Supplementary Material: Recommendation from Raw Data with Adaptive Compound Poisson Factorization

Olivier Gouvert, Thomas Oberlin, Cédric Févotte

IRIT, Université de Toulouse, CNRS, France firstname.lastname@irit.fr

1 Stirling Numbers

The Stirling numbers of the three kinds are three different ways to partition y elements into n groups.

- ullet The Stirling number of the first kind corresponds to the number of ways of partitioning y elements into n disjoints cycles.
- ullet The Stirling number of the second kind corresponds to the number of ways of partitioning y elements into n non-empty subsets.
- ullet The Stirling number of the third kind (also known as Lah number) corresponds to the number of ways of partitioning y elements into n non-empty ordered subsets.

Figure 1: Illustration of the Stirling numbers of the three kinds for y=3 and n=1.

2 Proof of limit cases

Proposition 1. If there exists θ^{raw} such that $\lim_{\theta \to \theta^{raw}} \kappa^T \psi(\theta) = -\infty$, then the posterior of dcPF tends to the posterior of PF as θ goes to θ^{raw} .

Proposition 2. If there exists θ^{bin} such that $\lim_{\theta \to \theta^{bin}} \kappa^T \psi(\theta) = +\infty$, then the posterior of dcPF tends to the posterior of PF applied to binarized data as θ goes to θ^{bin} , i.e.: $\lim_{\theta \to \theta^{bin}} p(\mathbf{W}, \mathbf{H}|\mathbf{Y}) = p(\mathbf{W}, \mathbf{H}|\mathbf{N} = \mathbf{Y}^b)$.

Proof. Let $\lambda \in \mathbb{R}_+$, $n \sim \operatorname{Poisson}(\lambda)$ and $y|n \sim ED(\theta, n\kappa)$ with support given by $S = \{n, \dots, +\infty\}$:

$$p(n|\lambda) = \frac{\lambda^n e^{-\lambda}}{n!},\tag{1}$$

$$p(y|n) = \exp(y\theta - n\kappa^T \psi(\theta))h(y, n\kappa), \ y \in S,$$
 (2)

where κ and $\psi(\theta)$ can either be scalars or vectors of the same dimension. In both cases, $\kappa^T \psi(\theta) \in \mathbb{R}$. We denote by $r = \lambda e^{-\kappa^T \psi(\theta)}$.

We have the following posterior distribution for y > 0:

$$p(n|y) = \frac{r^n h(y, n\kappa)(n!)^{-1}}{\sum_{m=1}^y r^m h(y, m\kappa)(m!)^{-1}}, \ n \in \{1, \dots, y\}.$$
(3)

Thus, for fixed κ and y > 0, we have that:

$$\sum_{m=1}^{y} r^m h(y, m\kappa) (m!)^{-1} \underset{r \to +\infty}{\sim} r^y h(y, y\kappa) (y!)^{-1}$$
 (4)

$$\underset{r\to 0}{\sim} rh(y,\kappa). \tag{5}$$

It follows:

$$p(n|y) \xrightarrow[r \to +\infty]{} \delta_y(n)$$
 (6)

$$p(n|y) \xrightarrow[r \to 0]{} \delta_1(n).$$
 (7)

From these results we can deduce that, in dcPF, assuming:

- there exists θ^{raw} such that $\lim_{\theta \to \theta^{\text{raw}}} \kappa^T \psi(\theta) = -\infty$,
- there exists θ^{bin} such that $\lim_{\theta \to \theta^{\text{bin}}} \kappa^T \psi(\theta) = +\infty$.

Then, we have the following limit cases:

$$p(\mathbf{N}|\mathbf{Y}) = \int_{\mathbf{W}, \mathbf{H}} p(\mathbf{N}|\mathbf{Y}, \mathbf{W}, \mathbf{H}) p(\mathbf{W}, \mathbf{H}|\mathbf{Y}) d\mathbf{W} d\mathbf{H}$$

$$\xrightarrow{\theta \to \theta^{\text{traw}}} \int_{\mathbf{W}, \mathbf{H}} \delta_{\mathbf{Y}}(\mathbf{N}) p(\mathbf{W}, \mathbf{H}|\mathbf{Y}) d\mathbf{W} d\mathbf{H} = \delta_{\mathbf{Y}}(\mathbf{N})$$

$$\xrightarrow{\theta \to \theta^{\text{bin}}} \int_{\mathbf{W}, \mathbf{H}} \delta_{\mathbf{Y}^{b}}(\mathbf{N}) p(\mathbf{W}, \mathbf{H}|\mathbf{Y}) d\mathbf{W} d\mathbf{H} = \delta_{\mathbf{Y}^{b}}(\mathbf{N}).$$
(8)

And finally, for the posterior distribution:

$$p(\mathbf{W}, \mathbf{H}|\mathbf{Y}) = \int_{\mathbf{N}} p(\mathbf{W}, \mathbf{H}|\mathbf{N}) p(\mathbf{N}|\mathbf{Y}) d\mathbf{N} \qquad (9)$$

$$\xrightarrow{\theta \to \theta^{\text{raw}}} p(\mathbf{W}, \mathbf{H}|\mathbf{N} = \mathbf{Y}) \qquad (10)$$

$$\xrightarrow{\theta \to \theta^{\text{bin}}} p(\mathbf{W}, \mathbf{H}|\mathbf{N} = \mathbf{Y}^b), \qquad (11)$$

where $p(\mathbf{W}, \mathbf{H}|\mathbf{N})$ is the posterior of a PF model with raw or binarized observations respectively.

3 Adaptivity of dcPF to over-dispersion

Table 1: Mean, variance and ratio var/mean of the non-zero values for each dataset. Learned parameters for each model and each dataset.

	Taste Profile	NIPS	Last.fm
mean of non-zeros	2.66	2.74	3.86
var of non-zeros	25.94	20.87	65.72
ratio var/mean	9.8	7.6	17.0
Log - p	0.80	0.74	0.90
ZTP - p	1.95	1.40	2.35
Geo - p	0.60	0.51	0.69
sh. NB - p	0.87	0.86	0.90
sh. NB - κ_2	0.21	0.17	0.27

Table 1 illustrates how the natural parameter $\theta = \log(p)$ is strongly correlated to the variance-mean ratio of the non-zero values of the datasets. Hence, it illustrates the adaptivity of dcPF to over-dispersion.