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Abstract

Several recent papers have discussed a modifi-
cation of linear regression in which the corre-
spondence between input variables and labels
is missing or erroneous, referred to as “Linear
Regression with Unknown Permutation”, or
“Linear Regression with Shuffled Data”. Prior
studies of this setup have shed light on the as-
sociated statistical limits. However, practical
and well-founded approaches that overcome
the computational challenges of the setup are
still scarce. In this paper, we translate the prob-
lem of linear regression with unknown per-
mutation to a robust subspace recovery prob-
lem, or alternatively, outlier recovery prob-
lem. Outliers correspond to mismatched data,
and a specific sparse representation of the data
is used to detect the outliers. The proposed
approach requires at least a reasonably large
fraction (but potentially significantly less than
50%) of the response-predictor pairs to be in
correct correspondence. This assumption is
often justified, e.g., if record linkage based
on additional contextual information is suffi-
ciently accurate to enable correct matching of
such fraction of the data. It turns out that in this
situation, estimation of the regression param-
eter on the one hand and recovery of the un-
derlying permutation on the other hand can be
decoupled so that the computational hardness
associated with the latter can be sidestepped.

1 INTRODUCTION

Suppose we are given two samplesX = {x1, . . . ,xn} ⊂
Rd and Y = {y1, . . . ,yn} ⊆ Rm that contain two dif-
ferent pieces of information about a common set of ob-
servational units (entities), but there is only incomplete

knowledge about which datum in Y belongs to the same
entity as another datum in X . As an illustrative exam-
ple, X and Y might correspond to measurements from
two different sensors, but each measurement is observed
without or only inaccurate time stamp. This is a common
scenario in engineering applications [4, 18].

In statistics, this situation has been studied under the term
“Broken Sample Problem” [3, 10, 14, 15, 16, 20, 48].
Specifically, {(xπ∗(i),yi)}ni=1 for some unknown per-
mutation π∗ are assumed to be i.i.d. pairs from a joint
distribution P ∗, typically belonging to some parametric
family P = {Pθ, θ ∈ Θ}, and it is of interest to recover
π∗ as well as the parameter θ∗ of P ∗ = Pθ∗ . Perhaps the
most straightforward instance of this setup is the bivari-
ate normal case (d = m = 1) with θ∗ as the correlation
coefficient. “Broken Samples” naturally arise in record
linkage [11, 25]. Broadly speaking, the latter term refers
to the task of combining data sets obtained from multi-
ple sources into a single, more comprehensive data set
by matching records corresponding to the same entity.
This process can be challenging and error-prone in the
absence of accurate (quasi-) identifying variables. On
the other hand, an adversary may try to use record link-
age in order to identify sensitive information. A well-
known example is due to Sweeney (1997) who demon-
strated that voter registration data can be used to disclose
individual health records even if the latter do not contain
explicit identifiers. In this regard, broken samples also
pertain to the area of data confidentiality.

Model and Problem Statement.
The task of re-pairing a broken sample, i.e., recovering
the permutation π∗ from X and Y appears hopeless un-
less there is a strong association between the underlying
random variables. In a motivating example in [16], X
and Y consist of photos of n movie stars taken during
adulthood and childhood, respectively. It is expected that
by extracting suitable features from both sets of photos,
matching of corresponding photos is facilitated. Several
works have studied the case of a monotone functional re-



lationship between both samples [9, 19, 35]. Monotonic-
ity is a natural assumption as it prompts a straightfor-
ward way of estimating π∗ via sorting. Various recent pa-
pers have considered a linear functional relationship un-
der the terms “Unlabeled Sensing”, “Linear Regression
with Unknown Permutation”, or “Linear Regression with
Shuffled Data” [1, 18, 24, 26, 33, 34, 39, 45]. Specifi-
cally, the model considered therein is of the form

Y = Π∗XB∗ + σE, (1)

where Y has rows {y>i }ni=1, X has rows {x>i }ni=1, B∗ ∈
Rd×m is a regression parameter, Π∗ is a permutation
matrix, and E represents random additive error scaled
by σ > 0. The goal is to recover B∗ and/or Π∗ given
(X,Y). Applications of (1) include the reconstruction
of spatial fields using mobile sensors [44], time-domain
sampling in the presence of clock jitter [4], multi-target
tracking in radar [6], header-free communication in sen-
sor networks [33], regression analysis after record link-
age [13, 23, 27, 32, 36, 37], linkage of electronic health
records [38], correspondence problems in computer vi-
sion, and gated flow cytometry [1].

Main Challenges.
The presence of the permutation poses unprecedented
statistical and computational challenges. The paper [45]
shows that in case that E = 0, B∗ can be uniquely re-
covered by exhaustive search over permutations almost
surely if the entries of X are i.i.d. from a continuous dis-
tribution and n > 2d. Multiple subsequent papers con-
sider the situation in which X and E have i.i.d. standard
Gaussian entries. In this setting, a series of properties
have been established for the least squares problem

min
Π∈Pn,B∈Rd×m

‖Y −ΠXB‖2F , (2)

where ‖·‖F is the Frobenius norm and Pn denotes the set
of n-by-n permutation matrices. Problem (2) is a spe-
cific quadratic assignment problem [7]. A result in [34]
shows that (2) is NP-hard. For m = 1 (i.e., the response
variable is scalar), the paper [34] also derives some nec-
essary and some sufficient conditions for exact and ap-
proximate recovery of Π∗ based on (2), and elaborates
on the significance of the quantity SNR = ‖B∗‖2F /σ2

(signal-to-noise ratio) in this context. The requirement
SNR = Ω(n2), i.e., an excessively large signal-to-noise
ratio, is proved to be a necessary condition for approxi-
mate permutation recovery with respect to the Hamming
distance. In a similar spirit, the work [26] shows that for
m = 1, SNR = Ω(d/ log log n) is necessary for approxi-
mate recovery of B∗. Tractable algorithms with provable
guarantees are scarce at this point: the scheme in [26] has
polynomial time complexity, but is “not meant for prac-
tical deployment” as the authors state themselves. The

Figure 1: Left: Permutation matrix without additional
structure. Right: Sparse Permutation.

convex relaxation of (2) in which Pn is replaced by its
convex hull, the set of doubly stochastic matrices, was
shown to perform poorly [18]. The papers [33, 51] study
(2) for multivariate response (m > 1). While [33] con-
tains results on the denoising error rather than on recov-
ery of B∗ or Π∗ as in [51], both papers provide substan-
tial support for the hypothesis that multiple responses re-
sulting from the same permutation reduce the required
SNR in order to reliably estimate those two quantities.

Proposed Approach and Contributions.
Despite the significant body of work on setup (1), ap-
proaches that are both computationally feasible and
equipped with statistical guarantees are scarce. One pos-
sible remedy is to impose additional assumptions on the
permutation Π∗. We herein consider the case in which
Π∗ moves only a fraction α = k/n of indices, or equiv-
alently, the correspondence between X and Y is known
except for subsets of X and Y of size k each. Formally,

|S∗| ≤ k, where S∗ = {1 ≤ i ≤ n : Π∗ii 6= 1} (3)

An illustration is provided in Figure 1. The above as-
sumption is often sensible in applications. For exam-
ple, measurements observed over time may be received
in their correct chronological order except for selected
periods with higher latencies; in record linkage, auxil-
iary information such as demographic variables can be
used to facilitate the identification of matching records.

In the above setup, recovery of Π∗ can be performed
in a two-stage manner. In the first stage, one aims at
the identification of a reasonably large subset Q ⊆ Sc∗,
where Sc∗ denotes the complement of S∗ in (3) associated
with shuffled data. The pairs {(xi,yi)}i∈Q are correctly
matched and can thus be used to estimate the regression
parameter B∗ by ordinary least squares. Denote the re-
sulting estimator by B̂. In the second stage, B̂ is plugged
into the least squares problem (2) in order to obtain the
following minimization problem in Π only:

min
Π∈Pn

‖Y−ΠXB̂‖2F = min
Π∈Pn

−2 tr(ΠXB̂Y>)+c, (4)

where c does not depend on Π. The optimization prob-



lem on the right hand side, a so-called linear assign-
ment problem, is computationally tractable. Indeed,
Birkhoff’s theorem asserts that the constraint set in (4)
can be relaxed to its convex hull, the set of doubly
stochastic matrices. This yields a specific linear pro-
gramming problem for which various specialized algo-
rithms have been developed [7].

The main contributions of this paper are as follows. First,
we propose and analyze a particularly effective approach
based on sparse data representations for identifying a
subset of observations Q ⊆ Sc∗ not affected by Π∗.
Clearly, this task becomes more challenging as the frac-
tion of mismatched data α = k/n increases. It is demon-
strated that the suggested approach deals more success-
fully with substantial values of α in the range (0.4, 0.7)
than competing methods. Second, we provide a statisti-
cal analysis of permutation recovery based on (4). That
analysis reveals that the requirement on the signal-to-
noise ratio in [34] for a single outcome (m = 1) can
be considerably relaxed as m increases.

Related Work.
The paper [39] is the first to study (1) under assumption
(3) that is referred to as “sparse permutation” therein.
While [39] studies the case of a single outcome only,
their approach is straightforward to extend to multiple
outcomes. Specifically, after introducing an auxiliary
variable Ξ∗ = n−1/2(Π∗ − I)XB∗ model (1) becomes

Y = XB∗ +
√
nΞ∗ + σE.

Observing that Ξ∗ has at most k non-zero rows if Π∗ is
k-sparse in the sense of (3) motivates the formulation

min
B,Ξ

1

n ·m
‖Y −XB−

√
nΞ‖2F + λ

n∑
i=1

‖Ξi,:‖2, (5)

where {Ξi,:}ni=1 denote the rows of Ξ ∈ Rn×m. Row
sparsity is promoted via the group lasso penalty [50].
Approach (5) is both computationally convenient and
amenable to statistical analysis. However, a serious
drawback of (5) is that the fraction of permuted data
α = k/n that can be tolerated is comparatively small,
and particularly must not exceed 0.5. By contrast, if the
set S∗ were known in advance, B∗ could be estimated at
the usual rate as long as a constant (but potentially small)
fraction of the observations is correctly matched.

The paper [38] considers setting (1) under a spherical re-
gression model, i.e., the columns of both Y and X are
assumed to be elements of the respective unit sphere.
While the sparsity assumption (3) is adopted in [38] as
well, the authors additionally assume Π∗ to be block di-
agonal with known block structure. They suggest to esti-
mate B∗ and Π∗ in an alternating fashion, starting from

the ordinary least squares estimator of B∗ without ad-
justment for mismatches. The approach is thus not well-
suited to the case in which α is substantial.

2 APPROACH: SPARSE DATA
REPRESENTATION

We start with the noiseless case σ = 0. We let Z =
[X Y]> ∈ RD×n, D = d + m, with columns zi =
[x>i y>i ]>, 1 ≤ i ≤ n. We further write ZS∗ and ZSc∗ for
the column sub-matrices corresponding to S∗ = {1 ≤
i ≤ n : Π∗ii 6= 1} and its complement Sc∗, respectively.
Without loss of generality, S∗ = {1, . . . , k}. We let Π∗S∗
be the principal submatrix of Π∗ corresponding to S∗.
For simplicity, we also assume that rank(B∗) = m ≤ d.

The first observation is that the points {zi}i∈Sc∗ are con-
tained in a d-dimensional subspace, say ZSc∗ , of RD.
This follows immediately from the fact that

ZSc∗ =

[
Id×d

B∗>

]
X>Sc∗ , (6)

where XSc∗
denotes the row submatrix of X correspond-

ing to Sc∗. By contrast, the points {zi}i∈S∗ are generally
not contained in a lower-dimensional subspace. More-
over, if the entries of X are drawn i.i.d. from a continu-
ous distribution, then ZSc∗ ⊂ ZS∗ = span{zi}i∈S∗ with
probability one given |S∗| ≥ 2d. To see this, note that

ZS∗ =

[
Id×d 0

0 B∗>

] X>S∗

X>S∗
Π>S∗

 , (7)

[
Id×d

B∗>

]
=

[
Id×d 0

0 B∗>

][
Id×d

Id×d

]
. (8)

The rightmost matrix in (7) has 2d linearly independent
rows with probability one once |S∗| ≥ 2d, hence the
range of that matrix equals R2d. Combining this with
(6) and (8) yields ZSc∗ ⊂ ZS∗ . In summary, the points
{zi}ni=1 can be split into low-dimensional data {zi}i∈Sc∗
(inliers) and outliers {zi}i∈S∗ . Fig. 2 provides an illus-
tration forD = 2 (d,m = 1) andD = 3 (d = 2,m = 1).

According to the above considerations, if σ = 0, B∗

can be recovered exactly by identifying at least d linearly
independent inliers forming a basis of ZSc∗ . Given the
latter, it is then also straightforward to classify each of
the {zi}ni=1 as either inlier or outlier.

In order to distinguish between inliers and outliers,
we use the fact that each element in {zi}i∈Sc∗ can be
expressed as a linear combination of d other points,
whereas the elements of {zi}i∈S∗ generally require d+m
other points. In other words, elements in S∗ and Sc∗ can
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Figure 2: Illustration of the inlier/outlier representation
as described in the text. Left: d = 1, m = 1. Right:
d = 2,m = 1. Red dots correspond to inliers (correct
matches), blue dots to outliers (mismatches).

be separated in terms of the optimum value of the follow-
ing sequence of optimization problems:

min
αi∈Rn−1

‖αi‖0 subject to zi =
∑
j 6=i

α
(j)
i zj ,

αi = (α
(j)
i ), i ∈ {1, . . . , n},

(9)

where ‖·‖0 returns the number of non-zero entries of a
vector. Denoting by optval`0i the optimal function value
of (9) for observation i, we have maxi∈Sc∗ optval`0i <

mini∈S∗ optval`0i . Optimization problem (9) appears in
the literature on sparse subspace clustering (SSC), e.g.
[17, 31, 41, 46, 47]. A common approach is to replace
‖·‖0 in (9) by the `1-norm ‖·‖1 [17, 31, 41]. This yields
Algorithm 1 below. Its refined (and computationally
more demanding) version, in which (10) is solved re-
peatedly for increasingly smaller portions of the data to
achieve successive outlier removal, yields a further boost
in performance and often succeeds even in regimes close
to the definite limit of recovery with k = n− d.

Algorithm 1 Identifying the Subspace ZSc∗
Data Preparation: Normalize the columns of the matrix
Z = [X Y]> to unit `2-norm.

1. Sparse Representation: Obtain Â ∈ Rn×n as the
minimizer of the optimization problem

minA ‖A‖1 subject to Z = ZA, diag(A) = 0 (10)

2. Basis Selection: Let bi = ‖Â:,i‖1, 1 ≤ i ≤ n. Select
the columns of Z that correspond to the d smallest values
of {bi}ni=1 as guess for the basis of the subspace ZSc∗ .
Refinement: Modify step 2. as follows: remove the
columns of Z corresponding to the bηnc, η ∈ (0, 1),
largest values of {bi}ni=1 and iterate both steps until ZSc∗
is obtained from the d smallest values of {bi}ni=1.

Rationale.
It is important to the study the consequences of replac-
ing the `0-norm by the `1-norm when moving from (9)

to (10). Intuitively, we expect the corresponding objec-
tive value optval`1i to be of the order of

√
d for i ∈ Sc∗

and
√
d+m for i ∈ S∗: after normalizing each point

zi ← zi/‖zi‖2, 1 ≤ i ≤ n, each problem is supposed to
haveO(d) andO(d+m) non-zero coefficients of magni-
tude O(1/

√
d) and O(1/

√
d+m), respectively. A rig-

orous analysis of the `1-relaxation for generic SSC for
specific data-generating models is given in [41]. In the
following, we leverage results in [41] to deduce separa-
tion of {optval`1i }i∈S∗ and {optval`1i }i∈Sc∗ .
Proposition 1. Suppose that the entries of X are
i.i.d. standard Gaussian, and that the matrix B∗ has or-
thonormal columns. Then for any t > 0

min
i∈S∗

optval`1i ≥ (1− t)λ(τ)
√
d+m

max
i∈Sc∗

optval`1i ≤
√
d

c(ρ)
√

log ρ

with probability≥ 1−n exp(−ct2(d+m))−n exp(−d),
where λ(τ) is a function of τ = n/(d + m), ρ =
(n − k)/d is the oversampling ratio, and c(ρ) ≥ 1√

8
is a constant depending only on ρ [41].

Note that separation of {zi}i∈S∗ and {zi}i∈Sc∗ , i.e.,
maxi∈Sc∗ optval`1i < mini∈S∗ optval`1i is not required
for Algorithm 1 to succeed since we only need that

min
T⊆Sc∗, |T |≥d

max
i∈T

optval`1i < min
i∈S∗

optval`1i .

Proposition 1 indicates that separation is more likely to
hold as m, d, or (n− k)/d increase, where we recall that
m = rank(B∗) ≤ d. Our numerical results in §4 confirm
the insights conveyed by the above proposition.

Extension to the noisy case.
In the presence of noise (σ > 0), the subspace geometry
as outlined above only holds approximately. However,
Algorithm 1 extends to a noisy regime by replacing the
`1-minimization problem (10) by a lasso-type formula-
tion [31], and sampling ν · d, ν > 1, observations rather
than just d in order to stabilize subsequent least squares
fitting. If the noise level σ is known, the oversampling
factor ν can be chosen in a data-driven manner. Details
are provided in Algorithm 2 above. Following [31], we
suggest to choose the regularization parameter λ in (11)
as λ = cd−1/2 for c > 0. In our experiments we ob-
served good performance for c ∈ [0.05, 0.2]. The ratio-
nale behind the selection of the oversampling factor via
(12) is that if not enough points are sampled, we observe
overfitting, i.e., σ̂` � σ. By contrast, σ̂` � σ indicates
that we have sampled too many points including outliers.
One possible improvement is to replace the least squares
fits in (12) and (13) by a robust regression procedure like
the one based on the group lasso (5) since the subsets I`
potentially may contain few outliers as well.



Algorithm 2 Estimation of B∗ by outlier removal
Data Preparation: Normalize the columns of the matrix
Z = [X Y]> to unit `2-norm.

1. Sparse Representation: Obtain Â ∈ Rn×n as the
minimizer of the optimization problem

‖Z− ZA‖2F + λ‖A‖1 subject to diag(A) = 0. (11)

2. Choosing the Oversampling Factor: Let bi =
‖Â:,i‖1, i = 1, . . . , n, and {ν1, . . . , νM} ⊂ [1, n/d].

For ` = 1, . . . ,M :
Obtain I` as the subset of {1, . . . , n} corresponding to
the bν` · dc smallest values among the {bi}ni=1, and let

σ̂` = min
B∈Rd×m

1√
n ·m

‖YI` −XI`B‖F (12)

Let `∗ = argmin1≤`≤M |σ̂`/σ − 1|, and return

B̂ = argmin
B∈Rd×m

‖YI`∗ −XI`B‖F . (13)

Robust PCA via Matrix Decomposition.
The subspace geometry discussed above also suggests an
alternative route in which one aims to detect outliers by
means of a low rank plus column sparse decomposition
of the matrix Z, an approach often referred to as robust
PCA [8, 29, 49]. Specifically, for σ = 0 we have

Z =

[
X>

X>B∗>

]
︸ ︷︷ ︸

=L∗

+

[
0

(Π∗ − I)X>B∗>

]
︸ ︷︷ ︸

=C∗

This suggests the following optimization problem:

min
L,C
‖C‖2,1 sb. to Z = L + C, ‖L‖? ≤

√
d‖Z‖F

Ci,: = 0, 1 ≤ i ≤ d, (14)

where ‖·‖2,1 returns the sum of column `2-norms and
‖·‖? denotes the sum of singular values. These norms
serve as convex surrogate for the number of non-zero
columns and the matrix rank, respectively; the bound on
‖L‖? follows from ‖Π∗XB∗‖F = ‖XB∗‖F and

‖L∗‖? ≤
√

rank(L∗)‖L∗‖F =
√
d‖Z‖F .

In the presence of noise, (14) can be modified as follows:

min
L,C

1

2
‖Z−L−C‖2F +λ‖C‖2,1 sb. to ‖L‖? ≤ R (15)

for suitable choices of λ,R > 0. While (14) and (15)
are worth a consideration, they are outperformed by the

proposed approach in the challenging regime with a sub-
stantial fraction of mismatches. The benefit over the re-
gression formulation (5) is unclear as well since the latter
seems to better incorporate the specific underlying low-
rank structure. We refer to §4 for empirical comparisons.

3 PERMUTATION RECOVERY

In this section we discuss estimation of Π∗ given an es-
timator B̂ of B∗. To begin with, we suppose that B∗ is
perfectly known. In this case, the problem

min
Π∈Pn

‖Y −ΠXB∗‖2F = min
Π∈Pn

−2 tr(ΠXB∗Y>) + c

(16)
reduces to a specific linear program as discussed in the
introduction subsequent to (4). While it is tempting to
impose a sparsity constraint on Π also at this point, this
is not adequate as such additional constraint generally
affects the integrality of the convex relaxation of (16).

A sufficient condition for permutation recovery, i.e., the
eventR = {Π̂ = Π∗}, where Π̂ denotes a minimizer of
(4), is given by the following statement.
Lemma 1. Suppose that the noise matrix E has
i.i.d. N(0, 1)-entries. Define

γ := min
i<j
‖B∗>(xj − xi)‖2. (17)

Consider the event E = {γ ≥ 4σ
√

log(n/(2δ))}. We
then have P(R|E) ≥ 1− δ for all δ ∈ (0, 1).

The appearance of the quantity γ as a measure of mini-
mum separation between two pairs of data points is un-
surprising given that in the presence of noise it becomes
hard to correctly identify matching pairs without such
separation. In the sequel, we provide a lower bound on
γ for Gaussian X as we shall assume throughout the rest
of the section. The following result is an immediate con-
sequence of Proposition 6 in [28].
Lemma 2. There exist universal constants α0 ∈ (0, 1)
and κ > 0 such that for any α ∈ (0, α0)

P

(
min
i<j
‖B∗>(xi − xj)‖2 ≤ α‖B∗‖F

)
≤ exp

(
κ log(α) srank(B∗) + log(n2/2)

)
,

where srank(B∗) = (‖B∗‖F /‖B∗‖op)2 ≤ rank(B∗) ≤
min{d,m} denotes the stable rank of B∗.

Using Lemmas 1 and 2 yields the following theorem.
Theorem 1. Define the signal-to-noise ratio by SNR =
‖B∗‖2F /σ2, let κ > 0, α0 ∈ (0, 1) be as in Lemma 2,
and ε > 0, δ ∈ (0, 1). We have P(R) ≥ 1− n−ε − δ if

SNR > 16 log(n/(2δ)) ·max{α−20 , n
4·(1+ε)

κ·srank(B∗) }. (18)



In the special case srank(B∗) = O(1), Theorem 1 recov-
ers the requirement SNR & nC for C > 0 shown in [34]
for permutation recovery based on the (computationally
intractable) problem (2) and a single outcome (m = 1).

As an important implication of Theorem 1 we obtain that
if srank(B∗) & log n, the requirement on the SNR be-
comes far less stringent. For instance, if B∗ = bQ, b >
0, with Q having m & log n orthonormal columns so
that ‖B∗‖2F & b2 log n, constant signal-to-noise ratio
b2/σ2 = Ω(1) per dimension suffices for permutation
recovery. This constitutes a dramatic improvement com-
pared to the case m = 1 studied earlier [34, 39].

While condition (18) is sufficient for permutation recov-
ery based on (4) with B∗ given, a similar condition can
be shown to be necessary as a consequence of the next
statement that can be seen as a converse to Lemma 2.
Proposition 2. Let B∗ = bQ as above, assuming ad-
ditionally that m = r = rank(B∗) = 2(q + 1) for
a non-negative integer q is an even number. Then if
n > 8(r/2)r/2, with probability at least .75

min
i<j
‖B∗>(xi − xj)‖2 ≤ ‖B∗‖F · 81/rn−1/r.

Proposition 2 confirms that if rank(B∗) = O(1) an ex-
cessively large SNR is needed for permutation recovery.
From the analysis in [12], it is known that a separation
condition in terms of a lower bound on γ (17) is neces-
sary for any estimator and not only (16).

Plug-in of B̂.
Optimization problem (16) is not practical since B∗ is
not known. A natural approach is to replace B∗ by the
estimator B̂ obtained from the approach in §2. Regarding
the pivotal quantity γ (17), the triangle inequality yields

min
i<j
‖B̂>(xi − xj)‖2

= min
i<j
‖((B̂−B∗)> + B∗>)(xi − xj)‖2

≥min
i<j
‖B∗>(xi−xj)‖2−2max

1≤i≤n
‖xi‖2‖B̂−B∗‖F (19)

For Gaussian {xi}ni=1, standard concentration arguments
show that with high probability

max
1≤i≤n

‖xi‖2 ≤
√
d+ 2

√
log n.

Given that Algorithm 2 allows rate-optimal estimation of
B∗, i.e., ‖B̂−B∗‖F . σ

√
(d ·m)/n, (19) becomes

min
i<j
‖B̂>(xi − xj)‖2 ≥ γ −O

(
(d ∨ log n) ·

√
m√

n

)
.

In view of Lemma 2, if srank(B∗) = Ω(m) and m =
Ω(log n), γ will be proportional to ‖B‖∗F &

√
m. The

O(·) term will be of lower order if d = o(
√
n), and the

analysis for known B∗ continues to apply.

4 EXPERIMENTS

In this section, we present the results of experiments with
synthetic and real data in order illustrate some central
features of the approach proposed herein.

Synthetic Data

For all synthetic data experiments, the entries of X are
drawn i.i.d. from the N(0, 1)-distribution. The coeffi-
cient matrix B∗ is generated in the same way, and subse-
quently its columns are orthornormalized.

Noiseless case.
We let n = 200, d ∈ {20, 50}, and m = md ∈
{1, 2, 5, 10, 20} for d = 20 and m = {1, 5, 10, 20, 50}
for d = 50. Moreover, for the fraction of mis-matched
data α = k/n, we consider {0.1, 0.15, . . . , 0.85}. We
compare the results of Algorithm 1 to the noiseless coun-
terpart of the group lasso formulation (5)

min
B,Ξ

n∑
i=1

‖Ξi,:‖2 subject to Y = XB + Ξ, (20)

as well as to the robust PCA formulation (14).
For each triplet of (d,m, α), we perform twenty inde-
pendent replications. Optimization problems (9) in Al-
gorithm 1 as well as (14) and (20) are solved with CVX
[21]. The refined version of Algorithm 1 is run with a
custom ADMM solver for efficiency.

Selected results are shown in Figure 3. We observe that
larger m leads to improvements since it increases the
separation of inliers and outliers in terms of optval`1 as
explained in §2. Moreover, smaller n/d as well as larger
fraction of mismatches α make the problem more chal-
lenging. The group lasso approach (20) is outperformed
by Algorithm 1 whenever m and α are large. In fact,
in all scenarios shown, (20) cannot handle values of α
larger than .55. On the other hand, for smallm and small
α (20) performs better. Robust PCA (14) is outperformed
by at least one of these two approaches in all regimes.

Noisy case.
We generate data according to model (1) for σ ∈
{0.05, 0.1, 0.2, 0.5, 1}, d = m ∈ {20, 50} with X and
B∗ and the grid for α as in the noiseless case. Twenty
replications are considered per setup. Algorithm 2 is run
with λ = 0.1/

√
d using the code from [40] and oversam-

pling factors ν ∈ {1.2, 1.5, 2, 2.5, 3}. As competitors,
we consider the group lasso formulation (5) with λ =
2
√

2 · σ ·
√

1/(n ·m), cf. [30] and robust PCA (15) with
R = ‖[X>; B∗>X]‖? and λ = σ

2 · (
√
m +

√
log n)[2].

Subsequently, we plug in the resulting estimators for B∗

in (4) to recover Π∗. Problem (4) is solved by an im-
plementation of the auction algorithm [5]. While not
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Figure 3: Selected results for the noiseless case. Top/Middle panel: #detected inliers −d (average ± standard error)
based on Algorithm 1 depending on α = k/n (horizontal axis). #detected inliers is defined as the number of observa-
tions in Sc∗ for which bi = optval`1i < minj∈S∗ optval`1j . Success of the approach is equivalent to #detected inliers
≥ d. The horizontal line at zero indicates the threshold for success. Bottom panel: Percentage of successful recovery
depending on α for the proposed approach (black) and the baseline competitors (20) (red) and (14) (dashed).

included in this paper, the situation for inlier recovery
looks similar as depicted in Figure 3 for moderate levels
of σ, i.e., the presented approach is stable with respect
to noise. Even more, as shown in Figure 4, the errors
‖B̂−B∗‖F /

√
m are not far from the oracle rate σ

√
d/n.

Similar as in the noiseless case, the two baselines group
lasso and robust PCA are competitive, but fall short of
the suggested method as α increases. A similar obser-
vation can be made for permutation recovery (Figure 5).
Interestingly, in our experiments the permutation is re-
covered perfectly in all runs for small level of σ by all
competitors. Notable differences arose only for σ ≥ 0.5.

Real Data
We consider data from the trading agent competition in

supply chain management [22, 42] available via [43].
The goal is to forecast the prices of m = 16 different
computer systems 20 days in the future using 61 fea-
tures capturing market conditions (bank interest rate, cur-
rent and lagged product demands in three different price
segments), current product prices and component prices.
The number of observations (days) equals n = 8966.
Due to high feature correlations, the matrix of inputs
X is reduced to its top d = 35 principal components.
We here work with B∗ as the resulting least squares es-
timator, i.e., B∗ = argminB‖Y − XB‖2F , where the
n-by-m matrix Y contains the 16 outcome variables.
We subsequently create shuffled versions of Y in the
form of Π∗Y, where the permutation Π∗ is generated
by first selecting bαnc indices uniformly at random from
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Figure 4: Boxplots of the estimation errors ‖B̂ − B∗‖F /
√
m for selected settings. “proposed” refers to Algorithm

2, “proposed+” refers to a hybrid of Algorithm 2 and (5) in which the least squares fits (12) and (13) are replaced by
group lasso fits (5). “grplasso” and “robPCA” refer to the plain group lasso and robust PCA, respectively.
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Figure 5: Boxplots of the (averaged) Hamming distance between estimated and underlying permutation for selected
settings. The annotation of this plot is as for Figure 4.

{1, . . . , n}, and then randomly permuting them. All
other indices are not affected by Π∗.
We evaluate the competitors above with regard to ‖B̂ −
B∗‖F /‖B∗‖F and ‖Π∗Y−Π̂Y‖F /‖Y‖F , where given
B̂, the estimate Π̂ is obtained from the plug-in approach
in §3. We use the latter metric to assess performance in
estimating Π∗ since the separability condition in Lemma
1 for permutation recovery w.r.t. Hamming distance is
not satisfied here. The results are shown in Fig. 6.

5 CONCLUSION
Broken Sample Problems such as regression with arbi-
trarily permuted data are notoriously challenging, and
no practical algorithms with theoretical guarantees are
available at this point. In this paper, we have studied a
more benign sub-case in which a sufficiently large frac-
tion (but potentially less than 0.5) of the observations
are in the right correspondence. We have demonstrated
herein that this situation can be solved by means of a
formulation based on sparse representations for the cor-
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Figure 6: Results on the supply chain management data
set. The plot shows ‖B̂ − B∗‖F vs. fraction of mis-
matches α. The table shows the relative error (in percent)
in recovering Π∗Y.

rectly matched data. A large number of (not too strongly
correlated) outcomes appears to be crucial to the success
of the approach: it not only allows for a clear separation
between correctly matched data and mismatched data,
but also significantly facilitates permutation recovery as
elaborated in §3. While we have shown (Lemma 2) that
at least of the order of log n outcomes are necessary for
permutation recovery at a constant SNR, it is an inter-
esting direction of future research whether at least the
regression parameter can be recovered in case of a large
fraction of mismatches and a small number of outcomes.

Appendix

Proof of Proposition 1. We first note that the assump-
tion on B∗ implies that zi/‖zi‖2 follow uniform dis-
tributions on the unit spheres of RD (for i ∈ S∗) and
range([Id×d; B

∗>]) (for i ∈ Sc∗), respectively. In fact,
for any i ∈ S∗, π∗(i) = j 6= i and hence

zi = [x>i y>i ] = [x>i (x>j B∗)>]> ∼ N(0, ID).

On the other hand, uniformity on range([Id×d; B
∗>])

for i ∈ Sc∗ is immediate from the observation that
[Id×d; B

∗>] the matrix has orthonormal columns. The
above observations allow application of Theorem 2.9 in
[41] which then yields the claim of the proposition.

Proof of Lemma 1. EventR = {Π̂=Π∗} is implied by{
‖B∗>xi − yi‖22 < min

j 6=i
‖B∗>xj − yi‖22, 1 ≤ i ≤ n

}
Expanding the squares and elementary re-arrangements
show that the above event is in turn implied by

γ > max
i<j

2σ

〈
εi,

B∗>(xj − xi)

‖B∗>(xj − xi)‖2

〉
︸ ︷︷ ︸

ξij

with γ defined in (17), and {εi}ni=1 are the rows of the
noise matrix E. Note that conditional on X, ξij ∼
N(0, 1) for all i < j. Standard concentration arguments
then show that the right hand side in the previous display

is upper bounded by 2σ
√

2 log
((
n
2

)
/δ
)

with probability
at least 1− δ, δ ∈ (0, 1).

Proof of Lemma 2. This lemma follows immediately
from Proposition 6 in [28] and a union bound.

Proof of Theorem 1. First invoke Lemma 2 with the

choice α = min{α0, n
−2·(1+ε)
κ·srank(B∗) } to conlude that γ ≥

α‖B∗‖F with probability at least 1−n−ε. Plugging this
lower bound on γ into the condition of event E in Propo-
sition 1 yields α‖B∗‖F ≥ 4σ

√
log(n/(2δ)) ⇔ SNR =

‖B∗‖2F /σ2 ≥ 16α−2 log(n/(2δ)).

Proof of Proposition 2. Let n2 = n/2, and let
{χ2

i (k)}n2
i=1 be independent χ2-random variables with k

degrees of freedom. For any t ≥ 0, we have

P
(

min
i<j
‖B∗>(xi − xj)‖22 < t2

)
≥ P

(
min

1≤i≤n/2
‖B∗>(x2i − x2i−1)‖22 < t2

)
= P

(
2b2 min

1≤i≤n/2
χ2
i (r) < t2

)
= 1−P(χ2

1(r) > t2/2b2)n2 (21)

Now if r = 2(q + 1) is even, the CDF of χ2
1(r) has the

following closed form expression:

P(χ2
1(r) ≤ z) = 1− exp(−z/2)

∑q
s=0

(z/2)s

s! , z ≥ 0.

Choosing t2 = c · 2b2 in (21) for c > 0 to be determined
below, we obtain that

P
(

min
i<j
‖B∗>(xi − xj)‖22 < t2

)
≥ 1−

(∑q
s=0

cs

s! exp(−c)
)n2

= 1−
(

1−
∑∞
s=q+1

cs

s! exp(−c)
)n2

≥ 1−
(

1− cq+1

(q+1)! exp(−c)
)n2

(22)

Choosing c = θ1/(q+1)n−1/(q+1)(q + 1) and using that

(q + 1)! > (q + 1)q+1

we obtain the following lower bound on (22)

1−
((

1− θ
n exp(−c)

)n)1/2 ≥ 1− exp
(
− θ2 exp(−c)

)
as long as n ≥ θ. Setting θ = 8, the above probability
is lower bounded by .75 if n > 8(q+ 1)q+1. Combining
the choice of t2 = c2b2 with the above choice of c and
noting that ‖B∗‖2F = 2(q + 1)b2 concludes the proof.
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