
Reducing Exploration of Dying Arms in Mortal Bandits

Stefano Tracà
Massachusetts Institute of Technology

stet@alum.mit.edu

Cynthia Rudin
Duke University

cynthia@cs.duke.edu

Weiyu Yan
Duke University

weiyu.yan@duke.edu

Abstract

Mortal bandits have proven to be extremely
useful for providing news article recommen-
dations, running automated online advertising
campaigns, and for other applications where
the set of available options changes over time.
Previous work on this problem showed how to
regulate exploration of new arms when they
have recently appeared, but they do not adapt
when the arms are about to disappear. Since in
most applications we can determine either ex-
actly or approximately when arms will disap-
pear, we can leverage this information to im-
prove performance: we should not be explor-
ing arms that are about to disappear. We pro-
vide adaptations of algorithms, regret bounds,
and experiments for this study, showing a
clear benefit from regulating greed (explo-
ration/exploitation) for arms that will soon dis-
appear. We illustrate numerical performance
on the Yahoo! Front Page Today Module User
Click Log Dataset.
Keywords: Multi-armed bandit, exploration-
exploitation trade-off, retail management, rec-
ommender systems, regret bounds.

1 INTRODUCTION

In many applications of multi-armed bandits, the bandits
are mortal, meaning that they do not exist for the full pe-
riod over which the algorithm is running. In advertising,
ads and coupons can come and go; in news article rec-
ommendation, the news is perpetually changing; in web-
site optimization, the content changes to keep viewers
interested. Chakrabarti et al. [2009] introduced and for-
malized the notion of mortal bandits, and there has been
a body of work following this. This work has proved

to be valuable in the setting of advertising (see Agar-
wal et al. [2009] and Féraud and Urvoy [2012]) and in
other areas such as communications underlaying cellular
networks (see Maghsudi and Stańczak [2015]). Bnaya
et al. [2013] propose an adaptation to the mortal settings
of the popular UCB algorithm introduced by Auer et al.
[2002]. While these algorithms are designed to adapt ex-
ploration based on when arms appear, they do not adapt
when arms disappear (for example, in the work of Bnaya
et al. [2013], new arms are immediately played, even for
arms that may soon die, which could be a poor strategy).
In strategic implementations of mortal bandits, we should
not be exploring arms that are soon going to disappear.

In the applications discussed above (advertising, news ar-
ticle recommendation, website optimization) and others,
we often know in advance when arms will appear or dis-
appear. For coupons and discount sales, we launch them
for known periods of time (e.g., a one day sale), whereas
for news articles, we could choose to place them in a
pool of possible featured articles for mobile devices for
one day or one week. If the lifespans of the arms are
not known, they can often be estimated. For instance, we
can observe the distribution of the lifespans of the arms
to determine when an arm is old relative to other arms.
Alternatively, external features can be used to estimate
the remaining lifespan of an arm.

This work provides algorithms for the mortal bandit set-
ting that reduce exploration for dying arms. In Section 2
we introduce two algorithms: the AG-L algorithm (adap-
tive greedy with life regulation) and the UCB-L algo-
rithm (UCB mortal with life regulation). We present fi-
nite time regret bounds (proofs are in the Supplement1)
and intuition on the meaning of the bounds. In Section 3
we discuss numerical performance on the publicly avail-
able Yahoo! Front Page Today Module User Click Log

1The Supplement is available in the GitHub repository:
https://github.com/5tefan0/Supplement-
to-Reducing-Exploration-of-Dying-Arms-
in-Mortal-Bandits



Dataset. The experiments show a clear benefit in final
rewards when the algorithms reduce exploration of arms
that are about to expire. This confirms the intuition that
it is useless to gain information about arms if they are
going to disappear soon anyway.

2 ALGORITHMS FOR REGULATING
EXPLORATION OVER ARM LIFE

Formally, the mortal stochastic multi-armed bandit prob-
lem is a game played in n rounds. At each round t the
algorithm chooses an action It among a finite set Mt of
possible choices called arms (for example, they could be
ads shown on a website, recommended videos and arti-
cles, or prices). When arm j ∈ Mt is played, a random
reward Xj(t) is drawn from an unknown distribution.
The distribution of Xj(t) does not change with time (the
index t is used to indicate in which turn the reward was
drawn) and it is bounded in [a, b] (and we denote with r
the range r = b− a), while the set Mt can change: arms
may become unavailable (they “die”) or new arms may
arrive (they “are born”). At each turn, the player suffers a
possible regret from not having played the best arm: the
mean regret for having played arm j at turn t is given by
∆j,i∗t

= µi∗t
− µj , where µi∗t

is the mean reward of the
best arm available at turn t (indicated by i∗t ) and µj is the
mean reward obtained when playing arm j. Let us call
I(j) the set of turns during which the algorithm chose
arm j. At the end of each turn the algorithm updates the
estimate of the mean reward of arm j:

X̂j =
1

Tj(t− 1)

Tj(t−1)∑
s∈I(j)

Xj(s), (1)

where Tj(t − 1) is the number of times arm j has been
played before round t starts.

Let us define Mt as the set of all available arms at turn t
(M1 is the starting set of arms). MI = {1, 2, . . . ,mI} ⊂
M1,MI 6= ∅ is the set of arms that are initialized over the
first mI iterations (i.e., the algorithm plays one time all
of them following the order of their index). The quantity
that a policy tries to minimize is the cumulative regret
Rn that is given by

Rn =
∑
j∈MI

∆j,i∗j
+

n∑
t=mI+1

∑
j∈Mt

∆j,i∗t
1{t∈I(j)}, (2)

where 1{t∈I(j)} is an indicator function equal to 1 if arm
j is played at time t (otherwise its value is 0). The first
summation in (2) is the regret that the algorithm suffers
during the initialization phase when each arm in MI is
pulled once yielding a regret of ∆j,i∗j

(the arms in MI

are played in order of their index and i∗j denotes the best

arm available at that turn). For the rest of the game (t ∈
{mI + 1, · · · , n}), the algorithm incurs ∆j,i∗t

regret at
time t only when arm j is available (j ∈ Mt) and it is
pulled (t ∈ I(j)). Let us call M =

⋃n
t=1Mt the set of

all arms that appear during the game and Lj = {sj , sj +
1, · · · , lj} the set of turns that arm j is available. Then,
we can also write (2) as

Rn =
∑
j∈MI

∆j,i∗j
+
∑
j∈M

∑
t∈Lj

t>mI

∆j,i∗t
1{t∈I(j)}. (3)

Depending on the algorithm used, one formulation may
be more convenient than the other when computing a
bound on the expected cumulative regret E[Rn]. A com-
plete list of the symbols used throughout the paper can
be found in Supplement E.

2.1 THE ADAPTIVE GREEDY WITH LIFE
REGULATION (AG-L) ALGORITHM

In Algorithm 1 we extend the adaptive greedy algorithm
(which we abbreviate with AG) presented in Chakrabarti
et al. [2009]. We call this new algorithm the adaptive
greedy with life regulation algorithm, which we abbrevi-
ate with AG-L. AG-L handles rewards bounded in [a, b],
and regulates exploration based on the remaining life of
the arms (that is, the algorithm avoids exploring arms
that are going to disappear soon). During the initializa-
tion phase, the algorithm plays each arm in the initial-
ization pool MI once. After that, to determine whether
to explore arms, AG-L draws from a Bernoulli random
variable with parameter

p = 1− maxj∈Mt
X̂j − a

b− a
,

which intuitively means that if the algorithm has a good
available arm (i.e., an arm that has a high mean estimate)
the probability of exploration is very low and the algo-
rithm will exploit by playing the best available arm so
far (ignoring also arms that were excluded in the initial-
ization phase or have been born and never played). If
the value of the Bernoulli random variable is 1, then AG-
L proceeds by playing an arm at random among those
arms whose remaining life is long enough: we call this
set Mt(L). One way to set Mt(L) is to pick all arms in
Mt such that their remaining lifespan is in the top 30%
of the distribution of all remaining lifespans (we chose
30% because we tuned this parameter by trying differ-
ent values on a small subset of data). Mt(L) can also
contain arms that have never been played before or that
were excluded in the initialization phase. As mentioned
earlier, if the value of the Bernoulli random variable is 0,
then AG-L exploits the arm that has the highest average
reward.



Algorithm 1: AG-L algorithm
Input : number of rounds n, initialization set of

arms MI , set Mt of available arms at
time, rewards range [a, b]

Initialization: play all arms in MI once, and initialize
X̂j for each j = 1, · · · ,mI

for t = mI + 1 to n do
Draw a Bernoulli B r.v. with parameter

p = 1− maxj∈Mt
X̂j − a

b− a
;

if B = 1 then
Play an arm at random from Mt(L);
else

Play an arm j with highest X̂j ;
end

end
Get reward Xj(t);
Update X̂j ;

end

Note that this algorithm is not relevant to sleeping ban-
dits (see Kleinberg et al. [2010] and Kanade et al. [2009])
because those arms do not die, they simply sleep. For
sleeping bandits, we would want to explore them until
they fall asleep because the estimate of the arm’s mean
reward would still be useful when the arm wakes up
again.

In order to derive a finite time regret bound we introduce
Ht−1 as the set of all possible histories (after determin-
istic initialization) of the game up to turn t− 1:

Ht−1 =

{
h =

[
bmI+1 bmI+2 . . . bt−1
imI+1 imI+2 . . . it−1

]
such that

bs ∈ {0, 1}, is ∈Ms, ∀s ∈ {mI + 1, . . . , t− 1}} .

Each element h of Ht−1 is a possible history of pulls
before turn t and tells exactly what arm was pulled and
if it was an exploration turn or an exploitation turn. If
bs = 1 we say that the algorithm explored at time s, if
bs = 0 we say that the algorithm exploited at time s,
while is is the index of the arm that was played at time
s. Let us define the linear transformation g(p) = b +
(a−b)p (used to standardize rewards to the interval [0, 1])
and use a result from Vaughan and Venables [1972] for
the PDF (or PMF) fM(h,s)(g(p)) of the maximum of the
estimated mean rewards at time s given that each arm has
been pulled according to history h up to time s− 1:

fM(h,k)(x) =
1

(mt − 1)!
perm



F1(x) . . . Fmk (x)

...
. . .

...
F1(x) . . . Fmk (x)
f1(x) . . . fmk (x)




where the matrix has a total of mk rows (and columns),
f1(x), · · · , fmk

(x) and F1(x), · · · , Fmk
(x) are the

PDFs (or PMFs) of the distributions of the average re-
wards (which we can compute knowing the distribution
from which rewards are drawn). For each h, we indicate
how many times arm j has been pulled up to time k with

tj(h, k) = 1{j∈MI} +

k∑
s′=mI+1

1{is′∈I(j)}.

Similarly to when we defined the regret, let us call
∆(i, is) = µi − µis . Then, consider the following quan-
tities (see Supplement A for how to compute them given
the mean rewards):

• us(h, is) is an upper bound on the probability
that arm is is considered to be the best arm at
time s given the history of pulls (according to h)
up to time s− 1:

us(h, is) =
∏

i:µi>µis

(
exp

{
− tis(h, s)∆(i, is)

2

2r

}

+ exp

{
− ti(h, s)∆(i, is)

2

2r

})
,

where range of rewards r is defined as r = b− a.

• Uk(h, ik) is an upper bound on the probability
that arm ik would be pulled at time k given the
history of pulls (according to h) up to time k − 1:
When k < t, then Uk(h, ik) =∫ 1

0

(
p

mk
1{bk=1} + (1− p)uk(h, ik)1{bk=0}

)
×

fM(h,k)(g(p)) dp, (4)

and when k = t, then Ut(h, it) =∫ 1

0

(
p

mt
+ (1− p)ut(h, it)

)
fM(h,t)(g(p)) dp. (5)

• Ut(h, j) is an upper bound on the probability
that arm j would be pulled at time t given the
history of pulls (according to h) up to time t− 1:

Ut(h, j) = (6)∫ 1

0

(
p

mt
+ (1− p)ut(h, j)

)
fM(h,t)(g(p)) dp.

In standard regret bounds, the bound is usually in terms
of the mean rewards µj and ∆j for each arm j, which
are not known in the application. Our bounds analo-
gously depend on the µj’s and ∆(i, is)’s (where is is
the arm played at time s, and i is another arm with
higher mean reward). While standard bounds usually



have a simple dependence on µj’s, our bounds have a
more complicated dependence on the µj’s. On the other
hand, they depend on the same quantities as the standard
bounds; once we have the µj terms, the bound can be
computed using the same information that is available in
the standard bounds. For instance us(h, is), Us(h, is),
and Ut(h, j) do not require any additional information
other than the µj’s.

Theorem 2.1 presents a finite time upper bound on the
regret for the AG-L algorithm (Supplement A has the
proof).

Theorem 2.1. The bound on the mean regret
E[Rn] at time n is given by

E[Rn]

≤
∑
j∈MI

∆j,i∗j
+

n∑
t=mI+1

∑
j∈Mt(L)

∆j,i∗t
× (7)

∑
h∈Ht−1

(
Ut(h, j)

t−1∏
s=mI+1

Us(h, is)

)
. (8)

The standard case, when there is no exploration regula-
tion based on remaining arms life, can be recovered by
setting Mt(L) = Mt. (This is the case where we are not
excluding arms that are about to disappear). In that stan-
dard case, Theorem 2.1 is a novel finite time regret bound
for the standard AG algorithm introduced by Chakrabarti
et al. [2009].

The first summation in (7) represents the total mean re-
gret suffered during the initialization phase. Intuitively,
it is the summation of the mean regrets ∆j,i∗t

for hav-
ing pulled an arm j that is in the initialization set MI =
{1, 2, . . . ,mI}. The second triple summation in (7) and
(8) represents the total mean regret suffered after the
initialization phase. Intuitively, it is the summation of
all the mean regrets ∆j,i∗t

for having pulled an arm j
weighted by the bound on the probability of pulling arm
j (the term that appears in (8)). The bound on the prob-
ability of pulling arm j is computed by considering all
possible histories of pulls up to turn t − 1 (hence the
summation over Ht−1). For each history h in the sum,
the bound of choosing arm j at time t is given by mul-
tiplying the bound Ut(h, j) on the probability of pulling
arm j at turn t given h with the bound on the probabil-
ity of that particular history h (given by the product of
Us(h, is) up to turn t− 1).

To intuitively see why this regret bound is better than
the one that arises from the standard AG policy, we look
at the quantities in Equation (4). The integrand has two
main terms that are mutually exclusive (i.e., one appears

during exploration turns and the other during exploitation
turns):

• 1/ms (recall that ms is the number of arms avail-
able at turn s): this is a constant appearing during
exploration phases (when bs = 1).

• us(h, is): this is a product of negative exponentials
that decreases quickly, becoming smaller than 1/ms

after enough pulls on arm is. It appears during ex-
ploitation turns (when bs = 0).

The two terms are mutually exclusive, and the AG algo-
rithm that explores more often will have the term 1/ms

appear more often in the integrand of Equation (4). A
larger integrand will yield a larger regret bound.

Conversely, the AG-L algorithm considers only the set
Mt(L) of arms with long life, and the term 1/ms will ap-
pear less often than the smaller quantity us(h, is), yield-
ing a smaller regret bound.

Algorithms with smaller regret bounds generally lead to
smaller regrets in practice. We will show how this is re-
alized in the experiments later.

We can see the bound’s intuition by restating Theorem
2.1 with dependence on the 1/ms and us(h, is) terms
notated explicitly:

Theorem 2.2. The bound on the mean regret
E[Rn] at time n is given by

E[Rn] ≤ O(1) +

n∑
t=mI+1

∑
j∈Mt(L)

∆j,i∗t
×

∑
h∈Ht−1

F

(
1

m1
, · · · , 1

mt
, u1(h, i1), · · · , ut(h, it)

)
,

where

F

(
1

m1
, · · · , 1

mt
, u1(h, i1), · · · , ut(h, it)

)
= Ut(h, j)

t−1∏
s=mI+1

Us(h, is)

is an increasing function of all its arguments.

Intuitively, u1(h, i1), · · · , ut(h, it) are smaller than
1

m1
, · · · , 1

mt
since they decrease at a fast rate (they are

products of negative exponentials). By regulating explo-
ration on arms that live longer, the bound of Algorithm
1 presents the smaller terms more times than the larger
ones, yielding an overall better expected regret. Reduc-
ing exploration on dying arms tends not to impact the
other reward terms unless the dying arms have signif-



icantly better rewards than the long-lived arms, which
generally is not the case in real applications.

A thought experiment with good and bad arms. Let
us conduct a thought experiment to provide intuition for
why it is beneficial to limit exploration only among arms
with short remaining life. Consider two different stan-
dard games, where arms are always available: the first
with 100 arms, and the second with 10 arms. The quality
of the arms come from the same distribution, for exam-
ple we know that 30% of the arms have high expected
rewards, and 70% have instead low expected rewards.
The probability of picking a bad arm at random is the
same in both games. However, one of these games is
much more difficult than the other one in practice: in the
10-arm game, we can allocate more pulls to each arm,
and thus it is much easier to determine when an arm is
bad based on its mean reward estimate. For the 10-arm
game, the algorithm will explore less (the term 1/ms will
appear less often) than in the 100-arm game, and thus
the 10-arm game will have better bounds on the prob-
ability of playing suboptimal arms (the terms us(h, is)
decrease more quickly). Thus, it is easier to play the
standard game with fewer arms.

When there is a mixture of long-lived and short-lived
arms, AG-L may (in essence) reduce the full game to
a smaller, easier one that considers only the long-lived
arms.

In real applications, at each time, we expect there to be
a mixture of arms with short remaining life and long re-
maining life. Intuitively, AG-L would reduce the game to
an easier game by playing (among approximately good
arms) mainly the long-lived arms.

Algorithm 2: UCB-L algorithm
Input : number of rounds n, initialization set of

arms MI , set Mt of available arms at
time, rewards range [a, b]

Initialization: play all arms in MI once, and initialize
X̂j for each j = 1, · · · ,mI

for t = mI + 1 to n do
Play arm with highest X̂j + ψ(j, t)

√
2 log(t−sj)
Tj(t−1) ;

Get reward Xj(t);
Update X̂j ;

end

2.2 THE MORTAL UCB WITH LIFE
REGULATION ALGORITHM (UCB-L)

Algorithm 2 extends the UCB algorithm of Auer et al.
[2002] to handle life regulation. In the standard UCB

algorithm, the arm with the highest upper confidence
bound above the estimated mean is played. In this new
version, the upper confidence bound has been modified
so that it can be used in the mortal setting. It gradually
shrinks the estimated UCB as the life of the arm comes to
an end. Exploration is thus encouraged only on arms that
have a long lifespan. In this way, arms that are close to
expiring are played only if their estimated mean is high.
Let sj and lj be the first and last turn at which arm j is
available, and let ψ(j, t) be a function proportional to the
remaining life of arm j, which decreases over time. An
example for ψ(j, t) is c log(lj − t+ 1), where c is a pos-
itive constant (note that ψ(j, t) approaches zero as the
game gets closer to the expiration of arm j). New arms
are initialized by using the average performance of past
arms (i.e., if in the past, many bad arms appeared, new
arms are considered more likely to be bad), and their up-
per confidence bound is built as if they have been played
once. We abbreviate this algorithm by UCB-L.

Theorem 2.3 presents a finite time regret bound for the
UCB-L algorithm (proof in Supplement B).

Theorem 2.3. Let
⋃Ej

z=1 L
z
j be a partition of Lj

into epochs with different best available arm, szj
and lzj be the first and last step of epoch Lz

j , and
for each epoch let uj,z be defined as

uj,z = max
t∈{szj ,··· ,lzj}

⌈
8ψ(j, t) log(t− sj)

∆2
j,z

⌉
,

where
∆j,z = ∆j,i∗t

for t ∈ Lz
j .

Then, the bound on the mean regret E[Rn] at time
n is given by

E[Rn]

≤
∑
j∈MI

∆j,i∗j

+
∑
j∈M

Ej∑
z=1

∆j,z min
(
lzj − szj , uj,z

+
∑
t∈Lz

j
t>mI

(t− si∗t )(t− sj − uj,z + 1)

×
[
(t− sj)

− 4
r2
ψ(j,t)

+ (t− si∗t )
− 4

r2
ψ(i∗t ,t)

])
.

The first summation
∑

j∈MI
∆j,i∗j

is the regret suffered
during the initialization phase (the arms inMI are played
in order of their index and i∗j denotes the best arm avail-
able at that turn). Intuitively, uj,z is the number of pulls
required to be able to distinguish arm j from the best arm
in epoch z. In the second double summation, the mean



Table 1: extracted dataframe from the original text record
timestamp id clicked number of arms

1317513291 id-560620 0 26
1317513291 id-565648 0 26
1317513291 id-563115 0 26
1317513292 id-552077 0 26
1317513292 id-564335 0 26

regret for pulling arm j is multiplied by the minimum
between the epoch length and the upper bound on the
probability that the arms appears to be the best available
one. This upper bound is a combination of the proba-
bility that we are either underestimating the best arm in
epoch z or we are overestimating arm j (see Supplement
B for more details). If the game is such that no new arms
are born during the game and all arms expire after turn
n, then this regret bound reduces to the standard UCB
bound (see Auer et al. [2002]).

3 EXPERIMENTS ON Yahoo! NEWS
ARTICLE RECOMMENDATION

We tested the performance the new AG-L and UCB-
L algorithms versus the standard AG and UCB algo-
rithms using the dataset from the Yahoo! Webscope pro-
gram. The dataset consists of a stream of recommenda-
tion events that display articles randomly to users. At
each time, the dataset contains information on the action
taken (which is the article shown to the human viewing
articles on Yahoo!), the outcome of that action (click or
no click), the candidate arm pool at that time (the set
of articles available) and the associated timestamp. We
preprocessed the original text file into a structured data
frame (see an extract of the data frame in Table 1).

In each game, the algorithms are tested on the same data.
The recommender algorithms play for a fixed number of
turns. We record the accumulated rewards of each algo-
rithm.

At each time, a reward can be calculated only when the
article that was displayed to the human user matches the
action of the algorithm. (We do not know the outcome of
actions not recorded in the dataset.) This means rewards
can only be calculated at a fraction of times that the algo-
rithm is playing. Therefore, while still playing the same
number of turns, some algorithms will have more evalu-
ations than others. In particular, an algorithm can be un-
lucky, in that most of its actions are discarded by chance.
However, when the dataset was constructed, articles were
shown uniformly at random to the human user, and over-
all, the difference between the number of evaluations per
algorithm is small. More details on the experiment can

be found in Supplement D.

For ad serving or article serving in practice, the AG-
L and UCB-L algorithms would be told when arti-
cles/advertisements/coupons are scheduled to appear and
expire. Accordingly, we provided the algorithms with the
beginning and end of life for each arm.

Separately, we consider the case where we do not have
the life of each arm in advance. In that case, we add a
step to the algorithms, which estimates the lifespan of
new arms by the mean lifespan of expired arms.

In order to obtain a distribution for performance (rather
than a single performance measurement), we ran the AG
and AG-L algorithms many times to plot the distribu-
tion of rewards. The AG and AG-L algorithms are non-
deterministic, since they choose arms randomly from the
candidates with enough remaining life. On the other
hand, UCB and UCB-L algorithms are deterministic be-
cause they always pick the arm with the best upper confi-
dence bound. Running UCB and UCB-L many times on
the same dataset will always give the same result. There-
fore, to obtain a distribution for performance, we ran
UCB and UCB-L for different sliding windows of time
(i.e., we started the algorithms at many different points in
time), which explains the multi-modal shape of UCB-L
rewards distribution in Figure 2.

Figures 1 and 2 show the empirical distribution of re-
wards for the algorithms. Each algorithm played 100
games with 100000 turns per game. Each game con-
sumed millions of data rows, because many actions could
not be evaluated, as discussed above (they did not match
the action shown to the Yahoo! user at that time).

The algorithms with life-regulation dramatically outper-
form the standard ones. Among AG-Ls, knowing the ex-
act lifespan of each article (rather than using an estimated
lifespan) improves performance. This result would have
been obvious in retrospect: more information given to
the algorithm allows it to make better decisions.

The AG-L strategy adopted here was part of a high-
scoring entry of one of the Exploration-Exploitation
competitions. The entry scored second place, with a
score that was not statistically significantly different
from the first place entry. In this competition, AG-L
was one of two key strategies contributing to the high
score. Both key strategies were based on incorporat-
ing time series information about article behavior, which
added more strategic value than other types of informa-
tion available during the competition.



Figure 1: AG’s playing the game 100 times. Randomness
arises from the AG algorithms.

Figure 2: UCB’s playing a set of 100 slightly different
games. Randomness arises not from the algorithms but
from random starting time.

4 CONCLUSIONS

In this work, we have shown that it is possible to leverage
knowledge about the lifetimes of the arms to improve the
quality of exploration and exploitation in mortal multi-
armed bandits. Our algorithms focus on exploring the
arms that will be available longer, leading to substan-
tially increased rewards. In cases where we do not know
the lifetimes of the arms but can estimate them, these
techniques are still able to substantially increase rewards.
We have presented novel finite time regret bounds and
numerical experiments on the publicly available Yahoo!
Webscope Program Dataset that show the benefit of re-
ducing exploration on arms that are about to disappear
soon.

References
Deepak Agarwal, Bee-Chung Chen, and Pradheep

Elango. Explore/exploit schemes for web content op-
timization. In Ninth IEEE International Conference
on Data Mining (ICDM), pages 1–10, 2009.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.
Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2-3):235–256, 2002.

Zahy Bnaya, Rami Puzis, Roni Stern, and Ariel Felner.
Volatile multi-armed bandits for guaranteed targeted
social crawling. In AAAI (Late-Breaking Develop-
ments), 2013.

Deepayan Chakrabarti, Ravi Kumar, Filip Radlinski, and
Eli Upfal. Mortal multi-armed bandits. In Advances
in Neural Information Processing Systems, pages 273–
280, 2009.

Raphaël Féraud and Tanguy Urvoy. A stochastic bandit
algorithm for scratch games. In JMLR: Workshop and
Conference Proceedings, Asian Conference on Ma-
chine Learning, volume 25, pages 129–143, 2012.

Varun Kanade, H Brendan McMahan, and Brent Bryan.
Sleeping experts and bandits with stochastic action
availability and adversarial rewards. 2009.

Robert Kleinberg, Alexandru Niculescu-Mizil, and Yo-
geshwer Sharma. Regret bounds for sleeping ex-
perts and bandits. Machine learning, 80(2-3):245–
272, 2010.

Setareh Maghsudi and Slawomir Stańczak. On channel
selection for energy-constrained rateless-coded d2d
communications. In Proc. 23rd European Signal Pro-
cessing Conference (EUSIPCO), pages 1028–1032.
IEEE, 2015.

R. J. Vaughan and W. N. Venables. Permanent expres-
sions for order statistic densities. Journal of the Royal



Statistical Society. Series B (Methodological), 34(2):
308–310, 1972.


