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1 Stirling Numbers

The Stirling numbers of the three kinds are three different
ways to partition y elements into n groups.

o The Stirling number of the first kind corresponds to the
number of ways of partitioning y elements into n disjoints
cycles.

e The Stirling number of the second kind corresponds
to the number of ways of partitioning y elements into n
non-empty subsets.

e The Stirling number of the third kind (also known as
Lah number) corresponds to the number of ways of parti-
tioning y elements into n non-empty ordered subsets.

First kind Second kind

St1(3,1) =2 | Sta(3,1) =1 | St5(3,1) =6
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Figure 1: Illustration of the Stirling numbers of the three
kinds fory = 3 and n = 1.
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2 Proof of limit cases

Proposition 1. If there exists 0™ such that
limg_,guw kT1p(0) = —oo, then the posterior of
dcPF tends to the posterior of PF as 0 goes to 6™,

Proposition 2. If there exists 0" such that
limg_, goin 725 (6) = 400, then the poste-
rior of dcPF tends to the posterior of PF ap-
plied to binarized data as 0 goes to 0™, i.e.:
limg_, goin p(W,H|Y) = p(W,H|N = Y?).

Proof. Let A € R4, n ~ Poisson(A) and yln ~
ED(0,nk) with support given by S = {n, ..., +o0}:

/\n -
p(nlA) = “——. (1)

p(y|n) = exp(yd — n"Y(0))h(y,nk), y € S, (2)

where  and () can either be scalars or vectors of the
same dimension. In both cases, k() € R. We denote

by r = Ae=F V()

We have the following posterior distribution for y > 0:

r’ nk)(n!)~!
plnly) = g 1))

= STy, mi) ()T ne{l,...,y}.
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Thus, for fixed x and y > 0, we have that:

2:1"mh(y,ml»@)(m!)f1 ~ Yy, yR)(y) "t @)
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It follows:

p(nly) ——— 0y(n) (6)

r—-+4o00

p(nly) vy d1(n). (N

From these results we can deduce that, in dcPF, assuming:
o there exists 0™ such that limgy_, grv 57 9(6) = —o00,

o there exists #°™ such that limg_,gen 79 (0) = +o00.



Then, we have the following limit cases:

p(N|Y) = / p(N[Y, W, H)p(W, H[Y)dWdH
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And finally, for the posterior distribution:

p(W,HJY) = / p(W,HN)p(N[Y)dN  (9)
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p(W,HN=Y) (10)
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where p(W, H|N) is the posterior of a PF model with
raw or binarized observations respectively. O

3 Adaptivity of dcPF to over-dispersion

Table 1: Mean, variance and ratio var/mean of the non-
zero values for each dataset. Learned parameters for each
model and each dataset.

Taste Profile NIPS Last.fm

mean of non-zeros  2.66 2.74 3.86
var of non-zeros 25.94 20.87 65.72
ratio var/mean 9.8 7.6 17.0
Log-p 0.80 0.74 0.90
ZTP-p 1.95 1.40 2.35
Geo-p 0.60 0.51 0.69
sh. NB - p 0.87 0.86 0.90
sh. NB - k2 0.21 0.17 0.27

Table 1 illustrates how the natural parameter 6 = log(p)
is strongly correlated to the variance-mean ratio of the
non-zero values of the datasets. Hence, it illustrates the
adaptivity of dcPF to over-dispersion.



