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1 Stirling Numbers

The Stirling numbers of the three kinds are three different
ways to partition y elements into n groups.

• The Stirling number of the first kind corresponds to the
number of ways of partitioning y elements into n disjoints
cycles.

• The Stirling number of the second kind corresponds
to the number of ways of partitioning y elements into n
non-empty subsets.

• The Stirling number of the third kind (also known as
Lah number) corresponds to the number of ways of parti-
tioning y elements into n non-empty ordered subsets.

First kind Second kind Third kind
St1(3, 1) = 2 St2(3, 1) = 1 St3(3, 1) = 6

Figure 1: Illustration of the Stirling numbers of the three
kinds for y = 3 and n = 1.

2 Proof of limit cases

Proposition 1. If there exists θraw such that
limθ→θraw κTψ(θ) = −∞, then the posterior of
dcPF tends to the posterior of PF as θ goes to θraw.

Proposition 2. If there exists θbin such that
limθ→θbin κTψ(θ) = +∞, then the poste-
rior of dcPF tends to the posterior of PF ap-
plied to binarized data as θ goes to θbin, i.e.:
limθ→θbin p(W,H|Y) = p(W,H|N = Yb).

Proof. Let λ ∈ R+, n ∼ Poisson(λ) and y|n ∼
ED(θ, nκ) with support given by S = {n, . . . ,+∞}:

p(n|λ) = λne−λ

n!
, (1)

p(y|n) = exp(yθ − nκTψ(θ))h(y, nκ), y ∈ S, (2)

where κ and ψ(θ) can either be scalars or vectors of the
same dimension. In both cases, κTψ(θ) ∈ R. We denote
by r = λe−κ

Tψ(θ).

We have the following posterior distribution for y > 0:

p(n|y) = rnh(y, nκ)(n!)−1∑y
m=1 r

mh(y,mκ)(m!)−1
, n ∈ {1, . . . , y}.

(3)

Thus, for fixed κ and y > 0, we have that:

y∑
m=1

rmh(y,mκ)(m!)−1 ∼
r→+∞

ryh(y, yκ)(y!)−1 (4)

∼
r→0

rh(y, κ). (5)

It follows:

p(n|y) −−−−−→
r→+∞

δy(n) (6)

p(n|y) −−−→
r→0

δ1(n). (7)

From these results we can deduce that, in dcPF, assuming:

• there exists θraw such that limθ→θraw κTψ(θ) = −∞,

• there exists θbin such that limθ→θbin κTψ(θ) = +∞.



Then, we have the following limit cases:

p(N|Y) =

∫
W,H

p(N|Y,W,H)p(W,H|Y)dWdH

−−−−→
θ→θraw

∫
W,H

δY(N) p(W,H|Y)dWdH = δY(N)

−−−−→
θ→θbin

∫
W,H

δYb(N) p(W,H|Y)dWdH = δYb(N).

(8)

And finally, for the posterior distribution:

p(W,H|Y) =

∫
N

p(W,H|N)p(N|Y)dN (9)

−−−−→
θ→θraw

p(W,H|N = Y) (10)

−−−−→
θ→θbin

p(W,H|N = Yb), (11)

where p(W,H|N) is the posterior of a PF model with
raw or binarized observations respectively.

3 Adaptivity of dcPF to over-dispersion

Table 1: Mean, variance and ratio var/mean of the non-
zero values for each dataset. Learned parameters for each
model and each dataset.

Taste Profile NIPS Last.fm

mean of non-zeros 2.66 2.74 3.86
var of non-zeros 25.94 20.87 65.72
ratio var/mean 9.8 7.6 17.0

Log - p 0.80 0.74 0.90
ZTP - p 1.95 1.40 2.35
Geo - p 0.60 0.51 0.69
sh. NB - p 0.87 0.86 0.90
sh. NB - κ2 0.21 0.17 0.27

Table 1 illustrates how the natural parameter θ = log(p)
is strongly correlated to the variance-mean ratio of the
non-zero values of the datasets. Hence, it illustrates the
adaptivity of dcPF to over-dispersion.


