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Abstract

The Information Bottleneck (IB) method
(Tishby et al. (2000)) provides an insight-
ful and principled approach for balancing
compression and prediction for representa-
tion learning. The IB objective I(X;Z) �
�I(Y ;Z) employs a Lagrange multiplier � to
tune this trade-off. However, in practice, not
only is � chosen empirically without theoreti-
cal guidance, there is also a lack of theoretical
understanding between �, learnability, the in-
trinsic nature of the dataset and model capac-
ity. In this paper, we show that if � is improp-
erly chosen, learning cannot happen – the triv-
ial representation P (Z|X) = P (Z) becomes
the global minimum of the IB objective. We
show how this can be avoided, by identifying
a sharp phase transition between the unlearn-
able and the learnable which arises as � is var-
ied. This phase transition defines the concept
of IB-Learnability. We prove several sufficient
conditions for IB-Learnability, which provides
theoretical guidance for choosing a good �.
We further show that IB-learnability is deter-
mined by the largest confident, typical, and im-
balanced subset of the examples (the conspicu-
ous subset), and discuss its relation with model
capacity. We give practical algorithms to esti-
mate the minimum � for a given dataset. We
also empirically demonstrate our theoretical
conditions with analyses of synthetic datasets,
MNIST, and CIFAR10.

1 INTRODUCTION

Tishby et al. (2000) introduced the Information Bottle-
neck (IB) objective function which learns a representa-

tion Z of observed variables (X,Y ) that retains as lit-
tle information about X as possible, but simultaneously
captures as much information about Y as possible:

min IB�(X,Y ;Z) = min I(X;Z)� �I(Y ;Z) (1)

I(·) is the mutual information. The hyperparameter �

controls the trade-off between compression and predic-
tion, in the same spirit as Rate-Distortion Theory (Shan-
non, 1948), but with a learned representation function
P (Z|X) that automatically captures some part of the
“semantically meaningful” information, where the se-
mantics are determined by the observed relationship be-
tween X and Y .

The IB framework has been extended to and extensively
studied in a variety of scenarios, including Gaussian vari-
ables (Chechik et al. (2005)), meta-Gaussians (Rey and
Roth (2012)), continuous variables via variational meth-
ods (Alemi et al. (2016); Chalk et al. (2016); Fischer
(2018)), deterministic scenarios (Strouse and Schwab
(2017a); Kolchinsky et al. (2019)), geometric clustering
(Strouse and Schwab (2017b)), and is used for learning
invariant and disentangled representations in deep neu-
ral nets (Achille and Soatto (2018a,b)). However, a core
issue remains: how should we set a good �? In the
original work, the authors recommend sweeping � > 1,
which can be prohibitively expensive in practice, but also
leaves open interesting theoretical questions around the
relationship between �, P (Z|X), and the observed data,
P (X,Y ).

This work begins to answer some of those questions by
characterizing the onset of learning. Specifically:

• We show that improperly chosen � may result in
a failure to learn: the trivial solution P (Z|X) =
P (Z) becomes the global minimum of the IB ob-
jective, even for � � 1.

• We introduce the concept of IB-Learnability, and
show that when we vary �, the IB objective will un-



dergo a phase transition from the inability to learn
to the ability to learn.

• Using the second-order variation, we derive suffi-
cient conditions for IB-Learnability, which provide
theoretical guidance for choosing a good �.

• We show that IB-Learnability is determined by the
largest confident, typical, and imbalanced subset of
the examples (the conspicuous subset), reveal its
relationship with the slope of the Pareto frontier
at the origin on the information plane I(X;Z) vs.
I(Y ;Z), and discuss its relation to model capacity.

• We additionally prove a deep relationship between
IB-Learnability, the hypercontractivity coefficient,
the contraction coefficient, and the maximum cor-
relation.

We use our main results to demonstrate on synthetic
datasets, MNIST (LeCun et al., 1998) and CIFAR10
(Krizhevsky and Hinton, 2009) that the theoretical pre-
diction for IB-Learnability closely matches experiment.
We also present an algorithm for estimating the onset of
IB-Learnability and the conspicuous subset, and demon-
strate that it does a good job of approximating both the
theoretical predictions and the empirical results.

2 RELATED WORK

The original IB work (Tishby et al., 2000) provides a
tabular method for exactly computing the optimal en-
coder distribution P (Z|X) for a given � and cardinal-
ity of the discrete representation, |Z|. Thus, the search
for the desired model involves not only sweeping �, but
also considering different representation dimensionali-
ties. These restrictions were lifted somewhat by Chechik
et al. (2005), which presents the Gaussian Information
Bottleneck (GIB) for learning a multivariate Gaussian
representation Z of (X,Y ), assuming that both X and
Y are also multivariate Gaussians. They also note the
presence of the trivial solution not only when �  1,
but also depending on the eigenspectrum of the observed
variables. However, the restriction to multivariate Gaus-
sian datasets limits the generality of the analysis. An-
other analytic treatment of IB is given in Rey and Roth
(2012), which reformulates the objective in terms of the
copula functions. As with the GIB approach, this for-
mulation restricts the form of the data distributions – the
copula functions for the joint distribution (X,Y ) are as-
sumed to be known, which is unlikely in practice.

Strouse and Schwab (2017a) presents the Determinis-
tic Information Bottleneck (DIB), which minimizes the
coding cost of the representation, H(Z), rather than the

transmission cost, I(X;Z) as in IB. This approach learns
hard clusterings with different code entropies that vary
with �. In this case, it is clear that a hard clustering with
minimal H(Z) will result in a single cluster for all of
the data, which is the DIB trivial solution. No analysis
is given beyond this fact to predict the actual onset of
learnability, however.

The first amortized IB objective is in the Variational
Information Bottleneck (VIB) of Alemi et al. (2016).
VIB replaces the exact, tabular approach of IB with
variational approximations of the classifier distribution
(P (Y |Z)) and marginal distribution (P (Z)). This ap-
proach cleanly permits learning a stochastic encoder,
P (Z|X), that is applicable to any x 2 X , rather than just
the particular X seen at training time. The cost of this
flexibility is the use of variational approximations that
may be less expressive than the tabular method. Never-
theless, in practice, VIB learns easily and is simple to im-
plement, so we rely on VIB models for our experimental
confirmation.

Closely related to IB is the recently proposed Condi-
tional Entropy Bottleneck (CEB) (Fischer, 2018). CEB
attempts to explicitly learn the Minimum Necessary In-
formation (MNI), defined as the point in the information
plane where I(X;Y ) = I(X;Z) = I(Y ;Z). The MNI
point may not be achievable even in principle for a par-
ticular dataset. However, the CEB objective provides an
explicit estimate of how closely the model is approaching
the MNI point by observing that a necessary condition
for reaching the MNI point occurs when I(X;Z|Y ) = 0.
The CEB objective I(X;Z|Y )� �I(Y ;Z) is equivalent
to IB at � = � + 1, so our analysis of IB-Learnability
applies equally to CEB.

Kolchinsky et al. (2019) presents analytic and empirical
results about trivial solutions in the particular setting of
Y being a deterministic function of X in the observed
sample. However, their use of the term “trivial solution”
is distinct from ours. They are referring to the observa-
tion that � will demonstrate trivial interpolation between
two different but valid solutions on the optimal frontier,
rather than demonstrating a non-trivial trade-off between
compression and prediction as expected when varying
the IB Lagrangian. Our use of “trivial” refers to whether
IB is capable of learning at all given a certain dataset and
value of �.

Achille and Soatto (2018b) applies the IB Lagrangian to
the weights of a neural network, yielding InfoDropout.
In Achille and Soatto (2018a), the authors give a deep
and compelling analysis of how the IB Lagrangian can
yield invariant and disentangled representations. They do
not, however, consider the question of the onset of learn-
ing, although they are aware that not all models will learn



a non-trivial representation. More recently, Achille et al.
(2018) repurpose the InfoDropout IB Lagrangian as a
Kolmogorov Structure Function to analyze the ease with
which a previously-trained network can be fine-tuned for
a new task. While that work is tangentially related to
learnability, the question it addresses is substantially dif-
ferent from our investigation of the onset of learning.

Our work is also closely related to the hypercontrac-
tivity coefficient (Anantharam et al. (2013); Polyan-
skiy and Wu (2017)), defined as supZ�X�Y

I(Y ;Z)
I(X;Z) ,

which by definition equals the inverse of �0, our IB-
learnability threshold. In Anantharam et al. (2013),
the authors prove that the hypercontractivity cofficient
equals the contraction coefficient ⌘KL(PY |X , PX), and
Kim et al. (2017) propose a practical algorithm to es-
timate ⌘KL(PY |X , PX), which provides a measure for
potential influence in the data. Although our goal is
different, the sufficient conditions we provide for IB-
Learnability are also lower bounds for the hypercontrac-
tivity coefficient.

3 IB-LEARNABILITY

We are given instances of (x, y) 2 X ⇥ Y drawn from
a distribution with probability (density) P (X,Y ), where
unless otherwise stated, both X and Y can be discrete
or continuous variables. (X,Y ) is our training data, and
may be characterized by different types of noise. The na-
ture of this training data and the choice of � will be suf-
ficient to predict the transition from unlearnable to learn-
able.

We can learn a representation Z of X with conditional
probability1

p(z|x), such that X,Y, Z obey the Markov
chain Z  X $ Y . Eq. 1 above gives the IB objec-
tive with Lagrange multiplier �, IB�(X,Y ;Z), which
is a functional of p(z|x): IB�(X,Y ;Z) = IB� [p(z|x)].
The IB learning task is to find a conditional probability
p(z|x) that minimizes IB�(X,Y ;Z). The larger �, the
more the objective favors making a good prediction for
Y . Conversely, the smaller �, the more the objective fa-
vors learning a concise representation.

How can we select � such that the IB objective learns
a useful representation? In practice, the selection of �
is done empirically. Indeed, Tishby et al. (2000) recom-
mends “sweeping �”. In this paper, we provide theoret-
ical guidance for choosing � by introducing the concept
of IB-Learnability and providing a series of IB-learnable
conditions.

1We use capital letters X,Y, Z for variables and lowercase
x, y, z to denote the instance of variables, with P (·) and p(·)
denoting their probability or probability density, respectively.

Definition 1. (X,Y ) is IB�-learnable if there exists a Z

given by some p1(z|x), such that IB�(X,Y ;Z)|p1(z|x) <
IB�(X,Y ;Z)|p(z|x)=p(z), where p(z|x) = p(z) charac-
terizes the trivial representation where Z = Ztrivial is
independent of X .

If (X;Y ) is IB�-learnable, then when IB�(X,Y ;Z) is
globally minimized, it will not learn a trivial representa-
tion. On the other hand, if (X;Y ) is not IB�-learnable,
then when IB�(X,Y ;Z) is globally minimized, it may
learn a trivial representation.

Trivial solutions. Definition 1 defines trivial solu-
tions in terms of representations where I(X;Z) =
I(Y ;Z) = 0. Another type of trivial solution occurs
when I(X;Z) > 0 but I(Y ;Z) = 0. This type of triv-
ial solution is not directly achievable by the IB objective,
as I(X;Z) is minimized, but it can be achieved by con-
struction or by chance. It is possible that starting learning
from I(X;Z) > 0, I(Y ;Z) = 0 could result in access
to non-trivial solutions not available from I(X;Z) = 0.
We do not attempt to investigate this type of trivial solu-
tion in this work.

Necessary condition for IB-Learnability. From Defi-
nition 1, we can see that IB�-Learnability for any dataset
(X;Y ) requires � > 1. In fact, from the Markov
chain Z  X $ Y , we have I(Y ;Z)  I(X;Z)
via the data-processing inequality. If �  1, then
since I(X;Z) � 0 and I(Y ;Z) � 0, we have that
min(I(X;Z) � �I(Y ;Z)) = 0 = IB�(X,Y ;Ztrivial).
Hence (X,Y ) is not IB�-learnable for �  1.

Due to the reparameterization invariance of mutual in-
formation, we have the following theorem for IB�-
Learnability:

Theorem 1. Let X 0 = g(X) be an uniquely invertible
map (if X is a continuous variable, g is additionally re-
quired to be continuous). Then (X,Y ) and (X 0

, Y ) have
the same IB�-Learnability.

The proof for Theorem 1 is in Appendix B. Theorem 1
implies a favorable property for any condition for IB�-
Learnability: the condition should be invariant to invert-
ible mappings of X . We will inspect this invariance in
the conditions we derive in the following sections.

4 SUFFICIENT CONDITIONS FOR
IB-LEARNABILITY

Given (X,Y ), how can we determine whether it is IB�-
learnable? To answer this question, we derive a series of
sufficient conditions for IB�-Learnability, starting from
its definition. The conditions are in increasing order of



practicality, while sacrificing as little generality as possi-
ble.

Firstly, Theorem 2 characterizes the IB�-Learnability
range for �, with proof in Appendix C:

Theorem 2. If (X,Y ) is IB�1 -learnable, then for any
�2 > �1, it is IB�2 -learnable.

Based on Theorem 2, the range of � such that (X,Y ) is
IB�-learnable has the form � 2 (�0,+1). Thus, �0 is
the threshold of IB-Learnability.

Lemma 2.1. p(z|x) = p(z) is a stationary solution for
IB�(X,Y ;Z).

The proof in Appendix F shows that both first-order vari-
ations �I(X;Z) = 0 and �I(Y ;Z) = 0 vanish at the
trivial representation p(z|x) = p(z), so �IB� [p(z|x)] =
0 at the trivial representation.

Lemma 2.1 yields our strategy for finding sufficient
conditions for learnability: find conditions such that
p(z|x) = p(z) is not a local minimum for the functional
IB� [p(z|x)]. Based on the necessary condition for the
minimum (Appendix D), we have the following theorem
2:

Theorem 3 (Suff. Cond. 1). A sufficient condition for
(X,Y ) to be IB�-learnable is that there exists a pertur-
bation function h(z|x) with3R

h(z|x)dz = 0, such that
the second-order variation �

2IB� [p(z|x)] < 0 at the triv-
ial representation p(z|x) = p(z).

The proof for Theorem 3 is given in Appendix D. Intu-
itively, if �2IB� [p(z|x)]

��
p(z|x)=p(z)

< 0, we can always
find a p

0(z|x) = p(z|x) + h(z|x) in the neighborhood
of the trivial representation p(z|x) = p(z), such that
IB� [p0(z|x)] < IB� [p(z|x)], thus satisfying the defini-
tion for IB�-Learnability.

To make Theorem 3 more practical, we perturb p(z|x)
around the trivial solution p

0(z|x) = p(z|x) + ✏h(z|x),
and expand IB� [p(z|x) + h(z|x)] � IB� [p(z|x)] to the
second order of ✏. We can then prove Theorem 4:

Theorem 4 (Suff. Cond. 2). A sufficient condition for
(X,Y ) to be IB�-learnable is X and Y are not indepen-
dent, and

� > inf
h(x)

�0[h(x)] (2)

2The theorems in this paper deal with learnability w.r.t. true
mutual information. If parameterized models are used to ap-
proximate the mutual information, the limitation of the model
capacity will translate into more uncertainty of Y given X ,
viewed from the lens of the model.

3Whenever a variable W is discrete, we can simply replace
the integral (

R
·dw) by summation (

P
w ·).

where the functional �0[h(x)] is given by

�0[h(x)] =
Ex⇠p(x)[h(x)

2]�
�
Ex⇠p(x)[h(x)]

�2

Ey⇠p(y)

h�
Ex⇠p(x|y)[h(x)]

�2i
�
�
Ex⇠p(x)[h(x)]

�2

Moreover, we have that
�
infh(x) �[h(x)]

��1 is a lower
bound of the slope of the Pareto frontier in the informa-
tion plane I(Y ;Z) vs. I(X;Z) at the origin.

The proof is given in Appendix G, which also gives a
construction for h(z|x) for Theorem 3 for any h(x) sat-
isfying Theorem 4, and shows that the converse is also
true: if there exists h(z|x) suth that the condition in The-
orem 3 is true, then we can find h(x) satisfying the the
condition in Theorem 4.

Theorem 4 suggests a method to estimate �0: we can pa-
rameterize h(x) by a neural network, with the objective
of minimizing �0[h(x)]. At its minimization, �0[h(x)]
provides an upper bound for �0, and h(x) provides a soft
clustering of the examples.

Alternatively, based on the property of �0[h(x)], we
can also use a specific functional form for h(x) in
Eq. (2), and obtain a stronger sufficient condition for
IB�-Learnability. But we want to choose h(x) as near
to the infimum as possible. To do this, we note the fol-
lowing characteristics for the R.H.S of Eq. (2):

• We can set h(x) to be nonzero if x 2 ⌦x for some
region ⌦x ⇢ X and 0 otherwise. Then we obtain
the following sufficient condition:

� > inf
h(x),⌦x2X

Ex⇠p(x),x2⌦x [h(x)
2]

(Ex⇠p(x),x2⌦x [h(x)])
2 � 1

R dy
p(y)

⇣Ex⇠p(x),x2⌦x [p(y|x)h(x)]
Ex⇠p(x),x2⌦x [h(x)]

⌘2
� 1

(3)

• The numerator of the R.H.S. of Eq. (3) attains
its minimum when h(x) is a constant within ⌦x.
This can be proved using the Cauchy-Schwarz in-
equality: hu, uihv, vi � hu, vi2, setting u(x) =
h(x)

p
p(x), v(x) =

p
p(x), and defining the inner

product as hu, vi =
R
u(x)v(x)dx. Therefore, the

numerator of the R.H.S. of Eq. (3)� 1R
x2⌦x

p(x)
�1,

and attains equality when u(x)
v(x) = h(x) is constant.

Based on these observations, we can let h(x) be a
nonzero constant inside some region ⌦x ⇢ X and 0 oth-
erwise, and the infimum over an arbitrary function h(x)
is simplified to infimum over ⌦x ⇢ X , and we obtain a
sufficient condition for IB�-Learnability, which is a key
result of this paper:



Theorem 5 (Conspicuous Subset Suff. Cond.). A suffi-
cient condition for (X,Y ) to be IB�-learnable is X and
Y are not independent, and

� > inf
⌦x⇢X

�0(⌦x) (4)

where

�0(⌦x) =
1

p(⌦x)
� 1

Ey⇠p(y|⌦x)

h
p(y|⌦x)
p(y) � 1

i

⌦x denotes the event that x 2 ⌦x, with probability
p(⌦x).

(inf⌦x⇢X �0(⌦x))
�1 gives a lower bound of the slope of

the Pareto frontier in the information plane I(Y ;Z) vs.
I(X;Z) at the origin.

The proof is given in Appendix H. In the proof we also
show that this condition is invariant to invertible map-
pings of X .

4.1 Discussion

The conspicuous subset determines �0. From Eq.
(4), we see that three characteristics of the subset ⌦x ⇢

X lead to low �0: (1) confidence: p(y|⌦x) is large; (2)
typicality and size: the number of elements in ⌦x is
large, or the elements in ⌦x are typical, leading to a large
probability of p(⌦x); (3) imbalance: p(y) is small for
the subset ⌦x, but large for its complement. In summary,
�0 will be determined by the largest confident, typical
and imbalanced subset of examples, or an equilibrium of
those characteristics. We term ⌦x at the minimization of
�0(⌦x) the conspicuous subset.

Multiple phase transitions. Based on this characteri-
zation of ⌦x, we can hypothesize datasets with multiple
learnability phase transitions. Specifically, consider a re-
gion ⌦x0 that is small but “typical”, consists of all ele-
ments confidently predicted as y0 by p(y|x), and where
y0 is the least common class. By construction, this ⌦x0

will dominate the infimum in Eq. (4), resulting in a small
value of �0. However, the remaining X �⌦x0 effectively
form a new dataset, X1. At exactly �0, we may have that
the current encoder, p0(z|x), has no mutual information
with the remaining classes in X1; i.e., I(Y1;Z0) = 0. In
this case, Definition 1 applies to p0(z|x) with respect to
I(X1;Z1). We might expect to see that, at �0, learning
will plateau until we get to some �1 > �0 that defines the
phase transition for X1. Clearly this process could repeat
many times, with each new dataset Xi being distinctly
more difficult to learn than Xi�1. The end of Appendix
G gives a more detailed analysis on multiple phase tran-
sitions.

Similarity to information measures. The denomina-
tor of Eq. (4) is closely related to mutual information.
Using the inequality x � 1 � log(x) for x > 0, it be-
comes:

Ey⇠p(y|⌦x)


p(y|⌦x)

p(y)
� 1

�
� Ey⇠p(y|⌦x)


log

p(y|⌦x)

p(y)

�

= Ĩ(⌦x;Y )

where Ĩ(⌦x;Y ) is the mutual information “den-
sity” at ⌦x ⇢ X . Of course, this quantity is
also DKL[p(y|⌦x)||p(y)], so we know that the de-
nominator of Eq. (4) is non-negative. Incidentally,
Ey⇠p(y|⌦x)

⇥p(y|⌦x)
p(y) � 1

⇤
is the density of “rational mu-

tual information” (Lin and Tegmark (2016)) at ⌦x.

Similarly, the numerator is related to the self-information
of ⌦x:

1

p(⌦x)
� 1 � log

1

p(⌦x)
= �log p(⌦x) = h(⌦x)

so we can estimate the phase transition as:

� ' inf
⌦x⇢X

h(⌦x)

Ĩ(⌦x;Y )
(5)

Since Eq. (5) uses upper bounds on both the numerator
and the denominator, it does not give us a bound on �0.

Estimating model capacity. The observation that a
model can’t distinguish between cluster overlap in the
data and its own lack of capacity gives an interesting way
to use IB-Learnability to measure the capacity of a set of
models relative to the task they are being used to solve.

Learnability and the Information Plane. Many of
our results can be interpreted in terms of the geometry of
the Pareto frontier illustrated in Fig. 1, which describes
the trade-off between increasing I(Y ;Z) and decreas-
ing I(X;Z). At any point on this frontier that minimizes
IBmin

� ⌘ min I(X;Z)��I(Y ;Z), the frontier will have
slope �

�1 if it is differentiable. If the frontier is also
concave (has negative second derivative), then this slope
�
�1 will take its maximum �

�1
0 at the origin, which im-

plies IB�-Learnability for � > �0, so that the thresh-
old for IB�-Learnability is simply the inverse slope of
the frontier at the origin. More generally, as long as the
Pareto frontier is differentiable, the threshold for IB�-
learnability is the inverse of its maximum slope. Indeed,
Theorem 4 and Theorem 5 give lower bounds of the slope
of the Pareto frontier at the origin.

IB-Learnability, hypercontractivity, and maximum
correlation. In Appendix J, we prove the following re-
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Figure 1: The Pareto frontier of mutual information that
Z can have with X and Y is shown for a binary classifi-
cation of MNIST digits 0 and 1 with 20% label noise. On
this problem, no learning happens for models trained at
� < 3.25. H(Y ) = 1 bit since only the two of ten digits
are used, and I(Y ;Z)  I(X;Y ) ⇡ 0.5 bits < H(Y )
because of the 20% label swapping. The true frontier
is differentiable; the figure shows a variational approxi-
mation that places an upper bound on both informations,
horizontally offset to pass through the origin.

lationships:

1

�0
= ⇠(X;Y ) = ⌘KL � sup

h(x)

1

�0[h(x)]
= ⇢

2
m(X;Y )

(6)

where ⇢m(X;Y ) ⌘ maxf,g E[f(X)g(Y )] s.t.
E[f(X)] = E[g(Y )] = 0 and E[f2(X)] = E[g2(Y )] =
1 is the maximum correlation (Hirschfeld, 1935;
Gebelein, 1941), ⇠(X;Y ) ⌘ supZ�X�Y

I(Y ;Z)
I(X;Z) is the

hypercontractivity coefficient, and ⌘KL(p(y|x), p(x)) ⌘

supr(x) 6=p(x)
DKL(r(y)||p(y))
DKL(r(x)||p(x)) is the contraction coefficient.

Our proof relies on Anantharam et al. (2013)’s proof
⇠(X;Y ) = ⌘KL. Our work reveals the deep relationship
between IB-Learnability and these earlier concepts
and provides additional insights about what aspects
of a dataset give rise to high maximum correlation
and hypercontractivity: the most confident, typical,
imbalanced subset of (X,Y ).

5 ESTIMATING THE
IB-LEARNABILITY CONDITION

Theorem 5 not only reveals the relationship between the
learnability threshold for � and the least noisy region of
P (Y |X), but also provides a way to practically estimate

�0, both in the general classification case, and in more
structured settings.

5.1 Estimation Algorithm

Based on Theorem 5, for general classification tasks we
suggest Algorithm 1 to empirically estimate an upper-
bound �̃0 � �0, as well as discovering the conspicuous
subset that determines �0.

We approximate the probability of each example p(xi)
by its empirical probability, p̂(xi). E.g., for MNIST,
p(xi) = 1

N , where N is the number of examples in the
dataset. The algorithm starts by first learning a maximum
likelihood model of p✓(y|x), using e.g. feed-forward
neural networks. It then constructs a matrix Py|x and
a vector py to store the estimated p(y|x) and p(y) for all
the examples in the dataset. To find the subset ⌦ such
that the �̃0 is as small as possible, by previous analysis
we want to find a confident subset such that its p(y|x) is
large for a certain class j (to make the denominator of
Eq. (4) large), and containing as many elements as pos-
sible (to make the numerator small).

We suggest the following heuristics to discover such a
conspicuous subset. For each class j, we sort the rows
of (Py|x) according to its probability for the pivot class
j by decreasing order, and then perform a search over
ileft, iright for ⌦ = {ileft, ileft + 1, ..., iright}. Since �̃0 is
large when ⌦ contains too few or too many elements,
the minimum of �̃(j)

0 for class j will typically be reached
with some intermediate-sized subset, and we can use bi-
nary search or other discrete search algorithm for the op-
timization. The algorithm stops when �̃

(j)
0 does not im-

prove by tolerance ". The algorithm then returns the �̃0

as the minimum over all the classes �̃(1)
0 , ...�̃

(N)
0 , as well

as the conspicuous subset that determines this �̃0.

After estimating �̃0, we can then use it for learning with
IB, either directly, or as an anchor for a region where we
can perform a much smaller sweep than we otherwise
would have. This may be particularly important for very
noisy datasets, where �0 can be very large.

5.2 Special Cases for Estimating �0

Theorem 5 may still be challenging to estimate, due to
the difficulty of making accurate estimates of p(⌦x) and
searching over ⌦x ⇢ X . However, if the learning prob-
lem is more structured, we may be able to obtain a sim-
pler formula for the sufficient condition.

Class-conditional label noise. Classification with
noisy labels is a common practical scenario. An impor-
tant noise model is that the labels are randomly flipped



Algorithm 1 Estimating the upper bound for �0 and
identifying the conspicuous subset

Require: Dataset D = {(xi, yi)}, i = 1, 2, ...N . The
number of classes is C.
Require ": tolerance for estimating �0

1: Learn a maximum likelihood model p✓(y|x) using
the dataset D.

2: Construct matrix (Py|x) such that
(Py|x)ij = p✓(y = j|x = xi).

3: Construct vector py = (py1, .., pyC) such that
pyj =

1
N

PN
i=1(Py|x)ij .

4: for j in {1, 2, ...C}:
5: P

(sortj)
y|x  Sort the rows of Py|x in decreasing

values of (Py|x)ij .
6: �̃

(j)
0 ,⌦(j)

 Search ileft, iright until �̃(j)
0 =

Get�(Py|x, py,⌦) is minimal with tolerance ",
where ⌦ = {ileft, ileft + 1, ...iright}.

7: end for
8: j⇤  argminj{�̃

(j)
0 }, j = 1, 2, ...N .

9: �̃0  �̃
(j⇤)
0 .

10: P (�̃0)
y|x  the rows of P (sortj⇤)

y|x indexed by ⌦(j⇤).

11: return �̃0, P
(�̃0)
y|x

with some hidden class-conditional probabilities and we
only observe the corrupted labels. This problem has been
studied extensively (Angluin and Laird, 1988; Natarajan
et al., 2013; Liu and Tao, 2016; Xiao et al., 2015; North-
cutt et al., 2017). If IB is applied to this scenario, how
large � do we need? The following corollary provides a
simple formula.

Corollary 5.1. Suppose that the true class labels are y⇤,
and the input space belonging to each y

⇤ has no over-
lap. We only observe the corrupted labels y with class-
conditional noise p(y|x, y⇤) = p(y|y⇤), and Y is not
independent of X . We have that a sufficient condition for
IB�-Learnability is:

� > inf
y⇤

1
p(y⇤) � 1

P
y

p(y|y⇤)2

p(y) � 1
(7)

We see that under class-conditional noise, the sufficient
condition reduces to a discrete formula which only de-
pends on the noise rates p(y|y⇤) and the true class prob-
ability p(y⇤), which can be accurately estimated via e.g.
Northcutt et al. (2017). Additionally, if we know that the
noise is class-conditional, but the observed �0 is greater
than the R.H.S. of Eq. (7), we can deduce that there is
overlap between the true classes. The proof of Corollary
5.1 is provided in Appendix I.

Algorithm 2 Get�
Require Py|x: matrix for p(y|x)
Require py: vector for p(y)
Require ⌦: set of indices for the rows of Py|x
1: N  number of rows of Py|x.
2: C  number of columns of Py|x.
3: n number of elements of ⌦.
4: (py|⌦)j  1

n

P
i2⌦(Py|x)ij , j = 1, 2, ..., C.

5: �̃0  
N
n �1

P
j

⇥ (py|⌦x
)2j

pyj
�1

⇤

6: return �̃0

Deterministic relationships. Theorem 5 also reveals
that �0 relates closely to whether Y is a deterministic
function of X , as shown by Corollary 5.2:

Corollary 5.2. Assume that Y contains at least one
value y such that its probability p(y) > 0. If Y is a
deterministic function of X and not independent of X ,
then a sufficient condition for IB�-Learnability is � > 1.

The assumption in the corollary 5.2 is satisfied by clas-
sification, and certain regression problems. Combined
with the necessary condition � > 1 for any dataset
(X,Y ) to be IB�-learnable (Section 3), we have that
under the assumption, if Y is a deterministic function
of X , then a necessary and sufficient condition for IB�-
learnability is � > 1; i.e., its �0 is 1. The proof of Corol-
lary 5.2 is provided in Appendix I.

Therefore, in practice, if we find that �0 > 1, we may
infer that Y is not a deterministic function of X . For a
classification task, we may infer that either some classes
have overlap, or the labels are noisy. However, recall that
finite models may add effective class overlap if they have
insufficient capacity for the learning task, as mentioned
in Section 4. This may translate into a higher observed
�0, even when learning deterministic functions.

6 EXPERIMENTS

To test how the theoretical conditions for IB�-
learnability match with experiment, we apply them to
synthetic data with varying noise rates and class over-
lap, MNIST binary classification with varying noise
rates, and CIFAR10 classification, comparing with the
�0 found experimentally. We also compare with the al-
gorithm in Kim et al. (2017) for estimating the hyper-
contractivity coefficient (=1/�0) via the contraction co-
efficient ⌘KL. Experiment details are in Section K.
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Figure 2: Predicted vs. experimentally identified �0,
for mixture of Gaussians with varying class-conditional
noise rates.

6.1 Synthetic Dataset Experiments

We construct a set of datasets from 2D mixtures of 2
Gaussians as X and the identity of the mixture com-
ponent as Y . We simulate two practical scenarios with
these datasets: (1) noisy labels with class-conditional
noise, and (2) class overlap. For (1), we vary the class-
conditional noise rates. For (2), we vary class overlap
by tuning the distance between the Gaussians. For each
experiment, we sweep � with exponential steps, and ob-
serve I(X;Z) and I(Y ;Z). We then compare the em-
pirical �0 indicated by the onset of above-zero I(X;Z)
with predicted values for �0.

Classification with class-conditional noise. In this
experiment, we have a mixture of Gaussian distribution
with 2 components, each of which is a 2D Gaussian with
diagonal covariance matrix ⌃ = diag(0.25, 0.25). The
two components have distance 16 (hence virtually no
overlap) and equal mixture weight. For each x, the label
y 2 {0, 1} is the identity of which component it belongs
to. We create multiple datasets by randomly flipping the
labels y with a certain noise rate ⇢ = P (y = 0|y⇤ =
1) = P (y = 1|y⇤ = 0). For each dataset, we train
VIB models across a range of �, and observe the onset
of learning via random I(X;Z) (Observed). To test how
different methods perform in estimating �0, we apply the
following methods: (1) Corollary 5.1, since this is clas-
sification with class-conditional noise, and the two true
classes have virtually no overlap; (2) Alg. 1 with true
p(y|x); (3) The algorithm in Kim et al. (2017) that es-
timates ⌘̂KL, provided with true p(y|x); (4) �0[h(x)] in
Eq. 2; (20) Alg. 1 with p(y|x) estimated by a neural net;

Figure 3: I(Y ;Z) vs. �, for mixture of Gaussian
datasets with different distances between the two mix-
ture components. The vertical lines are �0,predicted by the
R.H.S. of Eq. (7). As Eq. (7) does not make predic-
tions w.r.t. class overlap, the vertical lines are always
just above �0,predicted = 1. However, as expected, de-
creasing the distance between the classes in X space also
increases the true �0.

(30) ⌘̂KL with the same p(y|x) as in (20). The results are
shown in Fig. 2 and in Appendix K.1.

From Fig. 2 we see the following. (A) When using the
true p(y|x), both Alg. 1 and ⌘̂KL generally upper bound
the empirical �0, and Alg. 1 is generally tighter. (B)
When using the true p(y|x), Alg. 1 and Corollary 5.1
give the same result. (C) Comparing Alg. 1 and ⌘̂KL both
of which use the same empirically estimated p(y|x), both
approaches provide good estimation in the low-noise re-
gion; however, in the high-noise region, Alg. 1 gives
more precise values than ⌘̂KL, indicating that Alg. 1 is
more robust to the estimation error of p(y|x). (D) Eq. 2
empirically upper bounds the experimentally observed
�0, and gives almost the same result as theoretical es-
timation in Corollary 5.1 and Alg. 1 with the true p(y|x).
In the classification setting, this approach doesn’t require
any learned estimate of p(y|x), as we can directly use the
empirical p(y) and p(x|y) from SGD mini-batches.

This experiment also shows that for dataset where the
signal-to-noise is small, �0 can be very high. Instead of
blindly sweeping �, our result can provide guidance for
setting � so learning can happen.

Classification with class overlap. In this experiment,
we test how different amounts of overlap among classes
influence �0. We use the mixture of Gaussians with two
components, each of which is a 2D Gaussian with diag-
onal covariance matrix ⌃ = diag(0.25, 0.25). The two
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Figure 4: I(Y ;Z) vs. � for the MNIST binary classi-
fication with different hidden units per layer n and noise
rates ⇢: (upper left) ⇢ = 0.02, (upper right) ⇢ = 0.1,
(lower left) ⇢ = 0.2, (lower right) ⇢ = 0.3. The vertical
lines are �0 estimated by different methods. n = 128
has insufficient capacity for the problem, so its observed
learnability onset is pushed higher, similar to the class
overlap case.

components have weights 0.6 and 0.4. We vary the dis-
tance between the Gaussians from 8.0 down to 0.8 and
observe the �0,exp. Since we don’t add noise to the la-
bels, if there were no overlap and a deterministic map
from X to Y , we would have �0 = 1 by Corollary 5.2.
The more overlap between the two classes, the more un-
certain Y is given X . By Eq. 4 we expect �0 to be larger,
which is corroborated in Fig. 3.

6.2 MNIST Experiments

We perform binary classification with digits 0 and 1, and
as before, add class-conditional noise to the labels with
varying noise rates ⇢. To explore how the model capacity
influences the onset of learning, for each dataset we train
two sets of VIB models differing only by the number of
neurons in their hidden layers of the encoder: one with
n = 512 neurons, the other with n = 128 neurons. As
we describe in Section 4, insufficient capacity will result
in more uncertainty of Y given X from the point of view
of the model, so we expect the observed �0 for the n =
128 model to be larger. This result is confirmed by the
experiment (Fig. 4). Also, in Fig. 4 we plot the estimated
�0 by different methods. We see that the observations
(A), (B), (C) and (D) in Section 6.1 still hold.

6.3 CIFAR10 Forgetting Experiments

For CIFAR10 (Krizhevsky and Hinton, 2009), we study
how forgetting varies with �. In other words, given a
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Figure 5: CIFAR10 plot of I(Y ;Z) vs. � on the train-
ing set with 20% label noise. Each blue cross corre-
sponds to a fully-converged model starting with indepen-
dent initialization. The vertical black line corresponds to
the predicted �0 = 1.0483 using Alg. 1. The empirical
�0 = 1.048.

VIB model trained at some high �2, if we anneal it down
to some much lower �1, what accuracy does the model
converge to? We estimated �0 = 1.0483 on a version of
CIFAR10 with 20% label noise using Alg. 1. The low-
est � with performance above chance was � = 1.048,
a very tight match with the estimate from Alg. 1. See
Appendix K.3 for details.

7 CONCLUSION

In this paper, we have presented theoretical results for
predicting the onset of learning, and have shown that it is
determined by the conspicuous subset of the training ex-
amples. We gave a practical algorithm for predicting the
transition as well as discovering this subset, and showed
that those predictions are accurate, even in cases of ex-
treme label noise. We believe these results will provide
theoretical and practical guidance for choosing � in the
IB framework for balancing prediction and compression.
Our work also raises other questions, such as whether
there are other phase transitions in learnability that might
be identified. We hope to address some of those ques-
tions in future work.
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