
Block Neural Autoregressive Flow

Nicola De Cao
University of Edinburgh
University of Amsterdam

nicola.decao@uva.nl

Wilker Aziz
University of Amsterdam
w.aziz@uva.nl

Ivan Titov
University of Edinburgh
University of Amsterdam

ititov@inf.ed.ac.uk

Abstract

Normalising flows (NFs) map two density
functions via a differentiable bijection whose
Jacobian determinant can be computed effi-
ciently. Recently, as an alternative to hand-
crafted bijections, Huang et al. (2018) pro-
posed neural autoregressive flow (NAF) which
is a universal approximator for density func-
tions. Their flow is a neural network (NN)
whose parameters are predicted by another
NN. The latter grows quadratically with the
size of the former and thus an efficient tech-
nique for parametrization is needed. We
propose block neural autoregressive flow (B-
NAF), a much more compact universal ap-
proximator of density functions, where we
model a bijection directly using a single feed-
forward network. Invertibility is ensured by
carefully designing each affine transformation
with block matrices that make the flow autore-
gressive and (strictly) monotone. We compare
B-NAF to NAF and other established flows on
density estimation and approximate inference
for latent variable models. Our proposed flow
is competitive across datasets while using or-
ders of magnitude fewer parameters.

1 INTRODUCTION

Normalizing flows (NFs) map two probability density
functions via an invertible transformation with tractable
Jacobian (Tabak et al., 2010). They have been employed
in contexts where we need to model a complex density
while maintaining efficient sampling and/or density as-
sessments. In density estimation, for example, NFs are
used to map observations from a complex (and unknown)
data distribution to samples from a simple base distri-

bution (Rippel and Adams, 2013). In variational infer-
ence, NFs map from a simple fixed random source (e.g.
a standard Gaussian) to a complex posterior approxima-
tion while allowing for reparametrized gradient estimates
and density assessments (Rezende and Mohamed, 2015).

Much of the research in NFs focuses on designing ex-
pressive transformations while satisfying practical con-
straints. In particular, autoregressive flows (AFs) decom-
pose a joint distribution over y 2 R

d into a product of d
univariate conditionals. A transformation y = f(x), that
realizes such a decomposition, has a lower triangular Ja-
cobian with the determinant (necessary for application
of the change of variables theorem for densities) com-
putable in O(d)-time. Kingma et al. (2016) proposed in-

verse autoregressive flows (IAFs), an AF based on trans-
forming each conditional by a composition of a finite
number of trivially invertible affine transformations.

Recently, Huang et al. (2018) introduced neural autore-

gressive flows (NAFs). They replace IAF’s transforma-
tion by a learned bijection realized as a strictly mono-
tonic neural network. Notably, they prove that their
method is a universal approximator of real and con-
tinuous distributions. Though, whereas parametrizing
affine transformations in an IAF requires predicting d
pairs of scalars per step of the flow, parametrizing a
NAF requires predicting all the parameters of a feed-
forward transformer network. The conditioner network
which parametrizes the transformer grows quadratically
with the width of the transformer network, thus efficient
parametrization techniques are necessary. A NAF is an
instance of a hyper-network (Ha et al., 2017).

Contribution We propose block neural autoregressive

flows (B-NAFs),1 which are AFs based on a novel trans-
former network which transforms conditionals directly,
i.e. without the need for a conditioner network. To do
that we exploit the fact that invertibility only requires

1https://github.com/nicola-decao/BNAF

https://github.com/nicola-decao/BNAF

@yi/@xi > 0, and therefore, careful design of a feed-
forward network can ensure that the transformation is
both autoregressive (with unconstrained manipulation of
x<i) and strictly monotone (with positive @yi/@xi). We
do so by organizing the weight matrices of dense layers
in block matrices that independently transform subsets
of the variables and constrain these blocks to guarantee
that @yi/@xj = 0 for j > i and that @yi/@xi > 0.
Our B-NAFs are much more compact than NAFs while
remaining universal approximators of density functions.
We evaluate them both on density estimation and varia-
tional inference showing performance on par with state-
of-the-art NFs, including NAFs, IAFs, and Sylvester
flows (van den Berg et al., 2018), while using orders of
magnitude fewer parameters.

2 BACKGROUND

In this section, we provide an introduction to normalizing
flows and their applications (§ 2.1). Then, we motivate
autoregressive flows in § 2.2 and present the necessary
background for our contributions (§ 2.3).

2.1 NORMALIZING FLOW

A (finite) normalizing flow is a bijective function f :
X ! Y between two continuous random variables X 2

X ✓ R
d and Y 2 Y ✓ R

d (Tabak et al., 2010). The
change of variables theorem expresses a relation between
the probability density functions pY (y) and pX(x):

pY (y) = pX(x)
��detJf(x)

���1
, (1)

where y = f(x), and
��detJf(x)

�� is the absolute value of
the determinant of the Jacobian of f evaluated at x. The
Jacobian matrix is defined as

�
Jf(x)

�
ij

= @f(x)i/@xj .
The determinant quantifies how f locally expands or
contracts regions of X . Note that a composition of in-
vertible functions remain invertible, thus a composition
of NFs is itself a normalizing flow.

Density estimation In parametric density estimation,
NFs map draws from complex distributions to draws
from simple ones allowing assessments of a complex
likelihood. Effectively, observations x ⇠ pdata are mod-
eled as draws from an NF pX|✓ whose parameters ✓
are chosen to minimize the Kullback-Leibler divergence
KL(pdatakpX|✓) between the model pX|✓ and pdata:

H(pdata)� E pdata

⇥
log pY (f(x))

��detJf✓(x)

��⇤ , (2)

where H indicates the entropy. Minimizing such KL is
equivalent to maximizing the log-likelihood of observa-
tions (see Appendix A for details of such derivation).

Variational inference In variational inference for deep
generative models, NFs map draws from a simple density
qX , e.g. N (0, I), to draws from a complex (multimodal)
density qY |✓(y). The parameters ✓ of the flow are esti-
mated to minimize the KL divergence KL(qY |✓kpY) be-
tween the model qY |✓ and the true posterior pY :

E qX(x)

"
log

qX(x)
��detJf✓(x)

���1

pY (f✓(x))

#
, (3)

and note that this enables backpropagation through
Monte Carlo (MC) estimates of the KL.

Tractability of NFs When optimizing normalizing
flows with stochastic gradient descent, we have to eval-
uate a base density and compute the gradient with re-
spect to its inputs. This poses no challenge as we have
the flexibility to choose a simple density (e.g. uniform
or Gaussian). In addition, for every x (i.e. an observa-
tion in parametric density estimation (Equation 2) or a
base sample in variational inference (Equation 3)), the
term | detJf✓(x)| has to be evaluated and differentiated
with respect to the parameters ✓. Note that f✓(x) is re-
quired to be invertible, as expressive as possible, and
ideally fast to compute. In general, it is non-trivial to
construct invertible transformations with efficiently com-
putable | detJf✓(x)|. Computing the determinant of a
generic Jacobian Jf✓(x) 2 R

d⇥d runs in O(d3)-time.
Our work and current research on NFs aim at construct-
ing parametrized flows which meet efficiency require-
ments while maximizing the expressiveness of the densi-
ties they can represent.

2.2 AUTOREGRESSIVE FLOWS

We can construct f(x) such that its Jacobian is lower
triangular, and thus has determinant

Qd
i=1 @f(x)i/@xi ,

which is computed in time O(d). Flows based on au-
toregressive transformations meet precisely this require-
ment (Kingma et al., 2016; Oliva et al., 2018; Huang
et al., 2018). For a multivariate random variable X =
hX1, . . . , Xdi with d > 1, we can use the chain rule to
express the joint probability of x as product of d univari-
ate conditional densities:

pX(x) = pX1(x1)
dY

i=2

pXi|X<i
(xi|x<i) . (4)

When we then apply a normalizing flow to each univari-
ate density, we have an autoregressive flow. Specifically,
we can use a set of functions f (i) that can be decomposed
via conditioners c(i), and invertible transformers t(i):

yi = f (i)
✓ (xi) = t(i)✓ (xi, c

(i)
✓ (x<i)) , (5)

where each transformer t(i) must be an invertible func-
tion with respect to xi, and each c(i) is an unrestricted
function. The resulting flow has a lower triangular Ja-
cobian since each yi depends only on xi. The flow is
invertible when the Jacobian is constructed to have non-
zero diagonal entries.

2.3 NEURAL AUTOREGRESSIVE FLOW

The invertibility of the flow as a whole depends on each
t(i) being an invertible function of xi. For example, Dinh
et al. (2014) and Kingma et al. (2016) model each t(i)

as an affine transformation whose parameters are pre-
dicted by c(i). As argued by Huang et al. (2018), these
transformations were constructed to be trivially invert-
ible, but their simplicity leads to a cap on expressiveness
of f , thus requiring complex conditioners and a compo-
sition of multiple flows. They propose instead to learn a
complex bijection using a neural network monotonic in
xi — this only requires constraining t(i) to having non-
negative weights and using strictly increasing activation
functions. Figure 1a outlines a NAF. Each conditioner
c(i) is an unrestricted function of x<i. To parametrize
a monotonically increasing transformer network t(i), the
outputs of each conditioner c(i) are mapped to the pos-
itive real coordinate space by application of an appro-
priate activation (e.g. exp). The result is a flexible trans-
formation with lower triangular Jacobian whose diagonal
elements are positive.2

For efficient computation of all pseudo-parameters, as
Huang et al. (2018) call the conditioners’ outputs, they
use a masked autoregressive network (Germain et al.,
2015). The Jacobian of a NAF is computed using the
chain rule on f✓ through all its hidden layers {h(`)

}
l
`=1:

Jf✓(x) =
h
rh(l)y(

i h
rh(l�1)h(l)

i
. . .

h
rxh

(1)
i
. (6)

Since f✓ is autoregressive, Jf✓(x) is lower triangular and
only the diagonal needs to be computed, i.e. @yi/@xi

for each i. Thus, this operation requires only computing
the derivatives of each t(i), reducing the time complexity.

Because the universal approximation theorem for den-
sities holds for NAFs (Huang et al., 2018), increasing
the expressiveness of a NAF is only a matter of em-
ploying larger transformer networks. However, the con-
ditioner grows quadratically with the size of the trans-
former network and a combination of restricting the size
of the transformer and a technique similar to conditional

weight normalization (Krueger et al., 2017) is necessary
to reduce the number of parameters. In §3 we propose to

2Note that the expressiveness of a NAF comes at the cost
of analytic invertibility, i.e. though each t(i) is bijective, thus
invertible in principle, inverting the network itself is non-trivial.

(a) NAF: each c(i) is a neural network that predicts pseudo-
parameters for t(i), which in turns processes xi.

(b) Our B-NAF: we do not use conditioner networks, instead
we learn the flow network directly. Some weights are strictly
positive (solid lines), others have no constraints (dashed lines).

Figure 1: Main differences between NAF (Huang et al.,
2018) and our B-NAF. Both networks are autoregressive
and invertible since yi is processed with a function t(i)

which is monotonically increasing with respect to xi and
there is an arbitrary dependence on x<i.

parametrize the transformer network directly, i.e. with-
out a conditioner network, by exploiting the fact that the
monotonicity constraint only requires @yi/@xi > 0, and
therefore, careful design of a single feed-forward net-
work can directly realize a transformation that is both
autoregressive (with unconstrained manipulation of x<i)
and strictly monotone (with positive @yi/@xi).

3 BLOCK NEURAL
AUTOREGRESSIVE FLOW

In the spirit of NAFs, we model each f (i)
✓ (xi) as a

neural network with parameters ✓, but differently from
NAFs, we do not predict ✓ using a conditioner network,
and instead, we learn ✓ directly. In dense layers of f (i)

✓ ,
we employ affine transformations with strictly positive
weights to process xi. This ensures strict monotonic-
ity and thus invertibility of each f (i)

✓ with respect to
xi. However, we do not impose this constraint on affine
transformations of x<i. Additionally, we need to al-
ways use invertible activation functions to ensure that the
whole network is bijective (e.g., tanh or LeakyReLU).
Each f (i)

✓ is then a univariate flow implemented as an

arbitrarily wide and deep neural network which can ap-
proximate any invertible transformation. Much like other
AFs, we can efficiently compute all f (i)

✓ in parallel by
employing a single masked autoregressive network (Ger-
main et al., 2015). In the next section, we show how to
construct each affine transformation using block matri-
ces. From now on, we will refer to our novel family of
flows as block neural autoregressive flows (B-NAFs).

3.1 AFFINE TRANSFORMATIONS WITH
BLOCK MATRICES

For each affine transformation of x, we parametrize the
bias term freely and we construct the weight matrix
W 2 R

ad⇥bd as a lower triangular block matrix for some
a, b � 1. We use d ⇥ (d + 1)/2 blocks Bij 2 R

a⇥b

for i 2 {1, .., d} and 1  j  i. We let Bij (with
i > j) be freely parametrized and constrain diagonal
blocks to be strictly positive applying an element-wise
function g : R ! R>0 to each of them. Thus:

W =

2

6664

g(B11) 0 . . . 0
B21 g(B22) . . . 0

...
...

. . .
...

Bd1 Bd2 . . . g(Bdd)

3

7775
, (7)

where we chose g(·) = exp(·). Since the flow has to
preserve the input dimensionality, the first and the last
affine transformations in the network must have b = 1
and a = 1, respectively. Inside the network, the size of a
and b can grow arbitrarily.

The intuition behind the construction of W is that every
row of blocks Bi1, .., Bii is a set of affine transforma-
tions (projections) that are processing xi. In particular,
blocks in the upper triangular part of W are set to zero to
make the flow autoregressive. Since the blocks Bii are
mapped to R>0 through g, each transformation in such
set is strictly monotonic for xi and unconstrained on x<i.

B-NAF with masked networks In practice, a more
convenient parameterization of W consists of using a full
matrix Ŵ 2 R

ad⇥bd which is then transformed applying
two masking operations. One mask Md 2 {0, 1}ad⇥bd

selects only elements in the diagonal blocks, and a sec-
ond one Mo selects only off-diagonal and lower diagonal
blocks. Thus, for each layer ` we get

W (`) = g
⇣
Ŵ (`)

⌘
�M (`)

d + Ŵ (`)
�M (`)

o , (8)

where � is the element-wise product. Figure 1b shows
an outline of our block neural autoregressive flow.

Since each weight matrix W (`) has some strictly pos-
itive and some zero entries, we need to take care of a

proper initialization which should take that into account.
Indeed, weights are usually initialized to have a zero
centred normally distributed output with variance depen-
dent on the output dimensionality (Glorot and Bengio,
2010). Instead of carefully designing a new initializa-
tion technique to take care of this, we choose to initial-
ize all blocks with a simple distribution and to apply
weight normalization (Salimans and Kingma, 2016) to
better cope with the effect of such initialization. See Ap-
pendix C for more details.

When constructing a stacked flow though a composition
of n B-NAF transformations, we add gated residual con-
nections for improving stability such that the composi-
tion is f̂n � · · ·� f̂2 � f̂1 where f̂i(x) = ↵fi(x)+(1�↵)x
and ↵ 2 (0, 1) is a trainable scalar parameter.

3.2 AUTOREGRESSIVENESS AND
INVERTIBILITY

In this section, we show that our flow f✓ : R
d
! R

d

meets the following requirements: i) its Jacobian Jf✓(x)

is lower triangular (needed for efficiency in computing
its determinant), and ii) the diagonal entries of such Ja-
cobian are positive (to ensure that f✓ is a bijection).
Proposition 1. The final Jacobian Jf✓(x) of such trans-

formation is lower triangular.

Proof sketch. When applying the chain rule (Equation 6),
the Jacobian of each affine transformation is W (Equa-
tion (8), a lower triangular block matrix), whereas the
Jacobian of each element-wise activation function is a di-
agonal matrix. A matrix multiplication between a lower
triangular block matrix and a diagonal matrix yields a
lower triangular block matrix, and a multiplication be-
tween two lower triangular block matrices results in a
lower triangular block matrix. Therefore, after multiply-
ing all matrices in the chain, the overall Jacobian is lower
triangular.
Proposition 2. When using strictly increasing activation

functions (e.g., tanh or LeakyReLU), the diagonal en-

tries of Jf✓(x) are strictly positive.

Proof sketch. When applying the chain rule (Equation 6),
the Jacobian of each affine transformation has strictly
positive values in its diagonal blocks where the Jacobian
of each element-wise activation function is a diagonal
matrix with strictly positive elements. When using ma-
trix multiplication between two lower triangular block
matrices (or one diagonal and one lower triangular block
matrix) C = AB the resulting blocks on the diagonal of
C are the result of a multiplication between only diago-
nal blocks of A,B. Indeed, such resulting blocks depend
only on blocks of the same row and column partition.
Using the notation of Equation 7, the resulting diagonal
blocks of C are B(C)

ii = g(B(A)
ii)g(B(B)

ii). Therefore,

they are always positive. Eventually, using the chain
rule, the final Jacobian is a lower triangular matrix with
strictly positive elements in its diagonal.

3.3 EFFICIENT JACOBIAN COMPUTATION

Proposition 1 is particularly useful for an efficient com-
putation of detJf✓(x) since we only need the product of
its diagonal elements @yi/@xi . Thus, we can avoid com-
puting the other entries. Since the determinant is the re-
sult of a product of positive values, we also remove the
absolute-value operation resulting in

log | detJf✓(x)| =
dX

i=0

log
�
Jf✓(x)

�
ii

. (9)

Additionally, as per Proposition 2, when using matrix
multiplication, elements in the diagonal blocks (or en-
tries) depend only on diagonal blocks of the same row
and column partition. Since all diagonal blocks/entries
are positive, we compute them directly in the log-domain
to have more numerically stable operations:

log
�
Jf✓(x)

�
ii
= log g(B(`)

ii) ?

log J
�(`)(h(`�1)

↵)
? · · · ? log g(B(1)

ii) ,
(10)

where ? denotes the log-matrix multiplication, �(`) the
strictly increasing non-linear activation function at layer
`, and ↵ indicates the set of indices corresponding to di-
agonal elements that depend on xi. Notice that, since
we chose g(·) = exp(·) we can remove all redundant
operations log g(·). The log-matrix multiplication C =
A ? B of two matrices A 2 R

m⇥n and B 2 R
n⇥p is

C 2 R
m⇥p where such operation can be implemented

with a stable log-sum-exp operation (see details in Ap-
pendix D):

Cij = log
nX

k=1

exp (Aik +Bkj) . (11)

A similar idea is also employed in NAF.

3.4 UNIVERSAL DENSITY APPROXIMATOR

In this section, we expose an intuitive proof sketch that
our block neural autoregressive flow can approximate
any real continuous probability density function (PDF).

Given a multivariate real and continuous random vari-
able X = hX1, . . . , Xdi, its joint distribution can be
factorized into a set of univariate conditional distribu-
tions (as in Equation 4), using an arbitrary ordering of
the variables, and we can define a set of univariate con-
ditional cumulative distribution functions (CDFs) Yi =

FXi|X<i
(xi|x<i) = P[Xi  xi|X<i = x<i]. Accord-

ing to Hyvärinen and Pajunen (1999), such decomposi-
tion exists and each individual Yi is independent as well
as uniformly distributed in [0, 1]. Therefore, we can see
FX as a particular normalizing flow that maps X 2 R

n

to Y 2 [0, 1]n where the distribution pY is uniform in
the hyper-cube [0, 1]n. Note that FX is an autoregressive
function and its Jacobian has a positive diagonal since
@yi/@xi = pXi|X<i

(xi|x<i).

If each univariate flow f (i)
✓ (see Equation 5) can approx-

imate any invertible univariate conditional CDF, then f✓
can approximate any PDF (Huang et al., 2018). Note
that in general, a CDF FXi|X<i

is non-decreasing, thus
not necessary invertible (Park and Park, 2018). Using B-
NAF, each CDF is approximated with an arbitrarily large
neural network and the output can be eventually mapped
to (0, 1) with a sigmoidal function. Recalling that we
only use positive weights for processing xi, a neural net-
work with non-negative weights is an universal approx-
imator of monotonic functions (Daniels and Velikova,
2010). We use strictly positive weights to approximate
a strictly monotonic function for xi and we use arbitrary
weights for x<i (as there is no monotonicity constraint
for them). Therefore, B-NAF can approximate any in-
vertible CDF, and thus its corresponding PDF.

4 RELATED WORK

Current research on NFs focuses on constructing expres-
sive parametrized invertible trasformations with tractable
Jacobians. Rezende and Mohamed (2015) were the first
to employ parameterized flows in the context of varia-
tional inference proposing two parametric families: the
planar and the radial flow. A drawback and bottleneck
of such flows is that their power comes from stacking
a large number of such transformations. More recently,
van den Berg et al. (2018) generalized the use of pla-
nar flows showing improvements without increasing the
number of transformations, and instead, by making each
transformation more expressive.

In the context of density estimation, Germain et al.
(2015) proposed MADE, a masked feed-forward net-
work that efficiently computes an autoregressive trans-
formation. MADEs are important building blocks in
AFs, such as the inverse autoregressive flows (IAFs) in-
troduced by Kingma et al. (2016). IAFs are based on
trivially invertible affine transformations of the preced-
ing coordinates of the input vector. The parameters of
each transformation (a location and a positive scale) are
predicted in parallel with a MADE, and therefore IAFs
have a lower triangular Jacobian whose determinant is
fast to evaluate. IAFs extend the parametric families

Data Glow Ours

Figure 2: Comparison between Glow and B-NAF on
density estimation for 2D toy data.

available for approximate posterior inference in varia-
tional inference. Neural autoregressive flow (NAF) by
Huang et al. (2018) extend IAFs by generalizing the bi-
jective transformation to one that can approximate any
monotonically increasing function. They have been used
both for parametric density estimation and approximate
inference. In §2.3 we explain NAFs in detail and contrast
them with our proposed B-NAFs (also, see Figure 1).

Larochelle and Murray (2011) were among the first to
employ neural networks for autoregressive density esti-
mation (NADE), in particular, for high-dimensional bi-
nary data. Non-linear independent components estima-
tion (NICE) explored the direction of learning a map
from high-dimensional data to a latent space with a sim-
pler factorized distribution (Dinh et al., 2014). Papa-
makarios et al. (2017) proposed masked autoregressive
flows (MAFs) as a generalization of real non-volume-
preserving flows (Real NVP) by Dinh et al. (2017) show-
ing improvements on density estimation.

In this work, we are modelling a discrete normalizing
flow since at each transformation a discrete step is made.
Continuous normalizing flows (CNF) were proposed by
Chen et al. (2018) and modelled through a network that
instead of predicting the output of the transformation pre-
dicts its derivative. The resulting transformation is com-
puted using an ODE solver. Grathwohl et al. (2019) fur-
ther improved such formulation proposing free-form Ja-
cobian of reversible dynamics (FFJORD).

Orthogonal work has been done for constructing power-
ful invertible function such as invertible 1⇥1 convolution
(Glow) by Kingma and Dhariwal (2018), invertible d⇥d
convolutions (Hoogeboom et al., 2019), and invertible
residual networks (Behrmann et al., 2019). Additionally,

1

Target PF (K=32) Ours

2

3

4

Figure 3: Comparison between planar flow (PF) and
B-NAF on four 2D energy functions from Table 1 of
(Rezende and Mohamed, 2015).

Oliva et al. (2018) investigated different possibilities for
the conditioner of an autoregressive transformation (e.g.,
recurrent neural networks).

5 EXPERIMENTS

5.1 DENSITY ESTIMATION ON TOY 2D DATA

In this experiment, we use our B-NAF to perform den-
sity estimation on 2-dimensional data as this helps us vi-
sualize the model capabilities to learn. We use the same
toy data as Grathwohl et al. (2019) comparing the re-
sults with Glow (Kingma and Dhariwal, 2018), as they
do. Given samples from a dataset with empirical distri-
bution pdata, we parametrize a density pX|✓ with a nor-
malizing flow pX|✓(x) = pY (f✓(x))| det Jf✓(x)| using
B-NAF with pY a standard Normal distribution. We train
for 20k iterations a single flow of B-NAF with 3 hid-
den layers of 100 units each using maximum likelihood
estimation (i.e., maximizing E pdata [log pX|✓(x)], see Ap-
pendix A for more details and derivation of the objec-
tive). We used Adam optimizer (Kingma and Ba, 2014)
with an initial learning rate of ↵ = 10�1 (and decay of
0.5 with patience of 2k steps), default �1,�2, and a batch
size of 200. We took figures of Glow from (Grathwohl
et al., 2019) who trained such models with 100 layers.

Results The learned distributions of both Glow and our
method can be seen in Figure 2. Glow is capable of learn-

Table 1: Log-likelihood on the test set (higher is better) for 4 datasets (Dua and Karra Taniskidou, 2017) from UCI
machine learning and BSDS300 (Martin et al., 2001). Here d is the dimensionality of datapoints and N the size of
the dataset. We report average (±std) across 3 independently trained models. We also report the ratios between the
number of parameters used by NAF-DDSF (with 5 or 10 flows) and our B-NAF. In highly dimensional datasets B-NAF
uses orders of magnitude fewer parameters than NAF.

Model POWER" GAS" HEPMASS" MINIBOONE" BSDS300"
d=6;N=2,049,280 d=8;N=1,052,065 d=21;N=525,123 d=43;N=36,488 d=63;N=1,300,000

Real NVP 0.17±.01 8.33±.14 �18.71±.02 �13.55±.49 153.28±1.78

Glow 0.17±.01 8.15±.40 �18.92±.08 �11.35±.07 155.07±.03

MADE MoG 0.40±.01 8.47±.02 �15.15±.02 �12.27±.47 153.71±.28

MAF-affine 0.24±.01 10.08±.02 �17.73±.02 �12.24±.45 155.69±.28

MAF-affine MoG 0.30±.01 9.59±.02 �17.39±.02 �11.68±.44 156.36±.28

FFJORD 0.46±.01 8.59±.12 �14.92±.08 �10.43±.04 157.40±.19

NAF-DDSF 0.62±.01 11.96±.33 �15.09±.40 �8.86±.15 157.43±.30

TAN 0.60±.01 12.06±.02 �13.78±.02 �11.01±.48 159.80±.07

Ours 0.61±.01 12.06±.09 �14.71±.38 �8.95±.07 157.36±.03

Parameters ratio NAF (5) / B-NAF 2.29⇥ 1.30⇥ 17.94⇥ 43.97⇥ 8.24⇥
Parameters ratio NAF (10) / B-NAF 4.57⇥ 2.60⇥ 35.88⇥ 87.91⇥ 16.48⇥

ing a multi-modal distribution, but it has issues assigning
the correct density in areas of low probability between
disconnected regions. Our model is instead able to per-
fectly capture both multi-modality and discontinuities.

5.2 DENSITY MATCHING ON TOY 2D DATA

In this experiment, we use B-NAF to perform density
matching on 2-dimensional target energy functions to vi-
sualize the model capabilities of matching them. We
use the same energy functions described by Rezende and
Mohamed (2015) comparing the results with them (us-
ing planar flows). For this task, we train a parameterized
flow minimizing the KL divergence between the learned
qY |✓ and the given target pY . We used a single flow us-
ing a B-NAF with 2 hidden layers of 100 units each. We
train by minimizing KL(qY |✓kpY) (see Appendix B for
a detailed derivation) using Monte Carlo sampling. We
optimized using Adam for 20k iterations with an initial
learning rate of ↵ = 10�2 (and decay of 0.5 with pa-
tience of 2k steps), default �1,�2, and a batch size of
200. Planar flow figures were taken from Chen et al.
(2018). Note that planar flows were trained for 500k it-
erations using RMSProp (Tieleman and Hinton, 2012).

Results Figure 3 shows that our model perfectly
matches all target distributions. Indeed, on functions 3
and 4 it looks like B-NAF can better learn the density
in certain areas. The model capacity of planar normaliz-
ing flows is determined by their depth (K) and Rezende
and Mohamed (2015) had to stack 32 flows to match the

energy function reasonably well. Deeper networks are
harder to optimize, and our flow matches all the targets
using a neural network with only 2 hidden layers.

5.3 REAL DATA DENSITY ESTIMATION

In this experiment, we use a B-NAF to perform density
estimation on 5 real datasets. Similarly to Section 5.1,
we train using MLE maximizing E pdata [log pX|✓(x)]. We
compare our results against Real NVP (Dinh et al.,
2017), Glow (Kingma and Dhariwal, 2018), MADE
(Germain et al., 2015), MAF (Papamakarios et al., 2017),
TAN (Oliva et al., 2018), NAF (Huang et al., 2018), and
FFJORD (Grathwohl et al., 2019). For our B-NAF, we
stacked 5 flows and we employed a small grid search on
the number of layers and the size of hidden units per
flow (L 2 {1, 2} and H 2 {10d, 20d, 40d}, respec-
tively, where d is the input size of datapoints which is
different for each dataset). When stacking B-NAF flows,
the elements of each output vector are permuted so that
a different set of elements is considered at each flow.
This technique is not novel and it is also used by Dinh
et al. (2017); Papamakarios et al. (2017); Kingma et al.
(2016). We trained using Adam with Polyak averaging
(with � = 0.998) as in NAF (Polyak and Juditsky, 1992).
We also applied an exponentially decaying learning rate
schedule (from ↵ = 10�2 with rate � = 0.5) based on
no-improvement with patience of 20 epochs. We trained
until convergence (but maximum 1k epochs), stopping
after 100 epochs without improvement on validation set.

Datasets Following Papamakarios et al. (2017), we
perform unconditional density estimation on four
datasets (Dua and Karra Taniskidou, 2017) from UCI
machine learning repository3 as well as one dataset of
patches of images (Martin et al., 2001).

Results Table 1 shows the results of this experiment re-
porting log-likelihood on test set. In all datasets, our B-
NAF is better than Real NVP, Glow, MADE, and MAF
and it performs comparable or better to NAF. B-NAF also
outperforms FFJORD in all dataset except on BSDS300
where there is a marginal difference (< 0.02%) between
the two methods. On GAS and HEPMASS, B-NAF per-
forms better than most of the other models and even
better than NAF. In the other datasets, the gap in per-
formance compared to NAF is marginal. We observed
that in most datasets, the best performing model was the
largest one in the grid search. It is possible that we do
a too narrow hyper-parameter search compared to what
other methods do. For instance, FFJORD results come
from a wider grid search than ours where Grathwohl et al.
(2019), Huang et al. (2018), and Oliva et al. (2018) var-
ied the number of flows during tuning.

We compare NAF and our B-NAF in terms of the num-
ber of parameters employed and report the ratio between
the two for each dataset in Table 1 (bottom). For datasets
with low-dimensional datapoints (i.e, GAS and POWER)
our model uses a comparable number of parameters to
NAF. For high-dimensional datapoints the gap between
the parameters used by NAF and B-NAF grows, with B-
NAF much smaller, as we intended. For instance, on
both HEPMASS and MINIBOONE, our models have
marginal differences in performance with NAF while
having respectively ⇠ 18⇥ and ⇠ 40⇥ fewer param-
eters than NAF. This evidence supports our argument
that NAF models are over-parametrized and it is possible
to achieve similar performance with an order of magni-
tude fewer parameters. Besides, when training models
on GPUs, being memory efficient allows to train more
models in parallel on the same device. Additionally, in
general, a normalizing flow can be a component of a
larger architecture that might require more memory than
the flow itself (as the models for experiments in the next
Section).

5.4 VARIATIONAL AUTO-ENCODERS

An interesting application of our framework is mod-
elling more flexible posterior distributions in a varia-
tional auto-encoder (VAE) setting (Kingma and Welling,
2013). In this setting, we assume that an observation x
(i.e., the data) is drawn from the marginal of a deep la-

3http://archive.ics.uci.edu/ml

tent variable model, i.e. X ⇠ pX|✓, where pX|✓(x) =R
pZ(z)pX|Z,✓(x|z)dz where Z ⇠ N (0, I) is unob-

served. The goal is performing maximum likelihood es-
timation of the marginal. Since Z is not observed, maxi-
mizing the objective would require marginalization over
the latent variables, which is generally intractable. Using
variational inference (Jordan et al., 1999), we can maxi-
mize a lower bound on log-likelihood:

log pX|✓(x) � E qZ|X,�(z)


log

pXZ|✓(x, z)

qZ|X,�(z|x)

�
, (12)

where pX|Z,✓ and qZ|X,� are parametrized via neural net-
works with learnable parameters ✓ and � (Kingma and
Welling, 2013), in particular, qZ|X,� is an approximation
to the intractable posterior pZ|X,✓. This bound is called
the evidence lower bound (ELBO), and maximizing the
ELBO is equivalent to minimizing KL(qZ|X,�kpZ|X,✓).
The more expressive the approximating family is, the
more likely we are to obtain a tight bound. Recent lit-
erature approaches tighter bounds by approximating the
posterior with normalizing flows. Also note that NFs
reparametrize qZ|X,�(z|x) = qY (f�(z;x))

��detJf�(z;x)

��
via a simpler fixed base distribution, e.g. a standard
Gaussian, and therefore we can follow stochastic gra-
dient estimates of the ELBO with respect to both sets
of parameters. In this experiment, we use our flow for
posterior approximation showing that B-NAF compares
with recently proposed NFs for variational inference. We
reproduce experiments by van den Berg et al. (2018)
(Sylvester flows or SNF) while replacing their flow with
ours. We keep the encoder and decoder networks ex-
actly the same to fairly compare with all models trained
with such procedure. We compare our B-NAF to their
flows on the same 4 datasets as well as to a normal VAE
(Kingma and Welling, 2013), planar flows (Rezende and
Mohamed, 2015), and IAFs (Kingma et al., 2016).4

In this experiment, the input dimensionality of the flow is
fixed to d = 64. We employed a small grid search on the
MNIST dataset for the number of flows K 2 {4, 8}, and
for the number of hidden units per flow H 2 {2d, 4d, 8d}
while keeping the number of layers fixed at L = 1. The
elements of each output vector are permuted after each
B-NAF flow (as we do in § 5.3). We keep the best hyper-
parameters of this search for the other datasets. We train
using Adamax with ↵ = 5 · 10�4. We refer to Appendix
A of van den Berg et al. (2018) for details on the network
architectures for the encoder and decoder.

Datasets Following van den Berg et al. (2018) we car-
ried our experiments on 4 datasets: statically binarized

4 Although Huang et al. (2018) also experimented with
VAEs using NAF, they used only one dataset (MNIST) and em-
ployed a different encoder/decoder architecture than van den
Berg et al. (2018). Therefore, results are not comparable.

http://archive.ics.uci.edu/ml

Table 2: Negative log-likelihood (NLL) and negative evidence lower bound (-ELBO) for static MNIST, Freyfaces,
Omniglot and Caltech 101 Silhouettes datasets. For the Freyfaces dataset the results are reported in bits per dim. For
the other datasets the results are reported in nats. For all datasets we report the mean and the standard deviations over
3 runs with different random initializations.

Model MNIST Freyfaces Omniglot Caltech 101
-ELBO# NLL# -ELBO# NLL# -ELBO# NLL# -ELBO# NLL#

VAE 86.55±.06 82.14±.07 4.53±.02 4.40±.03 104.28±.39 97.25±.23 110.80±.46 99.62±.74

Planar 86.06±.31 81.91±.22 4.40±.06 4.31±.06 102.65±.42 96.04±.28 109.66±.42 98.53±.68

IAF 84.20±.17 80.79±.12 4.47±.05 4.38±.04 102.41±.04 96.08±.16 111.58±.38 99.92±.30

Sylvester 83.32±.06 80.22±.03 4.45±.04 4.35±.04 99.00±.04 93.77±.03 104.62±.29 93.82±.62

Ours 83.59±.15 80.71±.09 4.42±.05 4.33±.04 100.08±.07 94.83±.10 105.42±.49 94.91±.51

MNIST (Larochelle and Murray, 2011), Freyfaces,5 Om-
niglot (Lake et al., 2015) and Caltech 101 Silhouettes
(Marlin et al., 2010). All those datasets consist of black
and white images of different sizes.

Amortizing flow parameters When using NFs in an
amortized inference setting, the parameters of each flow
are not learned directly but predicted with another func-
tion from each datapoint (Rezende and Mohamed, 2015).
In our case, we do not amortize all parameters of B-NAF
since that would require very large predictors and we
want to keep our flow memory efficient. Alternatively,
every affine matrix W 2 R

n⇥m is shared among all dat-
apoints. Then, for each affine transformation, we achieve
a degree of amortization by predicting 3 vectors, the bias
b 2 R

n and 2 vectors v1 2 R
n and v2 2 R

m that we
multiply row- and column-wise respectively to W .

Results Table 2 shows the results of these experiments.
From the grid search, it turned out that the best B-NAF
model has K = 8 (flows) and H = 4d (hidden units).
Note that the best models reported by van den Berg et al.
(2018) used 16 flows. Our model is quite flexible without
being as deep as other models. Results show that B-NAF
is better than normal VAE, planar flows, and IAFs in all
four datasets. Although B-NAF performs slightly worse
than Sylvester flows, van den Berg et al. (2018) applied a
full amortization for the parameters of the flow, while we
do not. They proposed two alternative parametrizations
to construct Sylvester flows: orthogonal SNF and House-
older SNF. For each datapoint, SNF has to predict from
50.7k to 76.8k values (depending on the parametriza-
tion) to fully amortize parameters of the flow, while we
use only 7.7k (i.e., 6.64⇥ to 10.0⇥ fewer). Notably, re-
calling that these are not trainable parameters, we use
6.16⇥ (orthogonal SNF) and 9.35⇥ (Householder SNF)
fewer trainable parameters as well. Besides, we also use

5http://www.cs.nyu.edu/˜roweis/data/
frey_rawface.mat

14.45⇥ fewer parameters than IAF. This shows that IAF
and SNF are over-parametrized too, and it is possible to
achieve similar performance in the context of variational
inference with an order of magnitude fewer parameters.

6 CONCLUSIONS

We present a new family of flexible normalizing flows,
block neural autoregressive flows. B-NAFs are univer-
sal approximators of density functions and maintain an
efficient parametrization. Our flow is based on directly
parametrizing a transformation that guarantees autore-
gressiveness and monotonicity without the need for large
conditioner networks and without compromising paral-
lelism. Compared to the only other flow (to the best
of our knowledge) which is also a universal approxi-
mator, our B-NAFs require orders of magnitudes fewer
parameters. We validate B-NAFs on parametric den-
sity estimation on toy and real datasets, as well as, on
approximate posterior inference for deep latent variable
models, showing favorable performance across datasets
and against various established flows. For future work,
we are interested in at least two directions. One con-
cerns gaining access to the inverse of the flow—note that,
while B-NAFs and NAFs are invertible in principle, their
inverses are not available in closed form. Another con-
cerns deep generative models with large decoders (e.g.
in natural language processing applications): since we
achieve high flexibility at a low memory footprint our
flows seem to be a good fit.

Acknowledgements

This project is supported by SAP Innovation Center Net-
work, ERC Starting Grant BroadSem (678254) and the
Dutch Organization for Scientific Research (NWO) VIDI
639.022.518. Wilker Aziz is supported by the Euro-
pean Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 825299 (Gourmet).

http://www.cs.nyu.edu/~roweis/data/frey_rawface.mat
http://www.cs.nyu.edu/~roweis/data/frey_rawface.mat

References
Behrmann, J., Duvenaud, D., and Jacobsen, J.-H. (2019).

Invertible residual networks. Proceedings of the Inter-

national Conference on Machine Learning (ICML).

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duve-
naud, D. (2018). Neural ordinary differential equa-
tions. Advances in Neural Information Processing

Systems.

Daniels, H. and Velikova, M. (2010). Monotone and par-
tially monotone neural networks. IEEE Transactions

on Neural Networks, 21(6):906–917.

Dinh, L., Krueger, D., and Bengio, Y. (2014). Nice:
Non-linear independent components estimation. arXiv

preprint arXiv:1410.8516.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Den-
sity estimation using real NVP. Proceedings of the

5th International Conference on Learning Represen-

tations (ICLR).

Dua, D. and Karra Taniskidou, E. (2017). UCI machine
learning repository.

Germain, M., Gregor, K., Murray, I., and Larochelle, H.
(2015). Made: Masked autoencoder for distribution
estimation. In International Conference on Machine

Learning, pages 881–889.

Glorot, X. and Bengio, Y. (2010). Understanding the dif-
ficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international con-

ference on artificial intelligence and statistics, pages
249–256.

Grathwohl, W., Chen, R. T. Q., Bettencourt, J.,
Sutskever, I., and Duvenaud, D. (2019). FFJORD:
Free-form Continuous Dynamics for Scalable Re-
versible Generative Models. International Conference

on Learning Representations.

Ha, D., Dai, A., and Le, Q. V. (2017). Hypernet-
works. International Conference on Learning Repre-

sentations.

Hoogeboom, E., Berg, R. v. d., and Welling, M. (2019).
Emerging convolutions for generative normalizing
flows. Proceedings of the International Conference

on Machine Learning (ICML).

Huang, C.-W., Krueger, D., Lacoste, A., and Courville,
A. (2018). Neural autoregressive flows. International

Conference on Learning Representations.

Hyvärinen, A. and Pajunen, P. (1999). Nonlinear inde-
pendent component analysis: Existence and unique-
ness results. Neural Networks, 12(3):429–439.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul,
L. K. (1999). An introduction to variational methods

for graphical models. Machine learning, 37(2):183–
233.

Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. Proceedings of the 3rd In-

ternational Conference on Learning Representations

(ICLR).
Kingma, D. P. and Dhariwal, P. (2018). Glow: Gen-

erative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems,
pages 10236–10245.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X.,
Sutskever, I., and Welling, M. (2016). Improved vari-
ational inference with inverse autoregressive flow. In
Advances in neural information processing systems,
pages 4743–4751.

Kingma, D. P. and Welling, M. (2013). Auto-encoding
variational bayes. International Conference on Learn-

ing Representations.
Krueger, D., Huang, C.-W., Islam, R., Turner, R., La-

coste, A., and Courville, A. (2017). Bayesian hyper-
networks. arXiv preprint arXiv:1710.04759.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
(2015). Human-level concept learning through proba-
bilistic program induction. Science, 350(6266):1332–
1338.

Larochelle, H. and Murray, I. (2011). The neural autore-
gressive distribution estimator. In Proceedings of the

Fourteenth International Conference on Artificial In-

telligence and Statistics, pages 29–37.
Marlin, B., Swersky, K., Chen, B., and Freitas, N.

(2010). Inductive principles for restricted boltzmann
machine learning. In Proceedings of the Thirteenth In-

ternational Conference on Artificial Intelligence and

Statistics, pages 509–516.
Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001). A

database of human segmented natural images and its
application to evaluating segmentation algorithms and
measuring ecological statistics. In Computer Vision,

2001. ICCV 2001. Proceedings. Eighth IEEE Interna-

tional Conference, volume 2, pages 416–423. IEEE.
Oliva, J., Dubey, A., Zaheer, M., Poczos, B., Salakhutdi-

nov, R., Xing, E., and Schneider, J. (2018). Transfor-
mation autoregressive networks. In Dy, J. and Krause,
A., editors, Proceedings of the 35th International Con-

ference on Machine Learning, volume 80 of Pro-

ceedings of Machine Learning Research, pages 3898–
3907, Stockholmsmssan, Stockholm Sweden. PMLR.

Papamakarios, G., Pavlakou, T., and Murray, I. (2017).
Masked autoregressive flow for density estimation. In
Advances in Neural Information Processing Systems,
pages 2338–2347.

Park, K. I. and Park (2018). Fundamentals of Probability

and Stochastic Processes with Applications to Com-

munications. Springer.

Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of
stochastic approximation by averaging. SIAM Journal

on Control and Optimization, 30(4):838–855.

Rezende, D. J. and Mohamed, S. (2015). Variational in-
ference with normalizing flows. In Proceedings of the

32nd International Conference on International Con-

ference on Machine Learning-Volume 37, pages 1530–
1538. JMLR. org.

Rippel, O. and Adams, R. P. (2013). High-dimensional
probability estimation with deep density models.
arXiv preprint arXiv:1302.5125.

Salimans, T. and Kingma, D. P. (2016). Weight nor-
malization: A simple reparameterization to accelerate
training of deep neural networks. In Advances in Neu-

ral Information Processing Systems, pages 901–909.

Tabak, E. G., Vanden-Eijnden, E., et al. (2010). Density
estimation by dual ascent of the log-likelihood. Com-

munications in Mathematical Sciences, 8(1):217–233.

Tieleman, T. and Hinton, G. (2012). Lecture 6.5-
rmsprop, coursera: Neural networks for machine
learning. University of Toronto, Technical Report.

van den Berg, R., Hasenclever, L., Tomczak, J. M., and
Welling, M. (2018). Sylvester normalizing flows for
variational inference. 34th Conference on Uncertainty

in Artificial Intelligence (UAI18).

	INTRODUCTION
	BACKGROUND
	NORMALIZING FLOW
	AUTOREGRESSIVE FLOWS
	NEURAL AUTOREGRESSIVE FLOW

	BLOCK NEURAL AUTOREGRESSIVE FLOW
	AFFINE TRANSFORMATIONS WITH BLOCK MATRICES
	AUTOREGRESSIVENESS AND INVERTIBILITY
	EFFICIENT JACOBIAN COMPUTATION
	UNIVERSAL DENSITY APPROXIMATOR

	RELATED WORK
	EXPERIMENTS
	DENSITY ESTIMATION ON TOY 2D DATA
	DENSITY MATCHING ON TOY 2D DATA
	REAL DATA DENSITY ESTIMATION
	VARIATIONAL AUTO-ENCODERS

	CONCLUSIONS
	OBJECTIVE FOR DENSITY ESTIMATION
	OBJECTIVE FOR DENSITY MATCHING
	WEIGHT INITIALIZATION AND NORMALIZATION
	LOGARITHMIC MATRIX MULTIPLICATION

