A APPENDIX

A1l BACKGROUND

We first provide an overview of the components of hy-
perparameter optimization and, by association, NAS. As
shown in Figure[I] a general hyperparameter optimization
problem has three components, each of which can have
NAS-specific approaches. We provide a brief overview of
the components below, drawing attention to NAS-specific
methods (see the survey by Elsken et al. [12] for a more
thorough coverage of NAS).

Search Space. Hyperparameter optimization involves
identifying a good hyperparameter configuration from
a set of possible configurations. The search space de-
fines this set of configurations, and can include contin-
uous or discrete hyperparameters in a structured or un-
structured fashion [42} 3| [14} 38]]. NAS-specific search
spaces usually involve discrete hyperparameters with ad-
ditional structure that can be captured with a directed
acyclic graph (DAG) [39,132]]. Additionally, since a search
space for designing an entire architecture would have too
many nodes and edges, search spaces are usually defined
over some smaller building block, i.e., cell blocks, that
are repeated in some way via a preset or learned meta-
architecture to form a larger architecture [12]]. We design
our random search NAS algorithm for such a cell block
search space, using the same search spaces for the CIFAR-
10 and PTB benchmarks as DARTS for our experiments
in Sectiond] See Section [3]for a concrete example of one
such search space.

Search Method. Given a search space, there are various
search methods to select putative configurations to eval-
uate. Random search is the most basic approach, yet it
is quite effective in practice [3}27]]. Various general and
NAS-specific adaptive methods have also been introduced,
all of which attempt to bias the search in some way to-
wards configurations that are more likely to perform well.
In traditional hyperparameter optimization, the choice of
search method can depends on the search space. Bayesian
approaches based on Gaussian processes [42} 25 |43} [22]]
and gradient-based approaches [2,34] are generally only
applicable to continuous search spaces. In contrast, tree-
based Bayesian [[18| 4], evolutionary strategies [38]], and
random search are more flexible and can be applied to any
search space. NAS-specific search methods can also be
categorized into the same broad categories but are tailored
for structured NAS search spaces (see Section [2.2]for a
more involved discussion).

Evaluation Method. For each hyperparameter configura-
tion considered by a search method, we must evaluate its
quality. The default approach to perform such an evalua-
tion involves fully training a model with the given hyper-
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Figure 3: Convolutional Cells on CIFAR-10 Bench-
mark: Best architecture found by random search with
weight-sharing.

parameters, and subsequently measuring its quality, e.g.,
its predictive accuracy on a validation set. The first gener-
ation of NAS methods relied on full training evaluation,
and thus required thousands of GPU days to achieve a
desired result [49, 40,150, 41]]. In contrast, partial training
methods exploit early-stopping to speed up the evalua-
tion process at the cost of noisy estimates of configura-
tion quality. These methods use Bayesian optimization
[25} 22} [13]], performance prediction [15} [10]], or multi-
armed bandits [20, 27, [28]] to adaptively allocate resources
to different configurations. NAS-specific evaluation meth-
ods exploit the structure of neural networks to provide
even cheaper, heuristic estimates of quality. Many of
these methods center around sharing and reuse: network
morphisms build upon previously trained architectures
[6, 111} 21]]; hypernetworks and performance prediction
encode information from previously seen architectures
[5, 129, 148]]; and weight-sharing methods [39, 132} [1} 145, 7]
use a single set of weights for all possible architectures.

A.2 REPRODUCIBILITY OF RECENT WORK

We summarize the reproducibility of recent NAS publica-
tions at some of the major machine learning conferences
in Table [5]according to the availability of the following:

1. Architecture search code. The output of this code
is the final architecture that should be trained on the
evaluation task.



Table 5: Reproducibility of NAS Publications. Summary of the reproducibility status of recent NAS publications
appearing in top machine learning conferences. For the hyperparameter tuning column, N/A indicates we are not aware
that the authors performed additional hyperparameter optimization.

T Published result is not reproducible for the PTB benchmark when training the reported final architecture with provided

code.

t The authors stated they will release the entire codebase upon publication.
* Code to reproduce experiments was requested on OpenReview.

Architecture Model Evaluation Random  Hyperparameter
Conference Publication Search Code Code Seeds Tuning
ICLR 2018 Brock et al. [I5] Yes Yes No N/A
Liu et al. [30]] No No
ICML 2018 Pham et al. [39]7 Yes Yes No Undocumented
Cai et al. [6] Yes Yes No N/A
Bender et al. [[1] No No
NIPS 2018  Kandasamy et al. [24] Yes Yes No N/A
Luo et al. [33] Yes Yes No Grid Search
ICLR 2019 Liu et al. [32]] Yes Yes No Undocumented
Cai et al. [7]* No Yes No N/A
Zhang et al. [48]* No No
Xie et al. [45]]* No No
Cao et al. [8] No No

2. Model evaluation code. The output of this code is the
final performance on the evaluation task.

3. Hyperparameter tuning documentation. This in-
cludes code used to perform hyperparameter tuning of
the final architectures, if any.

4. Random Seeds. This includes random seeds used for
both the search and post-processing (i.e., retraining of
final architecture as well as any additional hyperpa-
rameter tuning) phases. Most works provide the final
architectures but random seeds are required to verify
that the search process actually results in those final
architectures and the performance of the final architec-
tures matches the published result. Note the random
seeds are only useful if the code for search and post-
processing phases are deterministic up to a random
seed; this was not the case for the DARTS code used
for the CIFAR-10 benchmark.

All 4 criteria are necessary for exact reproducibility. Due
to the absence of random seeds for all methods with re-
leased code, none of the methods in TableEare exactly
reproducible from the search phase to the final architec-
ture evaluation phase. Additionally, while only criteria
1-3 are necessary to estimate broad reproducibility, there
is minimal discussion of the broad reproducibility of ex-
isting methods in published work.

A.3 PTB BENCHMARK

We now present results for the PTB benchmark. We use
the DARTS search space for the recurrent cell, which

is described in Section [3. For this benchmark, due to
higher memory requirements for their mixture operation,
DARTS used a small recurrent network with embedding
and hidden dimension of 300 to perform the architecture
search followed by a larger network with embedding and
hidden dimension of 850 to perform the evaluation. For
the PTB benchmark, we refer to the network used in the
first stage as the proxy network and the network in the
later stages as the proxyless network.

Our setup matches that of DARTS with the following
exceptions:

Architecture Operations. In stage (1), DARTS trained
the shared weights network with the zero operation in-
cluded in the list of considered operations but removed
the zero operation when selecting the final architecture to
evaluate in stages (2) and (3). For our random search with
weight-sharing, we decided to exclude the zero operation
for both search and evaluation.

Stage 3 Procedure. For stage (3) evaluation, we follow
the ArXiv version of DARTS [31], which reported two
sets of results, one after training for 1600 epochs and
another fine tuned result after training for an additional
1000 epochs. In the ICLR version, Liu et al. [32] simply
say they trained the final network to convergence. We
trained for another 1000 epochs for a total of 3600 epochs
to approximate training to convergence.

We next present the final search results. We subsequently
explore the impact of various meta-hyperparameters on
random search with weight-sharing, and finally evaluate
the reproducibility of various methods on this benchmark.



A.3.1 Final Search Results

We now present our final evaluation results in Table [6.
Specifically, we report the output of stage (3), in which
we train the proxyless network configured according to
the best architectures found by different methods for 3600
epochs. We discuss various aspects of these results in the
context of the three issues—baselines, complex methods,
reproducibility—introduced in Section

First, we evaluate the ASHA baseline using 2 GPU days,
which is equivalent to the total cost of DARTS (second or-
der). In contrast to the one random architecture evaluated
by Pham et al. [39] and the 8 evaluated by Liu et al. [32]]
for their random search baselines, ASHA evaluated over
300 architectures with the allotted computation time. The
best architecture found by ASHA achieves a test perplex-
ity of 56.4, which is comparable to the published result
for ENAS and significantly better than the random search
baseline provided by Liu et al. [32]], DARTS (first or-
der), and the reproduced result for ENAS [32]. Our result
demonstrates that the gap between SOTA NAS methods
and standard hyperparameter optimization approaches
on the PTB benchmark is significantly smaller than that
suggested by the existing comparisons to random search
[39,132].

Next, we evaluate random search with weight-sharing
with tuned meta-hyperparameters (see Section [A.3.2]for
details). With slightly lower search cost than DARTS, this
method finds an architecture that reaches test perplexity
55.5, achieving SOTA perplexity compared to previous
NAS approaches. We note that manually designed archi-
tectures are competitive with RNN cells designed by NAS
methods on this benchmark. In fact, the work by Yang
et al. [47] using LSTM with mixture of experts in the
softmax layer (MoS) outperforms automatically designed
cells. Our architecture would likely also improve signifi-
cantly with MoS, but we train without MoS to provide a
fair comparison to ENAS and DARTS.

Finally, we examine the reproducibility of the NAS meth-
ods with available code for both architecture search and
evaluation. For DARTS, exact reproducibility was not
feasible since Liu et al. [32]] do not provide random seeds
for the search process; however, we were able to repro-
duce the performance of their reported best architecture.
We also evaluated the broad reproducibility of DARTS
through an independent run, which reached a test perplex-
ity of 55.9, compared to the published value of 55.7. For
ENAS, end-to-end exact reproducibility was infeasible
due to non-deterministic code and missing random seeds
for both the search and evaluation steps. Additionally,
when we tried to reproduce their result using the provided
final architecture, we could not match the reported test
perplexity of 56.3 in our rerun. Consequently, in Table 6]

we show the test perplexity for the final architecture found
by ENAS trained using the DARTS code base, which Liu
et al. [32]] observed to give a better test perplexity than
using the architecture evaluation code provided by ENAS.
We next considered the reproducibility of random search
with weight-sharing. We verified the exact reproducibil-
ity of our reported results, and then investigated their
broad reproducibility by running another experiment with
different random seeds. In this second experiment, we
observed a final text perplexity of 56.5, compared with a
final test perplexity of 55.5 in the first experiment. Our
detailed investigation in Section[A.3.3|shows that the dis-
crepancies across both DARTS and random search with
weight-sharing are unsurprising in light of the differing
convergence rates among architectures on this benchmark.

A.3.2 Impact of Meta-Hyperparameters

We now detail the meta-hyperparameter settings that we
tried for random search with weight-sharing in order to
achieve SOTA performance on the PTB benchmark. Sim-
ilar to DARTS, in these preliminary experiments we per-
formed 4 separate trials of each version of random search
with weight-sharing, where each trial consists of execut-
ing stage (1) followed by stage (2). In stage (1), we train
the shared weights and then use them to evaluate 2000
randomly sampled architectures. In stage (2), we select
the best architecture out of 2000, according to the shared
weights, to train from scratch using the proxyless network
for 300 epochs.

We incrementally tune random search with weight-sharing
by adjusting the following meta-hyperparameters asso-
ciated with training the shared weights in stage (1): (1)
gradient clipping, (2) batch size, and (3) network size.
The settings we consider proceed as follows:

Random (1): We train the shared weights of the proxy
network using the same setup as DARTS with the same
values for number of epochs, batch size, and gradient
clipping; all other meta-hyperparameters are the same.

Random (2): We decrease the maximum gradient norm
to account for discrete architectures, as opposed to the
weighted combination used by DARTS, so that gradient
updates are not as large in each direction.

Random (3): We decrease batch size from 256 to 64 in
order to increase the number of architectures used to train
the shared weights.

Random (4): We train the larger proxyless network archi-
tecture with shared weights instead of the proxy network,
thereby significantly increasing the number of parameters
in the model.

The stage (2) performance of the final architecture after



Table 6: PTB Benchmark: Comparison with state-of-the-art NAS methods and manually designed networks.
Lower test perplexity is better on this benchmark. The results are grouped by those for manually designed networks,
published NAS methods, and the methods that we evaluated. Table entries denoted by "-" indicate that the field does not
apply, while entries denoted by "N/A" indicate unknown entries. The search cost, unless otherwise noted, is measured
in GPU days. Note that the search cost is hardware dependent and the search cost shown for our results are calculated
for Tesla P100 GPUs; all other numbers are those reported by Liu et al. [32].

# Search cost is in CPU-days.

* We could not reproduce this result using the code released by the authors at https://github.com/
melodyguan/enas!

T The stage (1) cost shown is that for 1 trial as opposed to the cost for 4 trials shown for DARTS and Random search WS.
It is unclear whether ENAS requires multiple trials followed by stage (2) evaluation in order to find a good architecture.

Test Perplexity Params Search Cost Comparable Search
Architecture Source Valid Test M) Stage 1 Stage2 Total Search Space? Method
LSTM + DropConnect [36] 60.0 57.3 24 - - - - manual
ASHA + LSTM + DropConnect [28] 58.1 56.3 24 - - 13 N HP-tuned
LSTM + MoS [47] 56.5 54.4 22 - - - - manual
NAS# [49] N/A 640 25 - - le4 N RL
ENAS* [39] N/A 56.3 24 0.5 N/A N/A Y RL
ENAS [32] 60.8 58.6 24 0.5 N/A N/A Y random
Random search baseline [32] 61.8 59.4 23 - - 2 Y random
DARTS (first order) [32] 60.2 57.6 23 0.5 1 1.5 Y gradient-based
DARTS (second order) [32] 58.1 55.7 23 1 1 2 Y gradient-based
DARTS (second order) Ours 58.2 55.9 23 1 1 2 Y gradient-based
ASHA baseline Ours 58.6 56.4 23 - - 2 Y random
Random search WS Ours 57.8 55.5 23 0.25 1 1.25 Y random

retraining from scratch for each of these settings is shown  the risk of using noisy signals for the reward. In this case,
in Table[7. With the extra capacity in the larger network we see that even partial training for 300 epochs does not
used in Random (4), random search with weight-sharing recover the correct ranking; training using shared weights
achieves average validation perplexity of 64.7 across 4 further obscures the signal. The differing convergence
trials, with the best architecture (shown in Figure 2 in  rates explain the difference in final test perplexity of the
Section[3) reaching 63.8. In light of these stage (2) results, best architecture from Random (4) Run 2 and those from
we focused in stage (3) on the best architecture found by DARTS and Random (4) Run 1, despite Random (4) Run
Random (4) Run 1, and achieved test perplexity of 55.5 2 reaching a comparable perplexity after 300 epochs.

after training for 3600 epochs as reported in Table @ Overall, the results of Tables[7|and E] demonstrate a high

variance in the stage (2) intermediate results across trials,
A.3.3 Investigating Reproducibility along with issues related to differing convergence rates
for different architectures. These two issues help explain
the differences between the independent runs of DARTS
and random search with weight-sharing. A third potential
source of variation, which could in particular adversely
impact our random search with weight-sharing results,
stems from the fact that we did not perform any additional
hyperparameter tuning in stage (3); instead we used the
same training hyperparameters that were tuned by Liu
et al. [32] for the final architecture found by DARTS.

We next examine the stage (2) intermediate results in Ta-
ble[/|in the context of reproducibility. The first two rows
of Table[7 show a comparison of the published stage (2)
results for DARTS and our independent runs of DARTS.
Both the best and average across 4 trials are worse in our
reproduction of their results. Additionally, as previously
mentioned, we perform an additional run of Random (4)
with 4 different random seeds to test the broad repro-
ducibility our result. The minimum stage (2) validation
perplexity over these 4 trials is 63.9, compared to a min-
imum validation perplexity of 63.8 for the first set of  A.4 CIFAR-10 BENCHMARK
seeds.

. o - In this section, we provide additional detail for the experi-
Next, in Table[§ we compare the validation perplexities ments in Section EL1l
of the best architectures from ASHA, Random (4) Run 1,
Random (4) Run 2, and our independent run of DARTS Architecture Operations. In stage (1), DARTS trained
after training each from scratch for up to 3600 epochs.  the shared weights network with the zero operation in-
The swap in relative ranking across epochs demonstrates cluded in the list of considered operations but removed
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Table 7: PTB Benchmark: Comparison of Stage (2) Intermediate Search Results for Weight-Sharing Methods.
In stage (1), random search is run with different settings to train the shared weights. The resulting networks are used to
evaluate 2000 randomly sampled architectures. In stage (2), the best of these architectures for each trial is then trained
from scratch for 300 epochs. We report the performance of the best architecture after stage (2) across 4 trials for each

search method.

Setting
Network Batch  Gradient Trial
Method Config Epochs  Size  Clipping 1 2 3 4 Best Average
DARTS [32] proxy 50 256 0.25 673 663 634 634 634 65.1
Reproduced DARTS proxy 50 256 0.25 645 67.7 640 677 64.0 66.0
Random (1) proxy 50 256 0.25 65.6 663 660 656 65.6 65.9
Random (2) proxy 50 256 0.1 658 67.7 653 649 649 65.9
Random (3) proxy 50 64 0.1 66.1 650 649 645 645 65.1
Random (4) Run 1 proxyless 50 64 0.1 663 64.6 64.1 63.8 63.8 64.7
Random (4) Run 2 proxyless 50 64 0.1 63.9 64.8 663 66.7 63.9 65.4

Table 8: PTB Benchmark: Ranking of Intermediate Validation Perplexity. Architectures are retrained from scratch
using the proxyless network and the validation perplexity is reported after training for the indicated number of epochs.
The final test perplexity after training for 3600 epochs is also shown for reference.

Validation Perplexity by Epoch Test
300 500 1600 2600 3600 Perplexity
Search Method Value Rank Value Rank Value Rank Value Rank Value Rank | Value Rank
DARTS 64.0 4 61.9 2 59.5 2 58.5 2 58.2 2 55.9 2
ASHA 63.9 2 62.0 3 59.8 4 59.0 3 58.6 3 56.4 3
Random (4) Run 1 | 63.8 1 61.7 1 59.3 1 58.4 1 57.8 1 55.5 1
Random (4) Run2 | 63.9 2 62.1 4 59.6 3 59.0 3 58.8 4 56.5 4

the zero operation when selecting the final architecture to
evaluate in stages (2) and (3). For our random search with
weight-sharing, we decided to include the zero operation
for both search and evaluation. We hypothesize that our
results may improve if we impose a higher complexity on
the final architectures by excluding the zero operation.

Stage 1 Procedure. For random search with weight-
sharing, after the shared weights are fully trained, we
evaluate randomly sampled architectures using the shared
weights and select the best one for stage (2) evaluation.
Due to the higher cost of evaluating on the full validation
set, we evaluate each architecture using 10 minibatches
instead. We split the total number of architectures to be
evaluated into sets of 1000. For each 1000, we select
the best 10 according the cheap evaluation on part of the
validation set and evaluate on the full validation set. Then
we select the top architecture across all sets of 1000 for
stage (2) evaluation.

Reproducibility. The code released by Liu et al. [32] did
not produce deterministic results for the CNN benchmark
due to non-determinism in CuDNN and in data loading.
We removed the non-deterministic behavior in CuDNN
by setting

False
cudnn.deterministic =
cudnn.enabled=True

cudnn.benchmark =
True

Note that this only disables the non-deterministic func-
tions in CuDNN and does not adversely affect training
time as much as turning off CuDNN completely. We
fix additional non-determinism from data loading by set-
ting the seed for the random package in addition to
numpy . random and pytorch seed and turning off
multiple threads for data loading.

We ran ASHA and one set of trials for random search with
weight-sharing using the non-deterministic code before
fixing the seeding to get deterministic results. Hence, the
result for ASHA does not satisfy exact reproduciblity due
to non-deterministic training and asynchronous updates.
Due to the demanding computational cost of these ex-
periments, we use the non-deterministic runs of random
with weight-sharing as the second set of trials for Random
(5) in Table |Z, all other settings for random search with
weight-sharing are deterministic.

A.5 AVAILABLE CODE

Unless otherwise noted, our results are exactly repro-
ducible from architecture search to final evaluation us-
ing the code available at https://github.com/
liamcli/randomNAS release. The code we use
for random search with weight-sharing on both bench-
marks is deterministic conditioned on a fixed random
seed. We provide the final architectures used for each of
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the trials shown in the tables above, as well as the ran-
dom seeds used to find those architectures. In addition,
we perform no additional hyperparameter tuning for final
architectures and only tune the meta-hyperparameters ac-
cording to the discussion in the text itself. We also provide
code, final architectures, and random seeds used for our
experiments using ASHA. However, we note that there
is one uncontrolled source of randomness in our ASHA
experiments—in the distributed setting, the asynchronous
nature of the algorithm means that the results depend on
the order in which different architectures finish (partially)
training. Lastly, our experiments were conducted using
Tesla P100 and V100 GPUs on Google Cloud. We con-
vert GPU time on V100 to equivalent time on P100 by
applying a multiple of 1.5.
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