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Abstract

Expectation propagation (EP) is a powerful ap-
proximate inference algorithm. However, a crit-
ical barrier in applying EP is that the moment
matching in message updates can be intractable.
Handcrafting approximations is usually tricky,
and lacks generalizability. Importance sam-
pling is very expensive. While Laplace propa-
gation provides a good solution, it has to run
numerical optimizations to find Laplace approx-
imations in every update, which is still quite in-
efficient. To overcome these practical barriers,
we propose conditional expectation propagation
(CEP) that performs conditional moment match-
ing given the variables outside each message,
and then takes expectation w.r.t the approximate
posterior of these variables. The conditional
moments are often analytical and much easier
to derive. In the most general case, we can use
(fully) factorized messages to represent the con-
ditional moments by quadrature formulas. We
then compute the expectation of the conditional
moments via Taylor approximations when nec-
essary. In this way, our algorithm can always
conduct efficient, analytical fixed point itera-
tions. Experiments on several popular models
for which standard EP is available or unavail-
able demonstrate the advantages of CEP in both
inference quality and computational efficiency.

1 INTRODUCTION

Expectation propagation (EP) (Minka, 2001) is a popular
posterior inference algorithm. It approximates the factors
of the joint probability with exponential-family terms,
also called messages (in graphical models), and iteratively
updates each message via moment matching. EP often
produces fast and accurate posterior estimations, and have

been applied in many Bayesian learning tasks (Herbrich
et al., 2007; Graepel et al., 2010; Hernández-Lobato and
Adams, 2015). EP is the cornerstone of the influential
machine learning library, Infer.NET (Minka et al., 2014).

Nonetheless, a critical barrier of using EP is that the
moment matching can be intractable during the message
updates. When a factor (e.g., the likelihood of a data
point) is complex and includes many latent variables, the
normalizer of the tilted distribution (that is proportional
to the factor multiplying with the messages from the other
factors) is likely to be intractable and so are the moments.
Handcrafting an approximation to the moments is usually
tricky, and limited to particular types of factors. One can
consider importance sampling, which, however, requires
a large number of samples to obtain reliable estimations
and hence is very expensive.

To mitigate this issue, Eskin et al. (2004) proposed
Laplace propagation (LP) that uses Gaussian messages
and calculates the Laplace approximation to the tilted
distribution. This is fulfilled by finding the mode and
computing the inverse Hessian at the mode. The approxi-
mation, which is a Gaussian distribution, is then used for
moment matching. Despite its effectiveness, LP has to
repeatedly conduct numerical optimizations to find the
modes in message updates, and therefore is still quite
inefficient.

To overcome these practical barriers, we propose condi-
tional expectation propagation (CEP) algorithm, which
not only bypasses the (possibly) tricky moment matching
and so the nontrivial approximation designs, but also en-
joys efficient and analytical fixed point iterations. Specifi-
cally, we observe that although the moments of the tilted
distributions can be intractable, the conditional moments
given a set of variables fixed are often tractable and an-
alytical. In the most general case, we can consider the
conditional moments for a single variable (or two) given
all the others. These moments (if unavailable) can be
explicitly represented by quadrature formulas. There-



fore, we first introduce factorized approximations (i.e.,
messages) and match the conditional moments for the
variable(s) in each message. Next, we update the message
by computing the expectation of the conditional moments
w.r.t the (current) approximate posterior of the remaining
variables. We show the connection of this method to the
standard EP. Finally, if necessary, to enable tractable ex-
pectation computation for the conditional moments, we
use their first or second order Taylor approximations at the
moments of the remaining variables. In this way, CEP al-
ways performs efficient, analytical updates and is general
to all kinds of factors, without nontrivial approximation
designs, numerical optimizations or importance sampling.

For evaluation, we first examined CEP in Bayesian pro-
bit and logistic regression where the standard moment
matching is analytical or has accurate approximations.
For logistic regression, we represented the conditional
moments with Gauss-Hermite quadrature. On both sim-
ulation and real-world datasets, CEP obtains inference
quality and running efficiency close to EP, and is much
faster than LP and importance sampling based approaches.
We then applied CEP in Bayesian tensor decomposition
where the moment matching is intractable. CEP largely
improves upon LP and a classical tensor decomposition
algorithm, and is close to or significantly better than the
variational message passing (VMP) in prediction accuracy.
Meanwhile, CEP achieves over 40x speedup against LP.
Finally, we adapted CEP to the assumed density filtering
(ADF) framework to perform streaming Bayesian decom-
position. Our method outperforms the state-of-the-art
approach (Du et al., 2018) by a large margin.

2 EXPECTATION PROPAGATION

We first review the expectation propagation (EP) algo-
rithm Minka (2001). Given the observations D, the poste-
rior distribution of a Bayesian model has a general form,

p(θ|D) =
1

Z

∏
i
fi(θi) (1)

where θ are the latent random variables, Z the normal-
ization constant, and {fi(θi)}i the factors that link to
the prior or data likelihoods. For example, f0 may corre-
spond to the prior, and fn the likelihood of the n-th data
point (n ≥ 1). Each θi is a subset of or identical to θ.
Bayesian inference aims to compute the posterior distribu-
tion p(θ|D). However, the exact computation is usually
infeasible, due to the high dimensional and intractable
integral in calculating the normalizer Z.

To address this issue, EP approximates each factor fi by
an exponential-family term,

f̃i(θi) ∝ exp
(
λ>i φ(θi)

)
, (2)

where λi and φ(θi) are the natural parameters and suffi-
cient statistics, respectively. Then the approximate poste-
rior distribution is given by

q(θ) ∝
∏
i

f̃i(θi), (3)

and trivial to compute through the summation of the natu-
ral parameters. In the factor graph representation (Kschis-
chang et al., 2001), the approximation factor f̃i(θi) is
also defined as the message from factor fi to the variables
θi. Commonly used messages are Gaussian factors.

EP repeatedly refines each approximation factor f̃i
through three steps, message deletion, projection and up-
date. In the message deletion step, we compute a calibrat-
ing distribution q\i(θ) by removing f̃i from the current
posterior q(θ), q\i(θ) ∝ q(θ)/f̃i(θi). This is equivalent
to multiplying the messages from all the other factors,
and hence a surrogate for these context factors. In the pro-
jection step, we first construct a tilted distribution p̂i(θ)
from multiplying the true factor fi with the calibrating
distribution,

p̂i(θ) =
1

Zi
fi(θi)q

\i(θ), (4)

where Zi is the normalizer. We then project the tilted
distribution to the exponential family by minimizing the
KL divergence between p̂i(θ) and a new approximate
posterior q∗(θ). It is well known that the minimum can
be obtained by moment matching. That is, we compute
the expectation of φ(θ) w.r.t p̂i and set it to the moment
of q∗(θ),

Eq∗
(
φ(θ)

)
= Ep̂i

(
φ(θ)

)
= ∇λ\i log(Zi) (5)

where λ\i are the natural parameters of the calibrating
distribution q\i. Finally, we update the message f̃i via
f̃i(θi) ∝ q∗(θ)/q\i(θ).

The refinement of each message can be sequential or
parallel. The key step in the refinement is the moment
matching (5). Through repeated moment matching, the
approximate posterior is improved by assimilating the crit-
ical statistics in the true posterior. Due to the fixed point
iteration nature, EP often converges fast (although conver-
gence is not always guaranteed) and presents prominent
computational advantages over alternative approaches,
such as sampling.

3 CONDITIONAL EXPECTATION
PROPAGATION

Despite the impressive success of EP, applying EP can
be troublesome when the moment matching is intractable.
Given a complex factor fi(θi), it is very likely that the



log normalizer of the tilted distribution, log(Zi), is in-
tractable and hence the moment calculation (see (5)). In
this case, we might need to handcraft an approximation
of the moments. However, this is often tricky and the
approximation is hard to generalize to other types of com-
plex factors. A simple and general approach is to use
importance sampling, but it requires a large number of
samples to obtain a reliable estimation, hence is very
costly and will deprive the computational advantage of
EP. Although this problem can be alleviated by training a
machine learning model to predict the moments (Heess
et al., 2013; Jitkrittum et al., 2015), the training data col-
lection and replenishment still require a lot of importance
sampling. In addition, learning predictors for distinct
kinds of factors or even the same kind with new observa-
tions may also require us to supplement training samples
and/or retrain from scratch (Jitkrittum et al., 2015). While
Laplace propagation (Eskin et al., 2004) can completely
sidestep importance sampling and provide a general solu-
tion by using Gaussian messages and calculating Laplace
approximation to the titled distribution, it has to run nu-
merical optimizations, say, L-BFGS, to find the mode and
to construct the approximation in every message update,
which is still quite inefficient.

To overcome these barriers, avoiding nontrivial approxi-
mation designs, costly importance sampling and numeri-
cal optimizations, we propose the conditional expectation
propagation (CEP) algorithm, presented as follows.

3.1 CONDITIONAL MOMENT MATCHING

We observe that while the moments of the tilted distri-
bution (4) can be intractable, the conditional moments
of a subset of variables given the others can be ana-
lytical and easy to derive. For example, when a tilted
distribution is proportional to a production factor mul-
tiplying with a Gaussian distribution, i.e., p̂i(θ) ∝
N (xn|θ>1 θ2, β)N (θ|µ,Σ) where θ = [θ>1 ,θ

>
2 ]>, com-

puting the moments of θ is tricky, but θ1 given θ2 fixed
and θ2 given θ1 fixed is trivial — both p̂(θ1|θ2) and
p̂(θ2|θ1) are Gaussian distributions. This resembles
Gibbs sampling — while the posterior is intractable, the
conditional distribution of each variable given all the oth-
ers (and observations) is tractable and we can repeatedly
sample from the conditional distributions.

Therefore, we introduce factorized messages and de-
rive analytical conditional moments in the first step.
W.l.o.g, we partition θ into {θ1, . . . ,θM} and approx-
imate each factor fi with

∏
m f̃im(θm) where each

f̃im(θm) ∝ exp
(
λ>imφ(θm)

)
. Hence, the approximate

posterior q(θ) and the calibrating distribution q\i(θ) are
both factorized over {θ1, . . . ,θM}. Note that factor-
ized messages are widely adopted by EP and other mes-

sage passing algorithms, especially in large-scale appli-
cations (Graepel et al., 2010; Zhe et al., 2016a). To
update each f̃im in the standard EP, we need to com-
pute the moments of θm with the tilted distribution
p̂i(θ) ∝ q\i(θm)q\i(θ\m)fi(θm,θ\m) where θ\m are
all the latent variables excluding θm. It can be seen that

Ep̂i(θ)
(
φ(θm)

)
= Ep̂i(θ\m)

[
Ep̂i(θm|θ\m)

(
φ(θm)

)]
(6)

where p̂i(θ\m) is p̂i(θ) marginalizing out θm, and

p̂i(θm|θ\m) ∝ q\i(θm)fi(θm,θ\m). (7)

We first obtain an analytical form of the conditional mo-
ment Ep̂i(θm|θ\m)

(
φ(θm)

)
. This is straightforward for

many factors. But uniformly, this can always be achieved
by using fully factorized messages, and representing
the conditional moment (which is now for a single vari-
able) with a quadrature formula, Ep̂i(θm|θ\m)

(
φ(θm)

)
≈∑

j αjg(γj ,θ\m) where {γj , αj} are quadrature nodes
and weights. In addition, we can also use bi-variable or
triple-variable messages with two-dimensional or three-
dimensional quadrature formulas that are more complex.
However, higher-dimensional quadratures are not recom-
mended due to the degradation of accuracy and explosion
of the computational cost.

3.2 EXPECTED CONDITIONAL MOMENT

To update the message f̃im, EP requires us to further
compute the expectation of the conditional moment w.r.t
the marginal tilted distribution p̂i(θ\m) (see (6)). How-
ever, p̂i(θ\m) can be intractable for tricky fi as well.
To overcome this problem, we observe that (due to the
factorized posterior form) EP also maintains the mo-
ment matching between p̂i(θ\m) and q(θ\m) — the
(marginal) approximate posterior for θ\m. Therefore,
we can assume they are close in high density regions
and use q(θ\m) as a surrogate for p̂i(θ\m). The con-
ditional moment is a function of θ\m, and w.l.o.g can
be further represented as a function of their sufficient
statistics, Ep̂i(θm|θ\m)(φ(θm)) = h(Φm) where Φm =
{φ(θ1), . . . , φ(θm−1), φ(θm+1), . . . , φ(θM )}. There-
fore, we next compute the expected conditional moment
Eq(θ\m)

(
h(Φm)

)
.

Even with q(θ\m), the expectation might still be in-
tractable. However, with the nice and easy form of
q(θ\m), we can use the Taylor expansion at the moments
of θ\m, i.e., Eq(Φm), to derive the first-order or second-
order approximation to h(Φm),

ĥ1(Φm) = h(Eq(Φm)) +∇h(Eq(Φm))>u (8)

ĥ2(Φm) = ĥ1(Φm) +
1

2
tr
(
S · ∇∇h(Eq(Φm))

)
(9)



where u = Φm − Eq(Φm) and S = uu>. Taking expec-
tation over the Taylor approximations, we have

Eq(θ\m)

(
h(Φm)

)
≈ h(Eq(Φm)) or (10)

h(Eq(Φm)) +
1

2
tr
(
cov(Φm) · ∇∇h(Eq(Φm))

)
, (11)

Both (10) and (11) are analytical and straightforward to
compute. Using (11) can be more accurate but requires
extra calculations. To reduce the cost, we can use the
diagonal Hessian and covariance matrix.

The other steps are the same as standard EP. As we can
see, through deriving analytical conditional moments and
their expectations, our method bypasses the tricky mo-
ment matching, and still conducts efficient and analytical
message refinements. We do not need to run expensive
importance sampling, numerical optimizations or design
nontrivial moment approximations. The proposed CEP is
summarized in Algorithm 1.

3.3 CONNECTION TO EP

A key difference between CEP and EP is that CEP uses
the approximate posterior q(θ\m) to replace the marginal
tilted distribution p̂i(θ\m) in computing the expected con-
ditional moments as in (6). This can lead to a different
fixed point. But under certain conditions, EP’s fixed point
can still coincide with CEP’s.
Lemma 3.1. When the conditional moment h is part of
the sufficient statistics of θ\m, i.e., each element of h
belongs to Φm, the fixed points of EP are also that of
CEP without Taylor approximations.

The proof is given in the supplementary material. While
in most cases, CEP may reach a fixed point different from
EP, we found that the quality of the estimated posteriors
is close to that of EP in our experiments. In the diffi-
cult cases for standard EP, CEP can easily and rapidly
converge to good posterior estimations.

3.4 ALGORITHM COMPLEXITY

Given N factors and M dimensional sufficient statis-
tics for q(θ), the time and space complexity of CEP
using the first-order Taylor approximation and the second-
order with diagonal Hessian or covariance matrix are both
O(NM). If we use the full Hessian and full covariance
matrix, the time and space complexity are O(NM2).

4 CEP FOR BAYESIAN TENSOR DE-
COMPOSITION AND LOGISTIC RE-
GRESSION

As a case study, we apply CEP in two popular models,
Bayesian tensor decomposition and logistic regression.

Algorithm 1 Conditional Expectation Propagation (CEP)

1: Initialize q(θ) = 1 and all the messages f̃im(θm) =
1.

2: repeat
3: Pick a factor fi and message f̃im,

• Message deletion: Calculate the calibrating
distribution, q\i(θm) ∝ q(θm)/f̃im(θm).

• Projection: Derive the conditional moment
of θm w.r.t p̂i(θm|θ\m) in (7), and then com-
pute its expectation w.r.t q(θ\m). If the ex-
pectation is intractable, use (10) or (11) for
approximations. The expected conditional
moments are used to construct a new poste-
rior q∗(θm).

• Update: Update the message based on the
new posterior: f̃im ∝ q∗(θm)/q\i(θm).

4: until all the f̃im(θm) converge

4.1 BAYESIAN TENSOR DECOMPOSITION
Denote a K-mode tensor by Y ∈ Rd1×...×dK , where dk
is the dimension of the k-th mode, corresponding to dk
objects (e.g., users or items). The entry value at loca-
tion i = (i1, . . . , iK) is denoted by yi. We introduce an
R dimensional embedding vector ukj to represent each
object j in mode k. A dk × R embedding matrix is
formed by stacking all the embedding vectors in mode
k, Uk = [uk1 , . . . ,u

k
dk

]>. Tensor decomposition aims
to use these embeddings U = {Uk}k to reconstruct the
observed entries.

We use a Bayesian model based on the classical CAN-
DECOMP/PARAFAC (CP) decomposition (Harshman,
1970) to sample the observed tensor entries. We consider
continuous and binary observations. Each embedding
vector ukj is first sampled from a Gaussian prior distribu-
tion. Given the embeddings, a continuous entry value yi
is sampled from

p(yi|U , τ) = N (yi|1>(u1
i1 ◦ . . . ◦ uKiK ), τ−1) (12)

where 1 is the vector full of ones, ◦ the Hadamard (or
element-wise) product, and τ the inverse variance. We
assign τ a Gamma prior, p(τ) = Gam(τ |a0, b0). If yi is
binary, it is sampled from

p(yi|U) = ψ
(
(2yi − 1)1>(u1

i1 ◦ . . . ◦ uKiK )
)

(13)

where ψ(·) is the cumulative density function (CDF) of
the standard Gaussian distribution.

To estimate the posterior of the embeddings U with EP,
the major hurdle is to approximate the likelihood of each
observation, (12) or (13). Due to the Hadamard product,
the log normalizer of the titled distribution is intractable



and the moments are tricky to compute. Hence, we turn to
CEP. Note that the prior factors belong to the exponential
family and do not need approximations. For the con-
tinuous entry, we approximate (12) by f̃i(τ)

∏
k f̃

k
i (ukik)

where f̃i(τ) is a Gamma term and each f̃ki (ukik) a Gaus-
sian term. The approximate posterior q(U , τ) and the cal-
ibrating distribution q\i(U , τ) are hence factorized over
τ and all {ukj }j,k. To update each message f̃ki (ukik), we
first derive the conditional moment of ukik given the other
embeddings and τ fixed. Note that the conditional tilted
distribution,

p̂i(u
k
ik
|u\ki , τ) ∝ q\i(ukik)N (yi|z\ki

>
ukik , τ

−1)

is Gaussian. Here u
\k
i are all the embedding vectors

associated with entry i but excluding ukik , z
\k
i the Had-

mard product of the vectors in u
\k
i , and q\i(ukik) =

N (ukik |m
k
ik
,Skik), the calibrating distribution of ukik . We

can easily obtain the conditional mean and covariance,

cov(ukik |u
\k
i , τ) =

[
Skik
−1

+ τ(z
\k
i z
\k
i

>
)
]−1

, (14)

E(ukik |u
\k
i , τ) = cov(ukik |u

\k
i , τ)

[
Skik
−1

mk
ik

+ τyiz
\k
i

]
.

(15)

To further obtain their expectations w.r.t q(u\ki , τ) so as to
update f̃ki (uk\ik), we can follow (10) to take the expecta-
tion over their first-order Taylor expansion at the moments
of u

\k
i and τ . This is trivial — we replace the terms z

\k
i ,

z
\k
i z
\k
i

>
and τ by their expectations in (14)(15). Due to

the factorized posterior, we have

Eq(z\ki ) = Eq(u1
i1) ◦ . . . ◦ Eq(uk−1ik−1

)

◦ Eq(uk+1
ik+1

) ◦ . . . ◦ Eq(uKiK ), (16)

Eq(z\ki z
\k
i

>
) = Eq(u1

i1u
1
i1

>
) ◦ . . . ◦ Eq(uk−1ik−1

uk−1ik−1

>
)

◦ Eq(uk+1
ik+1

uk+1
ik+1

>
) ◦ . . . ◦ Eq(uKiKuKiK

>
). (17)

We can use the second-order Taylor approximation as
well (see (11)), but our investigation shows that it does
not outperform the first-order approach and is slower.

We now look into how to update message f̃i(τ). Note
that the calibrating distribution is a Gamma distribution,
q\i(τ) = Gam(τ |a\i, b\i). We first find that the condi-
tional tilted distribution is also a Gamma distribution,

p̂i(τ |u1
i1 , . . . ,u

K
iK ) = Gam(τ |â, b̂)

∝ q\i(τ)N (yi|1>(u1
i1 ◦ . . . ◦ uKiK ), τ−1)

where â = a\i + 1
2 and b̂ = b\i + 1

2 (yi − 1>(u1
i1
◦

. . . ◦ uKiK ))2. Next, we take the expectation over b̂ w.r.t

to the posterior q(u1
i1
, . . . ,uKiK ) (â is constant and so

Eq(â) = â ). This is analytical and straightforward:

Eq(b̂) = b\i +
1

2
y2i − yi1>

[
Eq(u1

i1) ◦ . . . ◦ Eq(uKiK )
]

+
1

2
tr
[
Eq(u1

i1u
1
i1

>
) ◦ . . . ◦ Eq(uKiKuKiK

>
)
]
. (18)

As in Algorithm 1, Eq(â) and Eq(b̂) are then used to build
a new Gamma posterior for τ to update f̃i(τ).

For binary tensor entries, we use
∏
k f̃

k
i (ukik) to approxi-

mate the likelihood in (13). The conditional tilted distri-
bution for each message f̃ki (ukik) is

p̂i(u
k
ik
|u\ki ) ∝ q\i(ukik)ψ

(
(2yi − 1)z

\k
i

>
ukik
)
.

The log normalizer is tractable and so we can derive the
conditional moments analytically. They have the same
form as the moments required in EP for Bayesian pro-
bit regression (Dušek, 2013). We can then use Taylor
approximations (10)(11) to compute the expected condi-
tional moments and to update each f̃ki (ukik). The details
for both continuous and binary tensors are given in the
supplementary material.

4.2 BAYSESIAN LOGISTIC REGRESSION

Given the observed classification instances X =
[x1, . . . ,xn]> and binary labels y = [y1, . . . , yn], the
joint probability of the Bayesian logistic model is

p(y,w|X) = p(w)

n∏
i=1

1/
(
1 + exp(−(2yi − 1)w>xi)

)
,

where the prior p(w) is usually chosen as a Gaussian dis-
tribution. The moment matching in regard to the logistic
likelihood is intractable, and there is a smart approxima-
tion (Gelman et al., 2013). Here, we consider CEP instead.
We choose fully factorized messages

∏
m f̃im(wm) to ap-

proximate each logistic likelihood, where each message
f̃im(wm) is Gaussian and so are q(wm) and q\i(wm).
The conditional tilted distribution is

p̂i(wm|w\m) ∝ q\i(wm)gim(wm|w\m),

where w\m are w excluding wm, and gim(wm|w\m) =

1/
(
1 + exp(−(2yi − 1)wmxim − (2yi − 1)w>\mxi\m)

)
.

Here xim is the m-th element of x and xi\m the remain-
ing elements. The moments of wm are still intractable.
Nevertheless, because the conditional distribution is for
a single variable, we can approximate the moments by a
quadrature formula. Since q\i(wm) is Gaussian, we can
use Gauss-Hermite quadrature. Given quadrature nodes
and weights {(γj , αj)}j , the conditional moments can be



represented by

E(wm|w\m) ≈
∑
j αjγjgim(γj |w\m)∑
j αjgim(γj |w\m)

, (19)

E(w2
m|w\m) ≈

∑
j αjγ

2
j gim(γj |w\m)∑

j αjgim(γj |w\m)
. (20)

Note that the quadrature nodes are determined by
q\i(wm); both the nodes and weights are constant to
w\m.

To update f̃im, we compute the expectation of the con-
ditional moments w.r.t q(w\m). To this end, we can use
their first-order or second-order Taylor approximations
and then take expectation as shown in (10) and (11). Both
are straightforward to derive and efficient to calculate.
The details are provided in the supplementary material.

5 RELATED WORK
Expectation propagation (EP) (Minka, 2001) is a deter-
ministic approximate inference algorithm that unifies
assumed-density-filtering (ADF) (Maybeck, 1982; Lau-
ritzen, 1992; Boyen and Koller, 1998) and loopy belief
propagation (Murphy et al., 1999). It iteratively mini-
mizes (local) KL divergence via moment matching to
update factor approximations, which can be viewed as
message passing and updates in graphical model represen-
tations. EP updates are essentially fixed point iterations.
Although the convergence is not guaranteed, EP often
converges fast in practice and produces accurate poste-
rior estimations. EP can be further extended to power
EP (Minka, 2004) that minimizes the α-divergence dur-
ing the message update. Another important variant is
stochastic EP (SEP) (Li et al., 2015), which only stores
and updates a single or a few approximate factors and
hence can largely reduce the memory cost.

Using EP can be troublesome when the moment match-
ing is intractable. While importance sampling can solve
this problem in principle, it needs massive samples to
obtain a reliable estimation and is very expensive. To
address this issue, Eskin et al. (2004) developed Laplace
propagation (LP) to find the Laplace approximation to
the tilted distribution. While getting rid of sampling, LP
requires repeated numerical optimizations during the mes-
sage updates and can still be costly. Recently, several
excellent works propose to use machine learning mod-
els to predict the moments (Heess et al., 2013; Eslami
et al., 2014; Jitkrittum et al., 2015).The training exam-
ples are collected by running importance sampling in
the first a few EP iterations. Heess et al. (2013) used
neural-networks, Eslami et al. (2014) random forests and
Jitkrittum et al. (2015) Gaussian processes with random
features. In (Jitkrittum et al., 2015; Eslami et al., 2014),
the predictive variance or an uncertainty score is used

to monitor the quality of the predicted moments – if it
exceeds a threshold, importance sampling is used again
to improve the estimation and to replenish the training
data. Despite the promising performance, these methods
have to run a lot of importance sampling to collect suffi-
cient training examples, which might still be expensive.
Moreover, extra efforts need to be made to design models,
extract features and choose hyper-parameters. There are
also concerns in the generalizability to new data points;
the learned model only specializes on one type of factors,
and usually cannot generalize to other types. To address
these practical barriers, we propose CEP that bypasses
the tricky moment matching, instead seeks for easy and
analytical conditional moments and then takes the expec-
tation over the conditional moments. The expectation can
be efficiently calculated through Taylor approximations.
In this way, CEP avoids to manually design approxima-
tions or to run costly importance sampling and numerical
optimizations. It can still conduct efficient and analytical
message refinements. We can immediately adapt CEP to
a stochastic or streaming version, like SEP and ADF.

6 EXPERIMENT
6.1 BAYESIAN PROBIT AND LOGISTIC RE-

GRESSION

We first examined our approach on two classical models,
Bayesian logistic regression (BLR) and probit regression
(BPR). EP has analytical forms for moment matching in
BPR. While in BLR the moments are intractable due to the
logistic function, we can develop accurate approximations
based on quadrature rules (Gelman et al., 2013).

Methods. As in (Graepel et al., 2010), we used fully
factorized messages. This is important for large-scale
applications. We implemented two versions of the pro-
posed algorithm: CEP-1 that uses the first-order Taylor
approximation (see (10)) and CEP-2 the second-order
(see (11)). Note that due to the fully factorized approxi-
mation, CEP-2 is equivalent to using the diagonal Hessian
and covariance in the Taylor approximation. In BLR, we
used the Gauss-Hermite quadrature to represent the con-
ditional moments with 9 nodes (see Section 4.2). We
compared with EP, Laplace propagation (LP), EP with
importance sampling (IS) for moment matching, and vari-
ational Bayes(VB). For a fair comparison, these methods
employed fully factorized posteriors as well. In addition,
we compared with the kernel based just-in-time (KJIT)
learning to predict the moments (Jitkrittum et al., 2015)
for EP updates. KJIT uses IS to dynamically generate
training examples and update the predictor. For LP, we ran
L-BFGS to find the mode and constructed the Laplace ap-
proximation in each message update. The maximum num-
ber of iterations was set to 100. For factorized EP in BLR,
we followed (Gelman et al., 2013) to develop a two dimen-
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Figure 1: Running time vs. approximate KL divergence. BPR and BLR are short for Bayesian probit regression and
Bayesian logistic regression, respectively.

sional Gauss-Hermite quadrature to compute the moments
(see Section 2.2.1 of the supplementary material for de-
tails). Note that the original approach in (Gelman et al.,
2013) is inappropriate for factorized EP, resulting in much
worse performance. For IS and KJIT, we generated 500K
samples to estimate each moment. Note that we only
tested IS and KJIT for BLR, where the exact moments are
intractable. We used a flat Gaussian, N (·|0, 106), as the
initialization for all the messages in EP, CEP-1, CEP-2,
LP and IS. For VB, the initial posterior of each variable
was set to the prior. We used the original implementation
of KJIT with C# under Infer.Net framework (https:
//github.com/wittawatj/kernel-ep), which
employs a joint Gaussian term to approximate each likeli-
hood (rather than a factorized one). All the other methods
were implemented with MATLAB 2017. We ran all the
algorithms on a single Linux server with Intel(R) i7 CPUs
and 24GB memory.

Synthetic datasets. To examine the inference quality of
our approach, we followed (Li et al., 2015) to simulate
two datasets for BLR and BPR, respectively. Each dataset
include 10, 000 samples and 4 classification weights.
Each weight was sampled from the standard normal prior
N (·|0, 1). In the first dataset for each model, the feature
values of each instance xn were independently sampled
from a single Gaussian distribution N (·|0, 1) while in
the second dataset from a mixture of Gaussian distribu-
tions with 5 components, 1

5

(
N(·|−2, 12 )+N(·|−1, 12 )+

N(·|0, 12 ) + N(·|1, 12 ) + N(·|2, 12 )
)
. The label yn was

sampled from the generative model. Hence, the second
dataset for each model is more heterogeneous. To evaluate
the inference quality, we ran No-U-Turn (NUTS) (Hoff-
man and Gelman, 2014) sampler for 100K iterations as
the burn-in time and then drew 50K posterior samples,
from which we estimated a Gaussian distribution as the
golden standard. We then ran CEP-1, CEP-2, EP, LP,
IS and KJIT to obtain the posterior estimations of the
classification weights. We computed the KL divergence
between the golden standard and the posteriors estimated
by each method. Note that we did not compare with VB
because VB minimizes the KL divergence in a reverse
direction and this metric may not be fair to VB. Although
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Figure 2: Average running time on six real datasets.

taking much longer running time than CEP-{1,2}, EP and
LP, KJIT still obtains much larger approximate KL diver-
gence, implying much worse inference quality or even a
failure. The running time and the KL divergence of KJIT
are {9595.4, 10150.3} seconds and {14.7, 1.4e13} on
the two simulation datasets for BLR. We show for all the
other methods how the KL divergence varies along with
running time in Fig. 1. As we can see, similar to KJIT,
IS spent the most running time but resulted in the worst
performance (Fig. 1a and b). This might be due to the
unstable accuracy of the estimated moments, even with
500K samples. In both BPR and BLR, our algorithms,
CEP-1 and CEP-2, obtain almost the same approximate
KL divergence with EP, implying the same inference qual-
ity. Although LP ends up with a similar KL divergence as
well, it is far slower than CEP-1, CEP-2 and EP. CEP-1 is
slightly faster than CEP-2, because CEP-2 uses the second
order Taylor approximation and needs extra computation.
While the running time of EP, CEP-1 and CEP-2 are close
in BPR, EP is slower than both CEP-1 and CEP-2 in BLR.
The reason might be that EP has to use a two-dimensional
Gauss-Hermite quadrature for moment matching, while
CEP-1 and CEP-2 just one dimensional quadrature.

Real datasets. To further examine the predictive
performance and computational efficiency, we tested
all the methods on six real-world datasets from
UCI machine learning repository(https://archive.
ics.uci.edu/ml/index.php), australian, breast,
crab,ionos, pima and sonar. We randomly split each
dataset into a half for training and the other half for test-
ing. We split the dataset for five times and reported the
average test log likelihood, area under ROC curve (AUC),

https://github.com/wittawatj/kernel-ep
https://github.com/wittawatj/kernel-ep
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php


and running time of each method. The test log likelihoods
are summarized in Table 1. Due to the space limit, the
AUC results are provided in the supplementary material.
The running time are shown in Fig. 2.

From Table 1a and b, we can see that CEP-1 and CEP-2
nearly always obtain average test log-likelihoods (a bit)
larger than or close to that of EP. It demonstrates that our
approach can have the same predictive performance as EP.
In most cases, CEP-2 is slightly better than CEP-1, and
this might be due to the usage of the second-order Taylor
approximations. LP achieves a close prediction accuracy
to EP as well, but it is much slower (see Fig. 2). VB per-
forms best in crab dataset, but is suboptimal in the other
datasets. KJIT, however, performs the worst in most cases,
especially on pima and sonar. In fact, KJIT’s performance
is quite unstable. It often results in an exceedingly small
log-likelihood, implying a complete failure. We have to
run several times to guarantee reasonable accuracy.

Fig. 2 shows the average running time of each method. As
we can see, CEP-1, CEP-2 and EP are much faster than LP,
which is consistent with the results from the simulation
(see Fig. 1). Note that KJIT is much slower than LP,
especially for pima, where KJIT’s average running time is
904.626 seconds. CEP-1 and CEP-2 are also significantly
faster than VB. In BPR, the speeds of CEP-1 and CEP-
2 are close to that of EP, while in BLR, EP is slower,
especially on sonar, which might be again due to the two
dimensional quadrature for moment matching. The results
confirm the computational advantage of our approach.

6.2 BAYESIAN TENSOR DECOMPOSITION

We next examined our approach in Bayesian tensor de-
composition (as in Section 4.1). Due to the production
term in the likelihood (see (12)(13)), the moment match-
ing is intractable and hence standard EP is infeasible. To
the best of our knowledge, efficient and accurate approxi-
mations remain absent.

Datasets. We used two real-world datasets (Zhe et al.,
2016b): (1) Alog, a 200 × 100 × 200 tensor with con-
tinuous entry values, and (2) Enron, a binary tensor of
size 203 × 203 × 200. Alog represents the three-way
(user, action, resource) interactions in a file access log,
and includes 0.33% nonzero entries. Enron describes the
three-way relationship (sender, receiver, time) in emails,
with 0.01% nonzero entries.

Methods. We compared with LP, variational message
passing (VMP), and a state-of-the-art tensor decomposi-
tion algorithm, CP-WOPT (Acar et al., 2011). VMP has
been proven successful in matrix decomposition when the
EP-based messages are unavailable (Stern et al., 2009).
We implemented VMP for tensor decomposition. As in
(Stern et al., 2009), to ensure tractable updates, VMP uses

an augmented model representation for binary tensors,
where for each entry i, a latent continuous entry value zi
is first sampled from N

(
zi|1>(u1

i1
◦ . . . ◦ uKiK ), 1

)
, and

then the observation yi determined from a step function,
1(yi = 1)1(zi > 0) + 1(yi = 0)1(zi ≤ 0) where 1(·)
is the indicator function. We implemented our approach,
CEP, based on the first-order Taylor approximations in
(10) (the second-order based one turns out be to worse
although with more computation).

The test setting is the same as in (Zhe et al., 2016b).
We evaluated all the methods via a 5-fold cross valida-
tion. Specifically, we randomly split the nonzero entries
into 5 folds where 4 folds and the same number of zero
entries were sampled for training. We used the rest of
nonzero entries and sampled 0.1% of the remaining zero
entries for test. In so doing, the nonzero and zero entries
were considered as equally important, and we avoided the
evaluation being dominated by the large portion of zeros.
We chose the rank, i.e., the dimension of the embedding
vectors, from {3, 5, 8, 10}.

We report the average root-mean-square-error (RMSE)
for Alog and AUC for Enron as well as their standard devi-
ations in Fig. 3 a and c. We can see that CEP outperforms
LP and CP-WOPT by a large margin in all the cases. The
prediction accuracy of CEP is close to (when the rank is
3 or 5 for Alog) or significantly better than VMP (in all
the other cases). Note that the inferior performance of
VMP in binary data might be due to the extra variational
approximations for the latent continuous variables in the
augmented model representation. The reason why LP
is far worse than CEP might be that the numerical opti-
mizations were saturated in poor local maxima, resulting
in inferior Laplace approximations. We also report the
per-iteration running time of CEP, LP and VMP in Fig. 3
b and d. As we can see, CEP has a close speed to VMP,
and is much faster than LP — on average with over 40
times speedup. The results consistently demonstrate the
advantage of CEP in both predictive performance and
computational efficiency. Finally, we show in Fig. 4 how
the predictive performance of CEP, LP and VMP varied
along with the running iterations when the rank is 10
(more results are given in the supplementary material).
As we can see, the prediction accuracy of all the methods
converges quickly and keeps stable with more iterations.

6.3 STREAMING TENSOR DECOMPOSITION

Finally, we adapted CEP to the assumed density filtering
(ADF) framework, denoted by ADF-CEP, for streaming
tensor decomposition. We compared with the state-of-the-
art Bayesian streaming tensor decomposition algorithm,
POST (Du et al., 2018), which is essentially VMP ad-
justed to the streaming variational Bayes (Broderick et al.,
2013). We also compared with CP-WOPT that performs



Dataset CEP-1 CEP-2 LP EP VB KJIT
australian −0.449± 0.012 −0.450± 0.015 −0.451± 0.012 −0.450± 0.015 −0.449± 0.015 −0.451± 0.013

breast −0.579± 0.020 −0.565± 0.020 −0.576± 0.018 −0.585± 0.024 −0.587± 0.023 −0.576± 0.017
crab −0.316± 0.004 −0.315± 0.003 −0.349± 0.012 −0.313± 0.003 −0.277± 0.004 −0.327± 0.004
ionos −0.316± 0.022 −0.302± 0.023 −0.316± 0.022 −0.309± 0.025 −0.332± 0.032 −0.339± 0.018
pima −0.541± 0.007 −0.540± 0.006 −0.541± 0.006 −0.541± 0.007 −0.542± 0.007 −0.608± 0.014
sonar −0.522± 0.017 −0.513± 0.027 −0.519± 0.016 −0.531± 0.026 −0.578± 0.026 −1.085± 0.053

(a) Bayesian logistic regression
Dataset CEP-1 CEP-2 LP EP VB

australian −0.428± 0.012 −0.431± 0.015 −0.428± 0.012 −0.435± 0.015 −0.441± 0.017
breast −0.583± 0.018 −0.592± 0.023 −0.594± 0.023 −0.615± 0.032 −0.621± 0.035
crab −0.228± 0.009 −0.226± 0.009 −0.231± 0.009 −0.250± 0.008 −0.197± 0.010
ionos −0.286± 0.012 −0.277± 0.015 −0.319± 0.009 −0.307± 0.010 −0.458± 0.036
pima −0.553± 0.009 −0.554± 0.009 −0.553± 0.009 −0.554± 0.009 −0.557± 0.010
sonar −0.533± 0.032 −0.528± 0.032 −0.579± 0.030 −0.553± 0.039 −0.891± 0.070

(b) Bayesian probit regression.
Table 1: Average test log-likelihoods on six real datasets.
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Figure 3: Prediction accuracy and per-iteration running time of all the methods for tensor decomposition. Note that the
running time of VMP and CEP are close.
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Figure 4: Average prediction accuracy v.s. running itera-
tion. The rank of the embeddings is 10.

static decomposition. We tested on a real-world binary
tensor, DBLP (Du et al., 2018), which depicts the bibliog-
raphy relationships (author, conference, keyword). The
tensor is 10K × 200× 10K, including %0.001 nonzero
entries. We followed (Du et al., 2018) to sample 80%
nonzero entries and randomly sampled the same number
of zero entries to obtain a balanced training set. We then
sampled 50 test sets from the remaining entries — each
comprises 200 nonzero and 1, 800 zero elements. We ran-
domly shuffled the training entries, and partitioned them
into many small batches. These batches were streamed
to ADF-CEP and POST. After all the batches were pro-
cessed, we evaluated the predictive performance of the
learned models on the 50 test sets. We varied the batch
sizes from {100, 500, 1K, 5K, 10K}, and set the rank
of the embeddings to 8. We conducted 5 runs for each
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Figure 5: The predictive performance for streaming de-
composition. The rank of the embeddings is 8.

method, and report the average and standard deviation of
AUC in Fig. 5. As we can see, ADF-CEP consistently
outperforms POST and CP-WOPT by a large margin.

7 CONCLUSION
We have developed conditional expectation propagation
(CEP) to overcome the practical barriers of EP when the
moment matching is intractable. CEP conducts efficient
and analytical updates, without the need for hand-crafted
approximations, expensive sampling or numerical opti-
mizations. The performance of CEP in the inference tasks
of several important Bayesian models is encouraging. In
the future work, we will continue to explore CEP in theory,
e.g., energy functions, and apply CEP in more complex
models, e.g., Bayesian neural networks.
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