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Abstract

We study data-driven assistants that provide
congestion forecasts to users of shared facili-
ties (roads, cafeterias, etc.), to support coordi-
nation between them, and increase efficiency
of such collective systems. Key questions are:
(1) when and how much can (accurate) predic-
tions help for coordination, and (2) which as-
sistant algorithms reach optimal predictions?
First we lay conceptual ground for this set-
ting where user preferences are a priori un-
known and predictions influence outcomes.
Addressing (1), we establish conditions under
which self-fulfilling prophecies, i.e., “perfect”
(probabilistic) predictions of what will happen,
solve the coordination problem in the game-
theoretic sense of selecting a Bayesian Nash
equilibrium (BNE). Next we prove that such
prophecies exist even in large-scale settings
where only aggregated statistics about users
are available. This entails a new (nonatomic)
BNE existence result. Addressing (2), we pro-
pose two assistant algorithms that sequentially
learn from users’ reactions, together with op-
timality/convergence guarantees. We validate
one of them in a large real-world experiment.

1 INTRODUCTION

Data-driven interventions on social and economic sys-
tems are on the rise, but it remains a challenge to under-
stand when and how they can improve such systems in
terms of peoples’ actual utilities. Here we consider cen-
tral predictive coordination assistants, that, in the sim-
plest case, work as follows: The assistant provides a
congestion forecast A to users of some facility, based on
past observations. The users trust A to be a good fore-
cast, and individually optimize their facility use based
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Figure 1: Example of A ∈ R18, the assistant’s (point)
forecast, and outcome Y ∈ R18, in our cafeteria experi-
ment (A updated between but not within days, Section 6).

on it, e.g., their arrival time slot, to coordinate and avoid
crowds. Thereby they generate an observable outcome
Y , which A is a forecast for. In particular, forecast A
influences outcome Y . Versions of such assistants exist
for roads, trains, swimming pools, etc. [Google, 2019,
ASFA, 2019, DB, 2019], or, in our experiment, a cafete-
ria, see Figure 1.

Main goals and contributions: We aim at (1) under-
standing to what extent optimally accurate assistant pre-
dictions can help coordination between users (Goal 1),
and (2) designing sequential assistant algorithms that
achieve optimal predictions (Goal 2). Our contributions:

• Introducing new concepts for this setting, we analyze
when the assistant achieving a “perfect” (probabilistic)
prediction A of Y , i.e., a “self-fulfilling prophecy”, is
equivalent to “solving” coordination in the sense of se-
lecting a Bayesian Nash equilibrium (BNE) (Theorem 1).

• We establish conditions under which such a prophecy
exists even in large-scale settings with only population-
level aggregated user data (Theorem 2), using the Leray-
Schauder-Tychonoff fixed point theorem. This entails a
new nonatomic game BNE existence result (Corollary 3).



• We propose learning assistant Algorithms 1 and 2
(controllers), for large-/small-scale settings, with opti-
mality/convergence guarantees (Propositions 1 and 2).

• We report positive evaluation of Algorithm 1 in a
large-scale real-world cafeteria experiment (Section 6).

Overview over closest related research: Within game
theory, dynamics/equilibria of agents are studied that
learn about each other by repeatedly interacting, but
without central assistant [Shoham and Leyton-Brown,
2008]. Besides this, the following game-theoretic work
usually assumes that agents reason fully rationally based
on their own a priori given beliefs about other agents,
instead of using a predictive assistant informed by past
behavioral data: Congestion games [Nisan et al., 2007]
formalize coordination in certain shared facilities. (Al-
location) mechanisms are designed [Nisan et al., 2007]
that maximize social welfare (which is defined in terms
of agent’s a priori unknown preferences), in spite of
agents being self-interested, by using incentives. Un-
like our assistant, these mechanisms often fully control
the outcome. And we consider “solving coordination” in
game-theoretic (equilibrium selection) rather than in so-
cial welfare terms. Beyond game theory, certain smart
cities research [Mareček et al., 2015] uses a control-
theoretic approach for congested facilities, but they fix
an objective that does not in general account for users’
individual, a priori unknown preferences. For further re-
lated work, see Section 7, and Section B in [Geiger et al.,
2019] (the extended version of this paper).

2 PRELIMINARIES AND SETTING

Notation: For a vector b, bi or [b]i is the i-th compo-
nent, b−i means dropping bi, and (bi, b−i) reads b. For a
variable Z, rangeZ denotes the (implicitly given) range.

2.1 General setting and assistant-based system

Let us first introduce the general users’ decision problem.
We leave it fairly abstract so that later on we can consider
different forms of decision making scenarios based on it.

Setting 1 (General (one-stage) setting). There is a finite
set K = {0, . . . , |K| − 1} of slots1, and a set I , inter-
preted as users (here and in Section 3.2) or types of users
(in Section 3.3), respectively. Each user i ∈ I:

• receives a (private) signal Wi,

• as (private) action Bi chooses a slot in K, and

• experiences (private) utility Ui he wants to maximize.

Let W = (Wi)i∈I , B = (Bi)i∈I and U = (Ui)i∈I . Be-

1K can be e.g., several facilities, or time slots in one facility.
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Figure 2: (Causal) diagram of the assistant-based sys-
temM (without U ). The dashed gray arrows indicate the
dynamic extension M dyn we will introduce in Section 4.

sides the private signals, there is a publicly available sig-
nal V , and some underlying (latent) stateX . And there is
a publicly observable outcome Y = Ȳ (X,B), for some
function Ȳ .2 We assume there is a “true” distribution
P (X,V,W ). If not stated otherwise, we assume that all
users i are inference-assistable, i.e.,

Ui = Ũi(Wi, Bi, hi(Ȳ (X,B))), (1)

for (continuous) functions Ũi, hi such that
hi(Ȳ (x, (bi, b−i))) does not depend on bi, for all
b, x.3 And let all users i be assistant-separable, i.e.,
hi(Y ) ⊥⊥ Wi|V (for any possible mechanism that
generates B from V,W ).4

Setting 1 leaves open how users reason/decide. Our main
object of study is a system that enriches this setting: user
i choosesBi that maximizes her expected utility, given Y
is distributed according to a central assistant’s forecast:

Definition 1 (Assistant-based systemM ). Based on Set-
ting 1, or any restricted version, let the assistant-based
(one-stage) systemM be defined by the following objects
and assumptions additional to Setting 1, as depicted by
the (causal) Bayes net [Pearl, 2000] in Figure 2: There is
an assistant that takes public signal V as input and out-
putsA, a probabilistic forecast for the public outcome Y ,
based on policy π, i.e., A = π(V ). That is, A is a dis-
tribution over Y (later we also consider point forecasts).

2This models the fact that actions B may no be observed
publicly, but just, say, some stochastic aggregation of them.

3The intuition behind this constraint on the utility functions
is that users’ decision making can be discerned into (1) an opti-
mization performed by the users and (2) the task of predicting
Y which can be “outsourced” to an assistant.

4This means, roughly, that the users do not know more
about each other than is contained in the public V .



User i ∈ I takes forecast A (besides her private signal
Wi) as input, and acts assistant-best-respondingly, i.e.,

Bi ∈ arg max
b′i

EY ′∼A(Ũi(Wi, b
′
i, hi(Y

′)) (2)

(breaking ties via K). A joint PM (X,V,W,A,B, Y, U)
is induced by all the above (measurable) equations and
P (X,V,W ). We may write PM,π and EM,π to make the
dependence on π explicit. Y is observed, but the spe-
cific P (X,V,W ) and Ũi’s are a priori unknown, and
X,W,B and utilities U are unobserved by the assistant.

2.2 Game-theoretic tools to characterize efficiency

We want to analyze the degree of efficiency that
assistant-based coordination can achieve. For this, we
now define what a “solution” of the coordination prob-
lem would be (a BNE), accounting for users’ prefer-
ences. This is based on an idealized, assistant-free ver-
sion of Setting 1 (a Bayesian game), where users i have
informed priors and unlimited inference abilities them-
selves, using Wi and V as input. Then, for any user be-
havior that arises in the assistant-based system, we can
check if it is (or rather: corresponds to) such a solution.
For background on game theory and the Bayesian game
definition we use, see Section A in [Geiger et al., 2019].
Definition 2 (Benchmark (assistant-free) game G).
Based on Setting 1, or any restriction of it, let the bench-
mark game G be defined as the Bayesian game canon-
ically associated to this setting: Each user i ∈ I is a
player who has: signal (Wi, V ) ∈ range(Wi,V ), (mea-
surable) utility function range(X,Wi,B) → R given by
Eq. 1, and action Bi ∈ K. The utility functions are com-
mon knowledge and P (X,V,W ) is the common prior.

As usual, a (pure) strategy profile for G is a tuple
s = (si)i∈I of (measurable, pure) strategies si :
range(Wi,V ) → K5, i ∈ I . A strategy profile s is a
Bayesian Nash equilibrium (BNE) of G, if

si(wi, v) ∈ arg max
bi

EG,(bi,s−i)(Ui|wi, v), (3)

for (almost) all i, wi, v; with Ui as in Eq. 1, and
EG,(bi,s−i) the expectation under PG,(bi,s−i)(X, . . . , U)
obtained by “plugging” strategy profile (bi, s−i) into
game G (bi here means the constant strategy).6 We call
the BNE strict if the argmax is unique.

To relate M to G, given an assistant policy π of the
assistant-based system M , we define the corresponding
strategy profile sπ by the composition of π and users’
subsequent (deterministic) “best-response” action, i.e.,

[sπ]i(wi, v) := EM,π(Bi|wi, v), for all i, wi, v. (4)

5I.e., the strategy si maps player i’s signal to her action
6I.e., each player’s strategy is a best response to the others.

Conversely, given a strategy profile s of the benchmark
game G, we define the corresponding assistant policy7

πs(v) := PG,s(Y |v), for all v. (5)

2.3 Objective functions

We consider the following two objective functions for the
assistant’s policy π, where, as we will see, the former can
be seen as a directly measurable “proxy” to the latter:

• (probabilistic) prediction accuracy objective (loss):

Lpred
π := E (d (PM,π (Y |V ) , π (V ))) , for all π, (6)

with d(·, ·) some arbitrary but fixed statistical distance
which is 0 iff both distributions coincide;

• equilibrium selection objective8: π is optimal iff the
corresponding strategy profile sπ (Eq. 4) is a BNE of the
benchmark game G.

We call a policy π that tries to optimize Lpred
π loosely a

(predictive coordination) assistant, and a π that achieves
Lpred
π = 0 a (formally) self-fulfilling prophecy (policy).

3 THE UTILITY OF PREDICTIONS
FOR COORDINATION – ANALYSIS

In this section, we pursue the following goal, for which
the one-stage setting we introduced in Section 2 is suffi-
cient (we will introduce a repeated version in Section 4).

Goal 1. Understand the conditions when, and the degree
to which, assistants, that achieve π ∈ arg maxπ′ L

pred
π′ ,

help solve the problem of coordination between users of
facilities (here: in terms of equilibrium selection).

3.1 Characterization step in general setting

Theorem 1 (Self-Fulfilling Prophecy Characterization).
We have, in the general setting (Setting 1, with all users
being inference-assistable and assistant-separable):

• If the assistant policy π in the assistant-based system
M (where all users are assistant-best-responding) is a
self-fulfilling prophecy (i.e., Lpred

π = 0), then the corre-
sponding strategy profile sπ is a Bayesian Nash equilib-
rium (BNE) of the benchmark game G.

• Conversely, if the strategy profile s is a strict BNE of
the benchmark gameG, then the corresponding assistant
policy πs is a self-fulfilling prophecy.

7I.e., the assistant as forecast takes the distribution of out-
come Y = Ȳ (X,B) given V = v, under G, s.

8Equilibrium selection is a game-theoretic formulation of
solving coordination [Nisan et al., 2007]. Clearly, equilibria
can still be inefficient in terms of social welfare, see Section 7.



The proof is in Section D.1 in [Geiger et al., 2019]. Since
in Section 2 we were very brief regarding some of the
(measurability) assumptions and definitions underlying
the theorem, we give a detailed elaboration of these as-
sumptions and definitions, and their soundness, in Sec-
tion C in [Geiger et al., 2019]. For a justification of some
of the theorem’s assumptions see Section 7. Note that
Setting 1 is formulated pretty generally: the slots K can
be any set of options the users have. K can be time slots
in one shared facility, like a road section; or K can be
several facilities that provide the same service, say civil
offices in a city; or it can be a combination, i.e., time
slots in several facilities. (Our “slot” is similar to “facil-
ity”, or, to some extent, “feasible combination of facil-
ities”, in congestion games.) The main limitation may
be seen in the assumptions of inference-assistability and
assistant-best-responding, saying that users can mean-
ingfully evaluate the utility of their choices based on only
Y , which A is a forecast for.

3.2 Existence step in small-scale setting

In Theorem 1, we characterized the type of solution (a
BNE of game G) that is implemented by the assistant-
based system (with significantly lower requirements on
users’ knowledge/inference capacities than in the game
G), if the assistant reaches a self-fulfilling prophecy pol-
icy (“characterization step”). We established this result
for the general setting (Setting 1). As second step to-
wards Goal 1, it remains to understand when such a self-
fulfilling prophecy exists (“existence step”). This second
step we perform separately for two instructive subset-
tings of the general setting, which are each still reason-
ably general. As a warm-up exercise, we start in a setting
where we can easily build on game-theoretic results – be-
cause it corresponds to a classical finite Bayesian game.

3.2.1 Introducing the setting

Setting 2 (Small-scale setting). As a restricted form
of Setting 1, consider the following small-scale setting:
I = {1, . . . , n} is finite and we interpret its elements
here as users (not types), and the individual actions of the
users are directly publicly observable, i.e., Y = B, and
hi(B) = B−i in Eq. 1. X,V,W all have finite range.

We may writeM small andGsmall to denote assistant-based
system (Definition 1) and benchmark game (Definition
2), respectively, canonically associated to this particular
small-scale setting.

Corollary 1. Setting 2 is a special case of Setting 1. In
particular, it satisfies the conditions of Theorem 1 and
hence the theorem’s implications hold for M = M small

and G = Gsmall.

3.2.2 Self-fulfilling prophecy existence

To understand the conditions under which a self-fulfilling
prophecy exists, based on the second part of Theorem 1
(or rather: Corollary 1) it is enough to understand when a
strict BNE ofG exists. But in the current small-scale set-
ting, G = Gsmall is the classical finite (Bayesian) game,
which is well understood. For example, Harsanyi [1973,
Theorems 3, 4] showed that when assuming that the play-
ers’ utilities are contaminated by a small additive noise,
then there exists a strict equilibrium with probability one.
Furthermore, Bilancini and Boncinelli [2016] establish
conditions under which all BNE are (essentially) strict,
which entails existence of such strict BNE when com-
bined with general BNE existence results.

3.3 Existence step in large-scale setting

While the above small-scale setting is easy to under-
stand, it has significant limitations: first, the users’ ac-
tions B have to be fully observable for the (loss Lpred of
the) assistant, which is often impossible due to data pri-
vacy regulations; and second, there has to be a fixed set
of unique users, while in practice the set of users may
change of course. Therefore we perform the second step
towards Goal 1 also for the following large-scale setting
(again a subsetting of the general setting of Section 2,
different from the small-scale setting). It corresponds to
nonatomic games [Schmeidler, 1973], and is mathemat-
ically more involved, but abstracts away from individual
users and in particular only requires a cross-user aggre-
gate of actions to be publicly observed.

3.3.1 Introducing the setting

Setting 3 (Large-scale setting). As a restricted form of
Setting 1, consider the following (aggregated) large-scale
setting:

• For simplicity, we assume there are only two slots,
K = {0, 1}, and that V,W are constant.9 We assume
I = [0, 1] with the Borel sets as σ-algebra I, and inter-
pret i ∈ I as a type of user with a certain form of utility
function and private signal (similar as Kim and Yannelis
[1997]). Let rangeB (i.e., the set of possible joint user
actions (Bi)∈I ) be the set of {0, 1}-valued Lebesgue-
measurable functions on I .

• Let rangeY1
= [0, 1] and Y1 :=

∫
Bir(i|X)di, for

(r(·|x))x∈rangeX a family of continuous (Lebesgue) den-
sities on (I, I), continuous also in x. And let Y0 :=
1 − Y1. The interpretation is that Y1 is the fraction of
users that choose slot 1, i.e., a (stochastic) aggregate of

9We will prove the main results, Theorem 2, for an arbitrary
number |K| of slots though. The extension to stochastic V,W
is less obvious due to measure-theoretic issues.



B, and Y0 is the remaining amount of users, that choose
slot 0. Since Y = (Y0, Y1) is fully parameterized by
Y1, from now on we consider Y to be 1-dimensional and
stand for Y1.

• Regarding users i ∈ I and utilities, let hi (Eq. 1) be
the identity, and let (i, y) 7→ Ũi(k, y) be a polynomial in
i, y, for all k ∈ K (we dropped Wi, hi from the general
Ũi, Eq. 1). This means, in particular, that the utilities
only depend on the amount of users at the various slots,
not on their identities. For any k 6= l ∈ K, let Ũi(k, y)−
Ũi(l, y) =

∑
m i

mqm(y) be such that, for at least one
m ≥ 1, qm(y) is nonzero and constant in y.

Note that, while in practice of course the set of (si-
multaneous) users and thus also (simultaneous) types
of users is finite, having I = [0, 1] can be seen as an
approximation with nice theoretical properties to real
settings with many users. We may write M large and
Glarge to denote assistant-based system (Definition 1) and
benchmark game (Definition 2), respectively, for this
particular large-scale setting.10 Glarge can be seen
as an incomplete-information nonatomic game, related
to [Kim and Yannelis, 1997] but different in that our
state can have uncountable range, see also Section B in
[Geiger et al., 2019].11 For the sake of completeness, let
us formally state a version of Theorem 1 for this setting,
proved in Section D.2 in [Geiger et al., 2019].

Corollary 2. Setting 3 is a special case of Setting 1. In
particular, it satisfies the conditions of Theorem 1 and
hence the theorem’s implications hold for M = M large

and G = Glarge.

3.3.2 Self-fulfilling prophecy existence

In contrast to the small-scale setting, for the large-scale
setting and the corresponding benchmark game Glarge

there is less established work that helps to understand
existence of a self-fulfilling prophecy policy. Intuitively,
a key question in this large-scale setting is: can a forecast
that only forecasts an aggregate of the users’ actions (the
Y of Setting 3) actually be a self-fulfilling prophecy and
thus help for coordination? For instance, as observed by
Mareček et al. [2016], if the population of users is com-
pletely homogeneous, they will all respond in the same
way upon receiving the same input, making coordination
difficult. Here is our answer for this question – the sec-
ond of our two main theoretical results.

10In the assistant-based system M large, let rangeA be the set
of Borel measures on [0, 1], since A is a probabilistic forecast
for Y (= Y1).

11The distribution over the types (which is not to be in-
terpreted as a probability – rather as one actual realization)
is random, turning it into an incomplete-information setting.
The name “nonatomic” comes from the fact that one considers
nonatomic measures on the type space I = [0, 1].

Theorem 2 (Large-Scale Self-Fulfilling Prophecy Exis-
tence). There exists a self-fulfilling prophecy policy π in
the assistant-based system M large (in Setting 3).

This implies, based on Corollary 2:

Corollary 3 (Large-Scale Bayesian Nash Equilibrium
Existence). The benchmark game Glarge (for Setting 3)
has a Bayesian Nash equilibrium (BNE).

Proof idea and interpretation: The proof of Theorem
2, which is given in Section D.3 in [Geiger et al., 2019]
for an arbitrary number of slotsK, is based on the Leray-
Schauder-Tychonoff fixed point theorem, harnessing the
compactness of the set of Borel measures, rangeA, under
a weak topology. The most important implication of the
theorem is that minπ L

pred
π = 0. And therefore, together

with the first step in the form of Theorem 1, it shows that
an assistant that only forecasts an aggregate can nonethe-
less, when it achieves its optimum, help “solve” the co-
ordination problem – select a BNE. The intuition behind
the assumptions is that types and their utility functions
have to be diverse. Corollary 3 can be seen as stand-
alone, purely game-theoretic result for Glarge.

3.3.3 An instructive linear special case

Let us consider a simple special case of the large-scale
setting (which is not central to understand the rest of the
paper and can be skipped). On the one hand, this helps to
get an intuition for Theorem 2, on the other hand this will
justify assumptions we will make in the analysis of our
algorithm in Section 5.1. Assume the utility Ũi(k, y) of
Setting 3 is linear in i, y for all k ∈ K (making the users
“risk-neutral”). So Ũi(1, y)− Ũi(0, y) = i+ϕy+χ, for
ϕ, χ ∈ R. Let r(i|x) := 1

2δ [x−δ ≤ i ≤ x+δ], i ∈ I, x ∈
rangeX , with [·] the Iverson bracket (i.e., density of the
uniform on [x − δ, x + δ]), and let PX be the uniform
on [δ, 1 − δ]. Then the value of Y as a function of A =
a,X = x is, for H the Heaviside function, given by∫

H

(∫
Ũi(1, y)− Ũi(0, y)da(y)

)
r(i|x)di (7)

=

∫
H (i+ ϕEY ′∼a(Y ′) + χ) r(i|x)di (8)

=
ϕ

2δ
EY ′∼a(Y ′) +

1

2δ
x+

δ + χ

2δ
, (9)

for x − δ ≤ −ϕEY ′∼a(Y ′) − χ ≤ x + δ, and 0 or 1,
respectively, otherwise – a piece-wise linear function in
EY ′∼a(Y ′), x.

First, this shows that under the mentioned assump-
tions, Y (and its distribution) only depends on the mean
EY ′∼a(Y ′), but no other properties of a. In particular,
Lpred
π = 0 iff Lpoint

π′ = 0, for π an appropriate probabilis-



tic extension of π′, and

Lpoint
π′ := EM,π′

(
‖A− E(Y |V )‖22

)
(10)

a point prediction version of the probabilistic predic-
tion accuracy loss Lpred

π .12 This justifies for the assis-
tant to provide point forecasts under the above assump-
tions. Second, this justifies a (locally) linear model for
Y in (EY ′∼a(Y ′), x) and noise. Note that Theorem 2 re-
stricted to this simple linear case is immediate based on
the intuitive fact that a generic linear function has a fixed
point.

4 SETTING FOR ALGORITHM PART –
CONTROL DYNAMICS

To prepare the algorithm part of the paper, let us extend
the general one-stage setting (Setting 1) and the assistant-
based one-stage system (Definition 1) to a general dy-
namic setting and an assistant-based dynamic system
M dyn, respectively, in the following “natural” way. This
directly implies also dynamic extensions of small-scale
and large-scale setting (Settings 2 and 3) and the corre-
sponding assistant-based systems (we do not introduce
explicit symbols for them though).

The dynamic extensions consists of N copies of the one-
stage versions, called stages/repetitions. We denote vari-
ables, say A, in the t-th repetition by At, t ∈ N. Fur-
thermore, the dynamic extensions contains the following
equations that replace/extend the ones of repetition t –
think of it as a form of feedback control model, a partially
observable Markov decision process (POMDP) [Sutton
and Barto, 1998] (from the perspective of the assistant):

Xt = X̄(Xt−1, Et) (11)

At = π(V 0:t, A0:t−1, Y 0:t−1), (12)

withEt independent stochastic error terms, (measurable)
function X̄ , and (measurable) dynamic assistant policy
π.13 The gray, dashed arrows of Figure 2 indicates this
dynamic extension. Regarding the assistant’s objectives,
let Lt,pred, Lt,point be defined similarly as Lpred, Lpoint, but
additionally conditioning on the observed past:

Lt,pred
π =EM,π

(
d
(
PM,π

(
Y t|A0:t−1, V 0:t, Y 0:t−1

)
, At
))
,

(13)

12The reason why we take this definition of Lpoint
π instead of,

say, some form of “E((At − Y t)2|V )”, is because the (distri-
bution of) Y depends on A. And it may happen that the latter
quantity, which is some form of “variance” that depends on the
distribution of Y , is lower for a non-fixed point A than for a
fixed point A, which would hurt the relation to equilibrium se-
lection. A similar reason underlies our definition of Lpred

π .
13A0:t−1 means A0, . . . , At−1; similarly for other variables.

for all π, and similarly Lt,point
π . Remember: stage t must

not be confused with (time) slot k within one stage. To
motivate the algorithmic part below, let us give two ex-
amples of naive dynamic assistant policies that fail.

Example 1 (Naive assistant yields oscillation). Con-
sider a toy scenario of two users, i = 1, 2, two slots,
K = {0, 1}, W,V,X constant, and (0, 1) and (1, 0)
the (pure) Nash equilibria of the induced complete-
information benchmark game. For simplicity, let B be
directly observed (Y = B), let A be a point forecast.
As usual, assume each day t both users best-respond
to At. The assistant starts with, say, A0 = (0, 0)
and then, naively, each day takes yesterday’s outcome
Bt−1 as forecast for today, At. It is easy to see that
this will lead to an overshooting and oscillating system
B0 = (1, 1), B1 = (0, 0), B2 = (1, 1), . . . (called flap-
ping by Mareček et al. [2015]).

Example 2 (“I.i.d.” assistant is sub-optimal). Classical
forecasting applied to the sequence B1, B2, ... from Ex-
ample 1 would yield the empirical distribution P (B =
b) = 1

2 (δ(0,0),b + δ(1,1),b), with δ the Dirac delta, as
optimal probabilistic forecast At – under some station-
arity assumption. But the actual best forecast would be a
Dirac delta on one of the two Nash equilibria (0, 1) and
(1, 0) (Theorem 1; we ignore mixed equilibria here).

5 PREDICTIVE ASSISTANT
ALGORITHMS WITH GUARANTEES

In the first part, we analyzed conditions under which pre-
dictive assistants help coordination (in terms of the equi-
librium selection objective, Section 2.3), if they manage
to optimize prediction accuracy, leaving open the “how”.
Therefore, as second part of the paper, we address:

Goal 2. Design algorithms for the assistant policy π in
the dynamic assistant-based system M dyn that optimize
prediction accuracy Lt,pred (and asymptotically select an
equilibrium, if possible), learning from past interactions.

We will consider dynamic versions of the two settings
for which we established in Section 3 that predictions
can help coordination: large-scale setting (in Section 5.1)
and small-scale setting (in Section 5.2). For each set-
ting, we propose an assistant algorithm π, and provide a
theoretical analysis of its dynamics/convergence. A uni-
fying idea behind both algorithms is that they mitigate
certain bad user behavior, e.g., “overshooting” due to too
many users jumping to the same purportedly “good” slot,
helping convergence to a Nash equilibrium (of the stage
benchmark game). Recall that users’ utilities (functions)
are hidden from the assistant (Definition 1), so the assis-
tant’s inference (about the equilibrium) is mainly based
on behavioral data of how users react to forecasts.



Algorithm 1: Expodamp (large-scale setting)

1 Input: parameter: α
2 for each stage t ≥ 1 do
3 Input: At−1, Y t−1

4 Output: At := At−1 + α(Y t−1 −At−1)

5.1 Expodamp for large-scale setting

Consider the dynamic large-scale setting14 (Section 4)
and let A be a point forecast for Y , i.e., rangeA =

rangeY , and consider Lt,point
π as loss (dynamic version

of Eq. 10, as described in Section 4). Recall that in Sec-
tion 3.3.3 we gave conditions that justify this point pre-
diction approach.

We propose Expodamp as described in Algorithm 1 as
the assistant’s dynamic policy π. The intuition behind
Expodamp is that this formula can dampen oscillations
due to “overshooting” user behavior (Example 1) but it
can also accommodate for non-stationarities in user pref-
erences. These intuitions will be made rigorous in the
proposition below.15

Assumption 1. Let the following equations hold for the
dynamic assistant-based system M dyn, t ≥ 1:

Xt = Xt−1 + EtX , (14)

Y t = βAt + γXt + EtY , (15)

withEtX , E
t
Y noise terms that are independent of the past

and each other. (This is a state-space model known from
the Kalman filter [Lütkepohl, 2006].)

Recall that in Section 3.3.3 we gave conditions, in the
large-scale setting, that justify the linearity in Assump-
tion 1 (note that the X in Assumption 1 would corre-
spond to a parameter of the distribution of X rather than
to X itself in Section 3.3.3, but we neglect this detail for
simplicity of notation). Also note that Assumption 1 is
a linear approximation which facilitates the theoretical
analysis but comes at the cost of a mismatch to the actual
setting: (Y t)t∈N in Assumption 1 can leave [0, 1] in the
long run, so the model should rather be seen as a local
approximation. Note that, due to convexity, Expodamp
will always output At ∈ [0, 1] upon Y t−j ∈ [0, 1], j ≥ 1
though. Keep in mind that the fixed point (self-fulfilling
prophecy) of the linear function a 7→ βa+ γx (ignoring

14In particular, Y is considered 1-dimensional (since Y1 de-
termines Y0). The extension to more slots is straight forward.

15The formula in Algorithm 1 is a case of a so-called expo-
nential smoothing method [Hyndman et al., 2008]. However,
so far (to the best of our knowledge) it has only been applied to
classical forecasts that do not influence the outcome. In a sense,
we generalize the established method to this new setting.

the noise term) is γ(1− β)−1x (exists whenever β 6= 1).
In particular, if β = (1 − γ), then the fixed point (cor-
responding to the self-fulfilling prophecy/BNE) is x. We
can give the following guarantees, for which we prove a
generalization16in Section E.1 in [Geiger et al., 2019].

Proposition 1 (Optimality and Convergence Rate of Ex-
podamp). In the dynamic large-scale setting (Section 4),
let Assumption 1 hold true. Let the assistant’s policy π
be Expodamp (Algorithm 1).

• Stochastic case: In Expodamp, let α := (1− β)−1 for
the true β of Eq. 15. Assume EtY = 0, t ≥ 1. Then, at
each stage t, Lt,point = 0 and

At= arg min
a′

E
(
‖At−Y t‖22 | At=a′, A0:t−1, Y 0:t−1

)
.

(16)

• Deterministic case: Assume that Xt = x is constant,
that β = (1− γ) and that EtX = EtY = 0. Then

Y t = x+ (1− γ)(A0 − x)(1− αγ)t, for all t ≥ 0.

That is, Y t converges exponentially with rate γα towards
the “optimum”/fixed point x (and thus alsoAt converges
to x based on Expodamp’s formula) if 0 < γα < 2.

When applying Algorithm 1 in practice, often one does
not know the parameter α a priori and has to infer it. As
a first approximation, it may be learned by naively fit-
ting Algorithm 1 to past observational data as if it were a
classical (non-influential) forecasting method [Hyndman
et al., 2008]. In principle however, without going into
detail, α rather has to be learned like a control policy,
based on how the environment responds to it.

5.2 Partpred for small-scale setting

While Expodamp is the main algorithm of this paper,
here we also provide a proof-of-concept algorithm for the
repeated small-scale setting (Section 4). Assume Xt to
be independent ofX1:t−1, i.e., the special case where the
Xt, t ∈ N are i.i.d. The algorithm, Partpred, is sketched
– for the case that V is constant – in Algorithm 2, and
fully described in Section E.2 in [Geiger et al., 2019].

The basic idea is as follows: as long as there is (sig-
nificant) uncertainty about where the optimum (self-
fulfilling prophecy/BNE) would be, the algorithm tries
to make a prediction that is at least partially correct (i.e.,
makes the correct prediction at least w.r.t. the behavior
of one player). The algorithm combines ideas from best-
response dynamics and congestion games [Roughgar-
den, 2016] with random exploration whenever the best-
response dynamics would cycle. Let Ā be the (finite)

16It is formulated slightly cleaner, using the do-operator.



Algorithm 2: Partpred (small-scale; sketch)

1 Input: parameters: Ā, r; initialization: a ∈ Ā
2 For r steps, output A = a and sample B. Let P̂ ra

be the resulting empirical distribution of B.
3 Let a′ := arg mina′′∈Ā ‖a′′ − P̂ ra‖. Let a′′ be

obtained by only taking over a subset of best
responses from a and a′ such that a′′ is a
correct forecast at least w.r.t. some users

4 if a′′ = a then
5 Keep outputting a forever
6 else if a′′ and all other a′ ∈ Ā have been tried r

times then
7 Set a′′ := arg mina′ ‖a′ − P̂ ra′‖
8 Keep outputting a′′ forever
9 else if a′′ has been tried r times then

10 Pick unused a′′ ∈ Ā at random
11 Set a = a′′ and jump to line 2

set of all distributions PG,s(B) that arise from (deter-
ministic) strategy profiles s of Gsmall. For simplicity, we
assume Ā to be given, but in a next step this could be in-
ferred as well. We give the following guarantee, sketched
for V constant, whose general version is proved in Sec-
tion E.2 in [Geiger et al., 2019].

Proposition 2 (Convergence of Algorithm 2 (Sketch)).
In the setting described above, assume Gsmall has a strict
BNE. Let the assistant’s policies πr, r ∈ N be given by
Algorithm 2, with parameter Ā as defined above. Then,
for any ε > 0, there exists R, T such that for all r >
R, t > T , it holds that P (Lt,pred

πr
= 0) > 1 − ε and

P (sπr
is a BNE of Gsmall) > 1− ε.

6 EXPERIMENT

Here we empirically evaluate Expodamp (Algorithm 1
for the large-scale setting) and a baseline.

Experimental setup: We conducted our experiment in a
real-world congested campus cafeteria with around 400
users per day. Here, observation [Y t]k is (a proxy to)
the number of people in the queue at time k of day t.17

The coordination assistant in this experiment is a web
app which provides the daily forecast (i.e., the forecast is
updated once per day, in the morning – more dynamic
versions are future work) to the cafeteria users, to in-
form their decisions in terms of when to go to the cafe-
teria. The web app is used by between 15 and 45 users
per day but may influence more (slightly deviating from
our model). Besides Expodamp (with parameter α tuned

17While our general considerations allow Y to be queue
length, in our large-scale setting the components of Y are the
slots, of which queue length is rather something like an integral.

no fore-
cast pub-

lished

web app announces
Expodamp’s forecast

to campus for 35d

web app announces
Average’s forecast
to campus for 35d

1st intervention 2nd intervention

Figure 3: Protocol of our real-world interventional ex-
periment in a large campus cafeteria; steps along Y-axis.

Method L̃t,point (MSE; Eq. 18)
Expodamp (Algorithm 1) 69.56
Average (baseline; Eq. 17) 74.25

Table 1: Evaluation shows that Expodamp has higher
prediction accuracy.

based on a previous observational sample), we evaluate
the baseline method Average defined by

at+1 :=
1

t

t∑
s=1

ys, t ≥ 2 (17)

(i.e., treating y1:t as purely observational i.i.d. sample).
Expodamp and Average are run as the policy that gener-
ates the forecast (which is then provided via the web app
to the users of the cafeteria), each for a period of T = 35
days. See Figure 3 for an illustration of the experimental
protocol. As metric, we use the mean squared error18

L̃t,point :=
1

T

T∑
t=1

‖at − yt‖22. (18)

The outcome is in Table 1, showing that Expodamp out-
performs Average in this experiment. For illustration, we
also show a sample of Expodamp’s output At and actual
outcome Y t, for one day t, in Figure 1.

7 REMARKS AND FURTHER
RELATED WORK

This section discusses additional aspects of the main re-
sults and further related work.

Why prediction accuracy / equilibrium selection as
objective. Alternative to our approach in this paper, one

18We use L̃t,point as a sample-level proxy for the population-
level loss Lpoint of Eq. 10. We conjecture that, under appropri-
ate assumptions related to Assumption 1, it can be shown that
the policy that is optimal under the former loss converges (say,
in probability) to a policy which is also optimal under the lat-
ter loss. The argument may build on the equivalence between
Lt,point = 0 and Eq. 16 in Proposition 1.



could start from some (somehow legitimized) social wel-
fare [Nisan et al., 2007] as a function of users’ prefer-
ences, and design assistants that try to optimize it. This
would be somewhat more in line with the economic no-
tion of optimizing efficiency. Here, we rather follow a
heuristic approach of starting with the “natural” predic-
tion accuracy objective, because it compares well to the
benchmark of equilibrium selection (Theorem 1), and for
the following reasons: First, prediction accuracy can be
directly measured, while social welfare seems hard to in-
fer/identify from the incomplete information contained
in the behavioral data available in our setting. Second, it
is easy to interpret for users and leads to a form of “in-
centive compatibility” of users’ assistant-best-response
(see remark below). Third, we feel that in our coordi-
native setting, equilibrium outcomes can be quite effi-
cient in terms of social welfare. Generally, social wel-
fare functions of course are hard to pick and impose in
the first place. Nonetheless, equilibrium outcomes can
of course be significantly inefficient, which has exten-
sively been studied under the name of price of anarchy
[Roughgarden, 2005, Nisan et al., 2007]. But even in this
regard, Theorem 1 can be helpful in that it makes predic-
tive assistant-based settings amenable to such studies.

Remarks on our model assumptions: To justify our as-
sumption of users “blindly” best-responding to the assis-
tant’s forecast (Definition 1) observe that it can be seen
as consistent with (instrumental) rationality19 in the fol-
lowing sense: if only considering the asymptotic utility
(once the assistant converged), then deviating from this
behavior means deviating from a BNE, based on Theo-
rem 1.20 Furthermore, all users best-responding simulta-
neously can sometimes be a too strong assumption, but
we feel that it is a situation that can happen (more or
less) at least sometimes, and therefore is worth analyzing.
This being said, the assistant-best-responding assump-
tion should be seen as a pragmatic first step that can be
refined in future work. Generally, Theorem 1 shows that
assistant-based systems can achieve coordination compa-
rable to the benchmark game (additionally, it serves as a
mechanism for equilibrium selection if there are several)
– but at a significantly lower cost, since the inference
task is centrally done by the assistant. (Obviously, it is
only cheaper when inference comes at a cost – otherwise
raw data V could simply be provided to users directly.)

Further general related work: Let us mention that for
the various versions of assistants we mentioned in Sec-

19In this work, we adopt the game-theoretic view of humans
in social situations as “selfish” agents maximizing exogenously
given individual utility functions. We feel this is appropriate for
our simple setting of facility use. But overall, decision making
in social systems has many more aspects of course.

20Nisan et al. [2011] studied rationality of best-response dyn.

tion 1 that are publicly available [Google, 2019, DB,
2019, ASFA, 2019], we could not find out what al-
gorithms or theory they rely on.21 Research-wise, in
mechanism design22, a related direction has been emerg-
ing that studies how to design the information structure
[Taneva, 2015, Bergemann and Morris, 2017] instead
of the allocation/payment structure. Furthermore, data-
driven approaches to mechanism design have gained mo-
mentum [Balcan et al., 2016, Duetting et al., 2019, Tang,
2017, Kearns et al., 2014]. But these lines of research
differ from ours – often additionally to what we already
mentioned in Section 1 (bounded rationality of our users
and limited power of our mechanism) as follows: ei-
ther they assume that agents input their (true, if “incen-
tive compatible”) preferences explicitly (instead of be-
havioral data), or they neglect, to some extent, agent’s
actual preferences (which can be appropriate for revenue
maximization of course).

8 CONCLUSIONS

In this work, we studied when and how parts of the co-
ordination process of users of shared facilities can be
“outsourced” to a central data-driven predictive assis-
tant. Our theoretical analysis showed that such assis-
tants can help solve the coordination problem in a game-
theoretic sense, but non-trivial conditions have to be met:
in terms of the information and preference structure of
users, and stochasticity of their preferences in case only
large-scale aggregated information is available to the as-
sistant. Based on this analysis, we proposed two machine
learning coordination assistant algorithms on behavioral
data. We used linear dynamical systems models to prove
their optimality/convergence, accounting for the fact that
there is a feedback loop from predictions to outcomes.
And we conducted a large-scale interventional experi-
ment in a real campus cafeteria that provided empirical
hints for the validity of our main algorithm.

Generally, the mentioned related work and our work in-
dicate that there is a plethora of possible computational
mechanisms for collective decision making, in terms
of inputs (high-level information, behavioral data, and
beyond) and influences (full control over the outcome,
money incentives, pure information/predictions, and be-
yond), many of which may still be unexplored.

Acknowledgments. The authors thank Carl-Johann
Simon-Gabriel, Jonathan Williams and Sebastian Stark
for insightful discussions and engineering support.

21Also note that some of them do not explicitly call the ser-
vice an “assistant” or a “forecast”.

22The analogy between our assistant and a mechanism is that
they are both “institutions” added to the set of agents to solve
some collective decision making problem.
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