
transport map 7™ to transport all group distributions pg,
to their weighted barycenter distribution pg.



Optimal Trade-Offs. We have shown that post-
processing the beliefs of a model through optimal trans-
portation achieves SDP (and therefore SPDD = 0) whilst
minimizing expected prediction changes. We now exam-
ine the case in which, after transportation, SDP is not
attained, i.e. SPDD is positive. By triangle inequality

SPDD < 2(|A[—1) > B yyo)[P(Sa > 7)—P(S > 7)|

acA

=2(]A]-1) > Wi(ps,.ps) -

acA

We call this upper bound on SPDD pseudo-SPDD.
Pseudo-SPDD is the tightest upper bound to SPDD among
all possible target distributions by the definition of the
barycenter pg and Proposition 1. Indeed

> Erv@lP(Sa >7) —P(S > 1)
acA

=Y Wi(ps,.ps) < Y_ Wi(ps,,pso)

acA acA
= Z ETNU(Q)|]P<SG > 7') - IP(SO > 7')‘7
acA

for any distribution pgo € P(2). Since SPDD is difficult
to derive optimal trade-offs for, we do that with respect to
the pseudo-SPDD as the measure of fairness instead.

We are interested in changing pg, to DS, Va € A,
to reach a fairness bound A € R, for pseudo-SPDD
such that the required model prediction changes are min-
imal in expectation. This is obtained by choosing the
ps; € P(§) that minimizes the total expected predic-
tion changes, which equals ), 1 paWi1(ps,;Ps:) by
Proposition 1, while bounding the pseudo-SPDD by A,
ie. Y aeaWi(ps:,ps) < A. Assuming that the groups
are disjoint, we can optimize each group transportation in
turn independently assuming the other groups are fixed.
This gives

psx = argmin  p Wi (psa ,p*)
p*EP(Q)S.t.
Wi (p*,p5)S<A—v

= argmin  Wi(ps,,p"),
p*EP(Q) s.t.

Wi(p™,p5)<A—7

where v = 3. 4\ o Wi(ps;, pg)- By triangle inequal-
ity, Wi(ps,,p*) = Wi(ps..ps) — Wi(p*,pg)|. The
distance W (ps, , p*) reaches its minimum if and only if
p* lies on a shortest path between ps, and pg. Thus it is
optimal to transport ps,, along any shortest path between
itself and pg in the Wasserstein-1 metric space. In the
approach proposed in the next section, we approximate
transporting group distributions along these shortest paths
with hyperparameter tuning of a gradient descent method
to minimize W1 (ps,, , pg) for every group.

Empirical Computation of the Barycenter. In prac-
tice, as building the barycenter from the population dis-
tributions pg, is impossible, we use the empirical distri-
butions pg, obtained from D,. The choice is justified by
the following result:

Lemma 1. If the samples in D are i.i.d., as |D| — oo,
if Wi(ps,ps,) < oo for all a, the empirical barycen-
ter distribution satisfies im)__ paWi (P35, Ps,) —
> o PaWi (D5, ps,, ) almost surely*.

The proof is given in Appendix A.

In the next two sections we introduce two different ap-
proaches to achieve SDP with Wasserstein-1 distances: A
penalization approach to logistic regression and a simpler
practical approach consisting in post-processing model
beliefs.

3.2 WASSERSTEIN-1 PENALIZED LOGISTIC
REGRESSION

The average logistic regression loss function over D =
{a™, ", y"}N_, is given by

N
1 ,
Jp(0) = i g —y"logs" — (1 —y")log(1l—s"),
n=1

where the model belief that individual n belongs to class
1, s", is obtained as s = (8 Tw") = 1/(1 +e~0 w"),
with w" = (z",a",1)7, and where 8 € RIT++1 are
the model parameters. We denote with {si } the model
beliefs for group a and with {57}, the atoms of ps.

The gradient of Jp(0) with respect to @ is given by

Vo Jp(0) =

2=

;w" (o (0Tw™) —y™) .

We propose to find model parameters 8* that minimize
the population level logistic loss E [Jp(8)] under the con-
straint of small Wasserstein-1 distances W (ps, ,Pg) be-
tween pg, and the empirical barycenter pg, Va € A.

The Wasserstein-1 distance between any two empir-
ical distributions p, and p. underlying two datasets
(o} (e }j\;‘l C Ris given by

Wl (ﬁlﬂﬁc) = min <Tb,C7 C> ) (2)

Tb,CEU(bvc)
where U(b,c) = {T € RM>*Ne g1 T,.1, =
N%lb and Tchlb = Niclc} with 1. denoting a vector
of ones of size N.. The brackets (-,-) denote the trace

4See Klenke (2013) for a formal definition of almost sure
convergence of random variables.



dot product and C is the cost matrix associated with the
Wasserstein-1 cost function ¢ of elements C; ; = [b* —¢’|.

In particular, the Wasserstein-1 distance W (ps, , Pg) can
be computed by solving the optimization problem of Eq.
(2) with cost matrix CZ € RNaxN gatisfying

(CQ)ij = |sa — &

)

where the upper script 8 in CZ is maintained to remind
the reader that model predictions are a function of the
model parameter 6.

The Wasserstein-1 penalized logistic regression objective
is given by

T, (8) = aJp(6) + (1 —a)B Y Wi(ps,.ps), 3)
acA
where o and 3 are penalization coefficients.

Lemma 2. [f the datasets {b'}",, {c/ }jvzl C R have
empirical distributions py, and p., and C is the cost matrix
of elements C; j = |b* — ¢/|:

VCW1 (ﬁbaﬁc) = Tb*,c7

where Ty . = argming, e (p,c)(Th,c, C) is the optimal
coupling resulting from the optimization objective of Eq.

(2).

Proof. The result follows immediately from the subgra-
dient rule for a pointwise max function (see Boyd and
Vandenberghe (2004)). O

Lemma 3. The gradient of Jyy, (0) equals:

aVeJp(0) + (1—a)B( > Y Ti(6)Vels, — 5

acA i,j

).

where T} is the optimal coupling between ps, and pg°.

Proof. This formula is a consequence of the chain rule
and Lemma 1. O

Computation Method. We propose to optimize the
Wasserstein penalized logistic loss objective (Eq. (3))
via gradient descent. The procedure is detailed in Algo-
rithm 1. We start by describing how to perform Step 2.
under the assumption that pg and {5°} ; have been com-
puted. The computation of the optimal coupling family
{T%} hinges on the following Lemma.

Lemma 4. If {0'}} {¢/}Ye) € R, and B; = [i x
(Ne—1)+1,--- ,ix N foralliand C; = [j x (N, —
1)+1,---,j x Nc] forall j, then: (Ty .)i.; = #lﬁbi?,ccj‘

Recall that 77 is a function of .

Algorithm 1 Wass-1 Penalized Logistic Regression

Input: Dataset D = {(a”,z",y")}"_,, penalization
coefficients «, 3, gradient step size 7, number of opti-
mization rounds )M, frequency of barycenter compu-
tation K.
Compute datasets {D, }.
Initialize model parameters 6.
form=1,--- ,Mdo
1. Compute the barycenter distribution pg (Flamary
and Courty (2017)) once every K steps, and {5°}2 ;.
2. Compute optimal couplings {7, } as defined in
Lemma 3.
3. Update parameter 6,,, = 0,,_1 — nVo ), (0).
end
Return: 0.

This lemma characterizes the coupling matrix between
the empirical distributions of two datasets made of real
numbers. When N, = N, and the datasets are {6’} and
{}N, with ! < ... < b, and a! < ... < a¥, then
the optimal coupling equals 1/N x I where Iy denotes
the NV x N identity matrix. Lemma 4 extends this simple
case to the general case of datasets of arbitrary orderings
and sizes, see Deshpande et al. (2018) for a proof. It is
easy to see that the optimal coupling T;" . is sparse and has
at most O(N, + N.) nonzero entries (éee Cuturi (2013)).
As a consequence, the computation of VgJy, (6) can
be performed in linear time O(Y_,(Nq + N)) where
Ng = |Dg|. In the computation of Vg.Jyy, (0) only the
nonzero entries of 7;" . matter.

We compute the empirical barycenter pg and {5},
using the POT library by Flamary and Courty (2017).
We fix the support of potential barycenters to bins of
equal-width spanning the [0, 1] interval, and use the iter-
ative KL-projection method proposed by Benamou et al.
(2015). We then generate a number of samples from
the normalized probability distribution of the computed
barycenter.

Demographically-Blind Wasserstein-1 Penalized Lo-
gistic Regression. In real-world applications, the use
of sensitive attributes might be prohibited when deploy-
ing a system. We therefore consider the variation where
w"™ = (z",1)". This variation still uses the sensitive
attributes to calculate the Wasserstein-1 loss but, by not
including them into the feature set, does not require knowl-
edge of sensitive information at test time.

3.3 WASSERSTEIN-1 POST-PROCESSING

In this section, we propose a simple, fast quantile match-
ing method to post-process the beliefs of a classifier



Algorithm 2 Wass-1 Post-Processing

Input: dataset D = {(a”, 2", y")}_,, set of quantile
bins 53, model beliefs {s"}

Compute datasets {D,} and their barycenter D.

Define the ¢-th quantile of dataset D, as

. 1 i—1
qp, (1) == SUP{S "N Z Lgncs < w},

@ nstar=a
and its inverse as g5, (s) :=sup{i € B: qp, (i) < s}.
Return: {qﬁ (ap(s™) }

trained on D. This method corresponds to an approximate
Wasserstein-1 optimal transport map by the formulation
of Rachev and Riischendorf (1998):

1

Wi(ps.ps) = / PSi(r) - P5Y(r)dr.

=0

The procedure is detailed in Algorithm 2. For each group
a, we compute quantiles of ps, and map all group beliefs
belonging in each quantile bin to the supremum of those
belonging to the corresponding quantile bin of ps.

3.4 GENERALIZATION

The following lemma addresses generalization of the
Wasserstein-1 objective.Assume W (ps,,pg) < L for
all a € A. Let Ps,Ps, and Pg be the cumulative
density functions of S, S, and S. Assume these ran-
dom variables all have domain = [0,1] and that all
P € {Ps, Pg} U{Ps,_}qc. are continuous, then:

Lemma 5. For any €, > 0, if min []\_f,mina [Naﬂ >

16log(2].A]/8)].A|? max[1,L]?
2

, with probability 1 — 6:

> PaWi(Ps,:p3) < Y PaWi(Ps..h3) + €.
acA acA

In other words, provided access to sufficient samples, a
low value of )", paW1(Ps., P5) implies a low value for
Yo PaWi(ps,, pg5) with high probability and therefore
good performance at test time.

The proof is given in Appendix B.

Lemma 5 implies that under appropriate conditions, the
value of the population objective of the Wasserstein cost
is upper bounded by the empirical Wasserstein cost plus
a small constant.

4 RELATED WORK

Broadly speaking, we can group current literature on fair
classification and regression into three main approaches.

The first approach consists in pre-processing the data to
remove bias, or in extracting representations that do not
contain sensitive information during training (Beutel et al.,
2017; Calders et al., 2009; Calmon et al., 2017; Edwards
and Storkey, 2016; Feldman et al., 2015; Fish et al., 2015;
Kamiran and Calders, 2009, 2012; Louizos et al., 2016;
Zemel et al., 2013; Zliobaite et al., 2011). This approach
includes current methods to fairness using Wasserstein
distances consisting in achieving SDP through transporta-
tion of features (Del Barrio et al., 2019; Johndrow and
Lum, 2019).

The second approach consists in performing a post-
processing of the model outputs (Doherty et al., 2012;
Feldman, 2015; Hardt et al., 2016).

The third approach consists in enforcing fairness notions
by imposing constraints into the optimization, or by using
an adversary. Some methods transform the constrained
optimization problem via the method of Lagrange multi-
pliers (Agarwal et al., 2018; Corbett-Davies et al., 2017;
Cotter et al., 2018; Goh et al., 2016; Narasimhan, 2018;
Wu et al., 2018; Zafar et al., 2017). Other work simi-
lar in spirit adds penalties to the objective (Donini et al.,
2018; Komiyama et al., 2018). Adversarial methods max-
imize the system ability to predict Y while minimizing
the ability to predict A (Zhang et al., 2018).

S EXPERIMENTS

In this section, we evaluate the methods introduced in
Sections 3.2 and 3.3 on four datasets from the UCI repos-
itory (Lichman, 2013). For penalized logistic regression,
we refer to the method in which sensitive information
is included in the feature set, i.e. w" = (x",a",1)",
as Wass-1 Penalty; and to the demographically-blind
variant in which sensitive information is not included,
ie. w" = (z",1)7, as Wass-1 Penalty DB. We refer
to the post-processing method as Wass-1 Post-Process.
We also include a variant of this method using pg instead
of the barycenter pg (Wass-1 Post-Process pg), which
gives a simpler algorithm that only requires computing
basic quantile functions. We compare these methods with
the following baselines:

Unconstrained: Logistic regression with no fairness
constraints.

Hardt’s Post-Process: Post-processing of the logistic
regression beliefs s™ of all individuals in group a by
adding 0.5 — 74, where the threshold 7, is found using
the method of Hardt et al. (2016). This ensures that DP
is satisfied at threshold 7 = 0.5.

Constrained Optimization: Lagrangian-based method
(see e.g. Eban et al. (2017); Goh et al. (2016)) using
a linear model as the underlying predictor and equal



Table 1: Adult Dataset — German Credit Dataset

German

Err-5 Emr-Exp DD-5 SDD SPDD ‘ Err-5 Emr-Exp DD-.5 SDD SPDD

Adult
Unconstrained 142 .198 413
Hardt’s Post-Process 165 289 327
Constrained Opt. 205 .198 .065
Adv. Constr. Opt. 219 207 .0
Wass-1 Penalty .199 208 014
Wass-1 Penalty DB 230 233 .010
Wass-1 Post-Process 174 214 .013
Wass-1 Post-Process pg ~ .165 216 .032

426 806 | .248 319 124 102 .103
551 1.058 | .248 333 056 .045 .045
.087 .166 | 318 .320 173 149 149
114203 | 306 307 .0 021 .021
022 .044 | 306 311 .0 003  .003
012 .023 | .306 309 .0 .010 .010
017  .042 | 258 327 .068 .023 .023
022 .059 | .248 320 056 025 .025

positive prediction rate between each group D, and D
as fairness constraints with threshold 7 = 0.

Adyv. Constr. Opt.: The same as the previous method,
but with more fairness constraints. Specifically, the fair-
ness constraints are equal positive prediction rates for a
set of thresholds from —2 to 2 in increments of 0.2 on
the output of the linear model.

5.1 TRAINING DETAILS

In the approaches Unconstrained, Hardt’s Post-Process,
Wass-1 Penalty, and Wass-1 Post-Process, we trained a
logistic regression model using Scikit-Learn with default
hyper-parameters (Pedregosa and et al., 2011).

For Wass-1 Penalty (Algorithm 1), as initial model
parameters 6, we used the ones given by the
trained logistic regression. We swept over penal-
ization coefficients a = [0,0.5], # = [1072,3 -
1072,1071,3-1071, 1, 3, 10, 30, 10?], gradient step sizes
n = [107%,1073,1072,1071], set the maximum num-
ber of training steps to M = 80,000, and computed
the barycenter once every K > M steps, effectively
only once after the initialization of 8. In the compu-
tation of the barycenter (using the POT library by Fla-
mary and Courty (2017)), we swept over numbers of bins
B =[50, 90], entropy penalty § = [1073,5-1073,1072],
and used number of iterations M = 1,000. The time
complexity of our implementation is O(N log(N)). Our
gradient steps take on average ~0.02 seconds.

For Wass-1 Post-Process (Algorithm 2), we used a number
of bins |B| = 100.

For Constrained Optimization, we used the hinge loss
as objective and the hinge relaxation for the fairness
constraints. We trained by jointly optimizing the model
parameters and Lagrange multipliers on the Lagrangian
using ADAM with the default step-size of 0.001 and mini-
batch size of 100, and trained for 50 steps. We allowed an

additive slack of 0.05 on the constraints, as otherwise we
found feasibility issues leading to degenerate classifiers.

5.2 DATASETS

The UCI Adult Dataset. The Adult dataset contains 14
attributes including age, working class, education level,
marital status, occupation, relationship, race, gender, cap-
ital gain and loss, working hours, and nationality for
48,842 individuals; 32,561 and 16,281 for the training
and test sets respectively. The goal is to predict whether
the individual’s annual income is above or below $50,000.

Pre-processing and Sensitive Attributes. ~ We pre-
processed the data in the same way as done in Goh et al.
(2016); Zafar et al. (2017). The categorical features were
encoded into binary features (one for each category), and
the continuous features were transformed into binary
encodings depending on five quantile values, obtaining
a total of 122 features. As sensitive attributes, we
considered race (Black and White) and gender (female
and male), obtaining four groups corresponding to black
females, white females, black males, and white males.

The UCI German Credit Dataset. This dataset contains
20 attributes for 1,000 individuals applying for loans.
Each applicant is classified as a good or bad credit risk,
i.e. as likely or not likely to repay the loan. We randomly
divided the dataset into training and test sets of sizes 670
and 330 respectively.

Pre-processing and Sensitive Attributes. We did not do
any pre-processing. As sensitive attributes, we considered
age (< 30 and > 30 years old), obtaining two groups.

The UCI Bank Marketing Dataset. This dataset con-
tains 20 attributes for 41,188 individuals. Each individual
is classified as subscribed or not to a term deposit. We
divided the dataset into train and test sets of sizes 32,950



Table 2: Bank Marketing Dataset — Community & Crime Dataset

Bank Marketing Community & Crime
Err-5 Ermr-Exp DD-5 SDD SPDD \ Err-5 Ermr-Exp DD-5 SDD SPDD
Unconstrained .094 138 135 134 .61 116 195 581 1402 7.649
Hardt’s Post-Process .097 181 018 367 1.057 | .321 441 226 536 2.679
Constrained Opt. .105 110 .049 026 .076 | .289 .263 193 369 2.003
Adyv. Constr. Opt. .105 105 .050 .064 .184 | .303 275 022 312 1.628
Wass-1 Penalty 114 151 .001 .015 .050 | .313 315 .0 008  .039
Wass-1 Penalty DB 114 131 .001  .006 .018 | .313 315 .0 011 .051
Wass-1 Post-Process .100 144 016  .020 .062 | .321 363 226 133 .680
Wass-1 Post-Process ps  .097 141 .014  .020 .063 | .321 335 226 159 822
and 8,238 respectively. with other baselines that use the full-dataset belief
Pre-processing and Sensitive Attributes.  We pre- distribution.

processed the data as for the Adult dataset. We trans-
formed the categorical features into binary ones, and the
continuous features into five binary features based on five
quantile bins, obtaining a total of 60 features. We also
subtracted the mean from cons.price.idx, cons.conf.idx,
euribor3m, and nr.employed to make them zero-centered.
As sensitive attributes, we considered age, which was
discretized based on five quantiles leading to five groups.

The UCI Communities & Crime Dataset. This dataset
contains 135 attributes for 1994 communities; 1495 and
499 for the training and test sets respectively. The goal is
to predict whether a community has high (above the 70-th
percentile) crime rate.

Pre-processing and Sensitive Attributes.  We pre-
processed the data as in Wu et al. (2018). As sensi-
tive attributes, we considered race (Black, White, Asian
and Hispanic), thresholded at the median to form height
groups.

5.3 RESULTS

We compared the different methods using the following
metrics:

Err-.5: Binary classification error using threshold
7=05ieBr-5=5 5N 1.

Err-Exp: As above, but averaging over 100 uniformly-
spaced thresholds 7 € [0, 1].

DD-.5: Demographic disparity at 7 = 0.5, summed over
all groups @ € A, i.e. DD-5 = >, |P(Sq >
0.5) — P(S > 0.5)|, where e.g. P(S > 7) is
estimated as P(S > 7) ~ & S0 Tas,.

SDD (strong demographic disparity): As above, but
averaging over 100 uniformly-spaced thresholds
T € [0, 1], i.e. SDD = ZaEA IETNU([OJ])‘IP(SCL >
7) —IP(S > 7)|. We use this metric to compare

SPDD: SPDD = Za,&eA ETNU([O,I]) ‘]P(Sa > T) —
P(Sz > 7)|. This metric is the most important,
target-neutral, (un)fairness measurement as it does
not depend on the target distribution, e.g. the full-
dataset belief distribution or the barycenter.

Figure 1 shows overlaying model belief histograms for
four demographic groups and their barycenter in the
Adult dataset. Wasserstein-1 Penalty effectively matches
all group histograms to the barycenter after training for
10,000 steps with 5 = 100.

The main experiment results are shown in Tables 1 and
26. Focusing on the three more relevant metrics — namely
Err-Exp as the robust error measure, SDD as the conven-
tional fairness comparison metric, and SPDD as the target-
neural, preferred fairness metric (according to which we
picked the best hyperparameter settings) — we can see that
Wass-1 Penalty and Wass-1 Penalty DB have lowest SDD
and SPDD (blue) on the German and Crime datasets and
on the Adult and Bank datasets respectively. The fairness
performance of these two methods are followed closely by
the simpler Wass-1 Post-Process methods on all datasets.
Hardt’s Post-Process method incurs largest errors (red)
on all datasets. After the Unconstrained baseline, Con-
strained Optimization and Adv. Contr. Opt. give lowest
error on the Adult, Bank and Crime datasets, whilst Con-
strained Optimization and Wass-1 Penalty (DB) give low-
est error on the German dataset. Overall the Wasserstein-1
methods gave best fairness performance on all the datasets
with similar or lower compromise on accuracy than the
baselines.

Since Wass-1 Penalty is trained by gradient descent, early-
stopping can be an effective way to control trade-off be-
tween accuracy and fairness. Figure 2 shows a typical

8Given the deterministic baseline logistic regression model,
all standard deviations are on the order of 10~ or below.
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Figure 1: Histograms of model beliefs for groups of Black females, Black males, White females, and White males, and
their barycenter on the Adult dataset using Wass-1 Penalty. Top: Initial state. Bottom: After 10,000 training steps with
a = 0,6 = 100 each group histogram matches the barycenter.
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Figure 2: Err-Exp v.s. SDD, Err-Exp v.s. SPDD trade-off
curves on Bank test set using Wass-1 Penalty DB, points
plotted every 100 steps over 80,000 total training steps.

example of two trade-off curves between SDD/SPDD and
Err-Exp. Though not always the case, often as the learn-
ing model moves towards the fairness goal of SDP, model
accuracy decreases (Err-Exp increases).

6 CONCLUSIONS

We introduced an approach to ensure that the output of
a classification system does not depend on sensitive in-
formation using the Wasserstein-1 distance. We demon-
strated that using the Wasserstein-1 barycenter enables

us to reach independence with minimal modifications
of the model decisions. We introduced two methods
with different desirable properties, a Wasserstein-1 con-
strained method that does not necessarily require access
to sensitive information at deployment time, and an al-
ternative fast and practical approximation method that
requires knowledge of sensitive information at test time.
We showed that these methods outperform previous ap-
proaches in the literature.
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