
Appendix A DYNAMIC DATA STRUCTURE FOR POLICY EVALUATION

In this section, we describe a sample-efficient data structure that allows us to get an unbiased sample from
the stationary distribution of any deterministic policy.

For motivation, consider estimating the average reward of a single policy π, for which we can use CFTP
to get a sample s from the stationary distribution µ(π) (Theorem 1). Then we sample R(s, a) and get an
unbiased estimate of ρ(π). To estimate ρ(π) to an accuracy of ε with confidence δ we average O

( 1
ε2 log

(
1/δ
))

such samples.

By Theorem 6 it takes O
(
Tπ

mix|S|
)

to get one sample from µ(π), so in total we would need
O
( 1

ε2 log
(
1/δ
)

Tπ
mix|S|

)
to estimate the average reward of each single policy π to an accuracy of ε with

confidence δ. Naively, to estimate the average reward of each of the |A||S| policies separately, we need a fresh
set of samples for every policy for a total of O

( 1
ε2 log

(
1/δ
)∑

π (Tπ
mix)|S|) samples.

Instead, we propose to allow estimates of different policies to share samples by maintaining a matrix D that
we use to estimate the reward of any policy π. Each column of D corresponds to a state-action pair. Each
row contains, a sample of R(s, a) and a sample s′ ∼ Pa(s, ·) obtained using the MDP’s generative model, for
each state-action pair (s, a). We get an unbiased estimate of ρ(π) for some policy π as follows. We focus on
the columns of D that represent pairs (s, π(s)). The restriction of each row to these columns gives a random
mapping from states to next states in the Markov chain induced by π. We now use these samples to run
CFTP on this Markov chain, where row t gives the random mapping f–t of Algorithm 1. CFTP gives a
sample s from µ(π) and then from the entry in D to which all simulations coalesce. The sample R(s, π(s)) is
an unbiased sample of ρ(π).

The matrix D is empty at the beginning and we add rows to it on demand when we estimate ρ(π) for a
policy π. To analyze the expected size of D, observe that n = O(Tπ

mix|S|) rows are needed to get an unbiased
estimate of ρ(π) (Theorem 6). This, in turn requires O(n|S||A|) calls to the generative model (to fill these n
rows of D).

To get unbiased samples from the Markov chain of a different policy π′, we use the rows of D that were
already generated for estimates of previous policies (restricted to a different set of columns). If there are not
enough rows for Algorithm 1 to give a sample from µ(π′), we add rows to D until coalescence occurs. To get
ε-approximate estimates with confidence 1 – δ for a set of policies Π we need to maintain O

( 1
ε2 log

(
|Π|/δ

))
independent copies of D and average the unbiased estimates that they return.

In summary, the number of rows that we add to D depends on the largest mixing time of a policy, which we
evaluate and on the approximation guarantee ε and confidence requirement δ. Theorem 10 states the overall
sample complexity of D for evaluating the reward of a set of policies Π.3

Theorem 10. Assume that we use D as described above to estimate ρ(π) for every π in a set of policies Π
such that with probability at least 1–δ, it holds simultaneously for all π ∈ Π that |ρ̃(π)–ρ(π)| ≤ ε where ρ̃(π)
is our estimate of ρ(π). Then the expected number of calls made to the generative model is O

(
n|S|2|A|T̄mix

)
,

where n = 1
ε2 log

(
|Π|/δ

)
and T̄mix is an upper bound on the mixing time of all policies in Π.

Notice that when Π is the set of all deterministic policies, then |Π| = |A||S| and the sample complexity
is O

( 1
ε2 |S|3|A| log

(
|A|/δ

)
T̄mix

)
. This reveals the advantage of using the dynamic data structure: We can

estimate the reward of exponentially many policies with a polynomial number of samples.

Proof. Let Zi = ρ(π)i – ρ(π). Then E(Zi) = 0, and |Zi| ≤ 1. Chernhoff bound implies that given independent
random variables Z1, ..., Zn where |Zi| ≤ 1, EZi = 0, then Prob(

∑n
i=1 Zi > a) < e– a2

2n . Hence, Chernoff bound
implies that (for any n) Prob(

∑n
i=1 Zi > nε

2 ) < e– ε2n
8 . This implies that Prob(

∑n
i=1
(
ρ(π)i – ρ(π)

)
> nε

2 ) =
Prob(ρ̃(π) – ρ(π) > ε

2 ) < e– ε2n
8 .

3Notice that while the sample complexity depends on the maximum mixing time of a policy in Π our algorithm
does not need to know it.



Similarly, we can define Zi = ρ(π) – ρ̃(π) and get that Prob(ρ(π) – ρ̃(π) > ε
2 ) < e– ε2n

8 . Hence, we get that
Prob(| – ρ(π)| > ε

2 ) < 2e– ε2n
8 . So far we have restricted our attention to a fixed policy π. Using the so-called

union bound , we have that the probability that some π ∈ Π deviates by more than ε
2 is bounded by 2me– ε2n

8 .
Plugging n = – 8

ε2 ln
( δ

2m
)

concludes our proof.

Appendix B A simple proof of the Propp-Wilson theorem

Theorem (Restatement of Theorem 6). Let µ be the stationary distribution of an ergodic Markov chain
with |S| states. We run |S| simulations of the chain, each starting at a different state. When two or more
simulations coalesce, we merge them into a single simulation. With probability at least 1 – δ, all |S| chains
are merged after at most 512|S|Tmix log(1/δ) iterations.

The proof of this Theorem is as follows.

We split time into blocks of size Tmix. By the end of the first block, each chain is distributed with some
distribution P for which TV[P, µ] ≤ 1/8. We check which of the chains arrive at the same state; chains that
do—coalesce. Next, we utilize the Markov property and condition on the states arrived by the chains. On
this event, we continue simulating the chains until the end of the next block and continue in this manner.

This is analogous to the following balls-and-bins process. We have |S| balls and |S| bins where the balls
simulate the chains, and the bins simulate the states. Each ball j has a distribution Pj over the bins where
TV[Pj, µ] ≤ 1/8. We throw the balls into the bins. After that, take one ball out of each nonempty bin and
discard the remaining balls. We throw the balls taken out again, and repeat this process until we are left
with a single ball.

The following Lemma shows a bound on the expected number of balls removed at each iteration.
Lemma 11. Assume 2 ≤ m ≤ n. Suppose each ball j = 1, . . . , m is distributed by Pj, and that there is a
distribution µ such that TV[Pj, µ] ≤ 1/8 for all j = 1, . . . , m. Then the expected number of nonempty bins
is at most m – m2/256n.

Proof. Suppose we throw the balls one by one into the bins. We say that a ball coalesces if it is thrown into
a nonempty bin. Thus, the number of nonempty bins by the end of the process is exactly m minus the total
number of coalescences. Hence we proceed by lower bounding the expected number of coalescences.

We split the balls into two disjoint groups of (roughly) equal sizes: M of size ⌈m/2⌉ and Mc of size ⌊m/2⌋. We
first throw the balls in M and thereafter the balls in Mc. The total number of coalescences is, therefore, lower
bounded by the number of coalescences that occur between the balls in Mc and those in M. We continue
by showing that the probability of a ball in Mc to coalesce with any ball in M is at least m/64n. Then, the
expected total number coalescences is at least

|Mc| · m
64n =

⌊
m
2

⌋
· m

64n ≥ m2

256n ,

since m ≥ 2.

Indeed, let Qk denote the probability distribution over the bins of some ball k ∈ Mc, and Pj denote the
probability distribution of j ∈ M. Ball k coalesces with a ball in M if it was thrown into a bin that was not
empty after the first phase. Thus, we split the bins into two groups: those who are likely to be empty after
the first phase, and those that are not. Let S = {i ∈ [n] :

∑
j∈M Pj(i) ≤ 1}. The proof continues differently

for two cases: either k is likely to be thrown into into a bin in S or not. If Qk(S) ≥ 1/2, Lemma 14 below
states that the probability of a coalescence is at least

|M|
32n ≥ m

64n
since |M| ≥ m/2. If Qk(S) < 1/2, Lemma 15 found below implies that the probability of a coalescence is at
least 1/4 ≥ m/64n.



Having proven Lemma 11, it remains to use it to show that the expected number of iterations is O(n), which
we prove in the following Lemma.
Lemma 12. Suppose we have |S| balls distributed by Pj, j = 1, . . . , n, where TV[Pj, µ] ≤ 1/8. Throw the
balls into the bins. Thereafter, take one ball out of each nonempty bin and throw these balls again. Let mt
be the number of balls remaining at iteration t, where m0 = n. Then, Emt ≤ 256n/t.

Proof. We show that Emt ≤ 256n/t. Denote m̄s = Ems. By Jensen’s inequality and Lemma 11,

m̄s ≤ Ems–1 – Em2
s–1

256n ≤ m̄s–1 – m̄2
s–1

256n ≤ m̄s–1 – m̄s–1m̄s
256n

as m̄s ≤ m̄s–1 in particular. Dividing both sides of the inequality by m̄sm̄s–1 gives

1
m̄s–1

≤ 1
m̄s

– 1
256n .

By summing over s = 1, . . . , t we obtain
1

m̄0
≤ 1

m̄t
– t

256n .

Finally, we use m̄0 ≥ 0 and rearrange the inequality above to gets the claim of the Lemma.

With the Lemma at hand, the proof of Theorem 6 is as follows. After 512n iterations, the process is complete
with probability at least 1

2 by Markov’s inequality. If it is not done, we condition on the remaining set of
balls and run the process for another 512n iterations. Once again, the process is complete with probability
at least 1

2 . Repeating this procedure for log2(1/δ) times, we conclude that the procedure is complete with
probability at least 1 – δ. This finishes the proof of Theorem 6.

We finish this Section by proving Lemmas 14 and 15. We begin with Lemma 13 that is needed for the proof
of Lemma 14.
Lemma 13. Let P and Q be two distribution on {1, . . . , n} such that TV[P, Q] ≤ 1/4. Let S ⊆ [n] be such
that Q(S) ≥ 1

2 . Let x be an element drawn from P and let y be an element draws from Q such that x and y
are independent. Then Pr[∃i ∈ S : x = y = i] ≥ 1/16n.

Proof. Define B = {i : P(i) > Q(i)}. Then

Pr[∃i ∈ S : x = y = i] =
∑
i∈S

P(i)Q(i)

=
∑

i∈S∩B
P(i)Q(i) +

∑
i∈S∩Bc

P(i)Q(i)

≥
∑

i∈S∩B
Q2(i) +

∑
i∈S∩Bc

P2(i)

≥
(
Q(S ∩ B) + P(S ∩ Bc)

)2

|S|

=
(
Q(S) –

(
Q(S ∩ Bc) – P(S ∩ Bc)

))2

|S|

≥
(
Q(S) – TV[P, Q]

)2

n

≥
(
1/2 – 1/4

)2

n
= 1

16n ,

where the fourth derivation follows from the Cauchy-Schwarz inequality.



Lemma 14. Suppose we first throw a set of balls j ∈ M with probability distributions Pj. Thereafter, we throw
an additional ball with probability distribution Q such that TV[Pj, Q] ≤ 1/4 for every j ∈ M. Additionally,
assume that Q(S) ≥ 1/2 for S = {i ∈ [n] :

∑
j∈M Pj(i) ≤ 1}. Then, the probability that Q is thrown into a

nonempty bin is at least |M|/32n.

Proof. The probability that bin i ∈ S is nonempty is

1 –
∏
j∈M

(
1 – Pj(i)

)
≥ 1 – exp

(
–
∑
j∈M

Pj(i)
)

≥
(
1 – e–1)∑

j∈M
Pj(i) ≥

1
2
∑
j∈M

Pj(i) ,

using the inequality 1 – x ≤ e–x and 1 – e–x ≥
(
1 – e–1) x that holds for any x ∈ [0, 1]. The probability that

Q is thrown into a nonempty bin is at least that of it being thrown into a nonempty bin i ∈ S. This is is at
least ∑

i∈S
Q(i) · 1

2
∑
j∈M

Pj(i) = 1
2
∑
j∈M

∑
i∈S

Q(i)Pj(i) ,

where
∑

i∈S Q(i)Pj(i) is the probability that both Q and Pj end up in to same bin in S. As TV[Pj, Q] ≤ 1/4
and Q(S) ≥ 1/2, Lemma 13 implies that the latter probability is at least 1/16n. Therefore, the probability
of that the additional ball is thrown into a nonempty bin is at least

1
2 |M| · 1

16n = |M|
32n .

Lemma 15. Suppose with first throw a set of balls M with probability distributions Pj over the bins for every
j ∈ M. Thereafter, we throw an additional ball with probability distribution Q such that |Q – Pj| ≤ 1/4 for
all j ∈ M. Additionally, denote

S = {i ∈ [n] :
∑
j∈M

Pj(i) ≤ 1} ,

and suppose that Q(S) < 1/2. Then, the probability that Q is thrown into a nonempty bin is at least 1/4.

Proof. The probability of bin i ̸∈ S not being empty is

1 –
∏
j∈M

(
1 – Pj(i)

)
≥ 1 – exp

(
–
∑
j∈M

Pj(i)
)

≥ 1 – exp(–1) ≥ 1
2 .

The probability that Q is thrown into a nonempty bin is at least its probability of it being thrown into a
nonempty bin in Sc which is exactly

1
2Q(Sc) ≥ 1

2 · 1
2 = 1

4 .



Appendix C Proofs for Section 4

C.1 Multiplicative weights

We begin with a classic result on the Hedge algorithm.

Algorithm 4 Hedge
1: Input: number of experts k, number of iterations T.
2: Let β =

√
log k

T
3: Initialize W(1)(i) = 1, for i = 1, . . . , k.
4: for t = 1, . . . , T do
5: Set w(t)(i) = W(t)(i)∑k

i=1 W(t)(i) , for i = 1, . . . , k.
6: Observe ct(i) , for i = 1, . . . , k.
7: Incur loss

∑k
i=1 w(t)(i)ct(it)

8: Update weights W(t+1)(i) = W(t)(i) · exp
(
–βct(i)

)
, ∀i ∈ [1, .., k].

9: end for

Theorem 16 ((Freund & Schapire, 1997)). Assume that 0 ≤ ct(i) ≤ 1 for all t = 1, . . . , T. Hedge (Algorithm 4)
satisfies that for any strategy w ∈ ∆k:

∑
wt · ct –

∑
w · ct ≤ 2

√
T log k.

Note that in Algorithm 2 and in Algorithm 3, we actually run the Hedge algorithm with the estimates
g̃t(i) as the costs ct(i). We obtain g̃t(i) by shifting and scaling gt(i), so that g̃t(i) ∈ [0, 1] and we can apply
Theorem 16.
Corollary 17. Let –B ≤ gt(i) ≤ B, and g̃t(i) = (gt(i)+B)/2B. Assume that we run the Hedge algorithm with
costs ct(i) equal to g̃t(i). We have that

1
T

(∑
wt · gt – min

w∈∆k

∑
w · gt

)
≤ 4B

√
log k

T ,

Proof. The losses g̃t(i) satisfy the conditions of Theorem 16. Therefore,∑
wt · g̃t – min

w∈∆k

∑
w · g̃t ≤ 2

√
T log k.

This implies that ∑
wt · (gt + B1)/2B – min

w∈∆k

∑
w · (gt + B1)/2B ≤ 2

√
T log k,

where 1 denotes a vector of ones. Multiplying by 2B gives∑
wt · (gt + B1) – min

w∈∆k

∑
w · (gt + B1) ≤ 4B

√
T log k.

Observing that ∀w ∈ ∆k, w · B1 = B we get that∑
wt · gt + B – min

w∈∆k

∑
w · gt – B ≤ 4B

√
T log k

as stated.



C.2 Estimating the feature expectations of the expert

We begin this subsection with Lemma 18 that bounds the number of samples needed from the expert in
order to get a good approximation of the expectations of its features.
Lemma 18. For any ε, δ, given m ≥ 2 ln(2k/δ)

ε2 samples from the stationary distribution πE, with probability
at least 1 – δ, the approximate feature expectations Φ̂E satisfy that ∥Φ̂E – ΦE∥∞ ≤ ε.

Proof. By Hoeffding’s inequality we get that

∀i ∈ [1, .., k] Pr(|Φ̂E(i) – ΦE(i)| ≥ ε) ≤ 2 exp(–mε2/2).
Applying the union bound over the features we get that

Pr(∃i ∈ [1, .., k], s.t., |Φ̂E(i) – ΦE(i)| ≥ ε) ≤ 2k exp(–mε2/2).
This is equivalent to

Pr(∀i ∈ [1, .., k] |Φ̂E(i) – ΦE(i)| ≤ ε) ≥ 1 – 2k exp(–mε2/2).
and to

Pr(∥Φ̂E – ΦE∥∞ ≤ ε) ≥ 1 – 2k exp(–mε2/2).

The Lemma now follows by substituting the value of m.

Theorem (8). Assume we run Algorithm 2 for T = 144 log k
ε2 iterations, using m = 18 log(2k/δ)

ε2 samples from
µ(πE). Let ψ̄ be the mixed policy returned by the algorithm. Let v⋆ be the game value as in Eq. (3). Then,
we have that ρ(ψ̄) – ρ(πE) ≥ v⋆ – ε with probability at least 1 – δ, where ρ is the average of any reward of
the form r(s) = w · ϕ(s) where w ∈ ∆k.

Proof. Corollary 17 with B = 1 and T = 144 log k
ε2 gives that

1
T

(∑
wt · gt – min

w∈∆k

∑
w · gt

)
≤ ε

3 , (4)

where gt(i) = Φ(π(t))[i] – Φ̃E[i]. Note also that Lemma 18 with m = 18 log(2k/δ)
ε2 gives that ∥Φ̂E – ΦE∥∞ ≤ ε

3 ,
which implies that, for any w ∈ ∆k:

w · Φ̂E ≤ w · ΦE + ε/3, (5)

and
w · ΦE ≤ w · Φ̂E + ε/3, (6)

Now, let w̄ = 1
T
∑T

t=1 w(t), and recall that ψ̄ is the mixed policy that assigns probability 1
T to π(t) for all

t ∈ {1, . . . , T}. Thus,

v⋆ = max
ψ∈Ψ

min
w∈∆k

[
w · Φ(ψ) – w · ΦE

]
= min

w∈∆k
max
ψ∈Ψ

[
w · Φ(ψ) – w · ΦE

]
(von Neumann’s minimax theorem)

≤ min
w∈∆k

max
ψ∈Ψ

[
w · Φ(ψ) – w · Φ̂E

]
+ ε/3 (Eq. (5))

≤ max
ψ∈Ψ

[
w̄ · Φ(ψ) – w̄ · Φ̂E

]
+ ε/3

= max
ψ∈Ψ

1
T
∑T

t=1

[
w(t) · Φ(ψ) – w(t) · Φ̂E

]
+ ε/3 (Definition of w̄)

≤ 1
T
∑T

t=1
max
ψ∈Ψ

[
w(t) · Φ(ψ) – w(t) · Φ̂E

]
+ ε/3

= 1
T
∑T

t=1

[
w(t) · Φ(π(t)) – w(t) · Φ̂E

]
+ ε/3 (π(t) is optimal w.r.t the reward w(t))



≤ 1
T min

w∈∆k

∑T

t=1

[
w · Φ(π(t)) – w · Φ̂E

]
+ 2ε/3 (Eq. (4))

= min
w∈∆k

[
w · Φ(ψ̄) – w · Φ̂E

]
+ 2ε/3 (Definition of ψ̄)

≤ min
w∈∆k

[
w · Φ(ψ̄) – w · ΦE

]
+ ε (Eq. (6))

≤ w⋆ · Φ(ψ̄) – w⋆ · ΦE + ε (For any w∗ ∈ ∆k)
= ρ(ψ̄) – ρ(πE) + ε.

C.3 Estimating the game matrix directly

In this section we prove Theorem 9. Our proof uses the following version of Azuma’s concentration bound.
Lemma 19 (Azuma inequality). Let {yt}T

t=1 be a sequence of random variables such that –b ≤ yt ≤ b, for
1 ≤ t < T. Let Et = yt – E[yt | y1, ..., yt–1] be the martingale difference sequence defined over the sequence
{yt}T

t=1. Then

Pr
(∣∣∣∣∣ 1

T

T∑
t=1

Et

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
–Tε2

8b2

)
Theorem (Restatement of Theorem 9). Assume we run Algorithm 3 for T iterations, and there exists a
parameter b, such that for any ℓ, Pr(∥gt∥∞ ≥ ℓ · b) ≤ e–ℓ. Let ψ̄ be the mixed policy returned by the
algorithm. Let v⋆ be the game value as in Eq. (3). Then, there exists a constant c such that for T ≥ cB log2 B
where B = b2 log3 k log2(1/δ)

ε2 , we have that ρ(ψ̄) – ρ(πE) ≥ v⋆ – ε with probability at least 1 – δ, where ρ is the
average of any reward of the form r(s) = w · ϕ(s) where w ∈ ∆k.

Proof. Let ℓ = max{log
(T

δ

)
, log

( 1
ε

)
}. Then for any t we have that Pr(∥gt∥∞ ≥ ℓ · b) ≤ δ

T . By the union
bound it follows that with probability 1 – δ for all times t = 1, . . . , T, we have that ∥gt∥∞ ≤ ℓb. We denote
by F the subspace of our probability space that includes all runs of the algorithm in which ∥gt∥∞ ≤ ℓb for
all t = 1, . . . , T. We have that at least 1 – δ fraction of the runs of the algorithm are in F .

By the definition of gt we have that E
[
gt|g1, ..., gt–1

]
= Φ(π(t)) – ΦE. Furthermore w(t) depends only on

g1, ..., gt–1 and not on gt. It follows that the random variables Et = w(t) · gt – E[w(t) · gt | g1, ..., gt–1] =
w(t) ·

(
gt – (Φ(π(t)) – ΦE)

)
is a martingale difference sequence. We would like to apply Azuma’s inequality to

this sequence, but the difficulty is that the variables Et are unbounded.

To deal with this problem we define new variables ḡt as follows

ḡt =
{

gt ∥gt(i)∥∞ ≤ ℓb,
0 otherwise ,

and we define the martingale difference sequence Ēt = w(t) · ḡt – E[w(t) · ḡt | g1, ..., gt–1]. Unfortunately,
E[w(t) · ḡt | g1, ..., gt–1] does not equal to Φ(π(t)) – ΦE. But we can bound the difference as follows.

|E[w(t) · gt | g1, ..., gt–1] – E[w(t) · ḡt | g1, ..., gt–1]|

≤
∫ ∞

x=ℓb
Pr
(

w(t) · gt > x
)

dx –
∫ ∞

x=–ℓb
Pr
(

w(t) · gt < x
)

dx

≤
∫ ∞

x=ℓb
Pr
(
∥gt∥∞ ≥ x

)
dx

=
∫ ∞

x=ℓ

Pr
(
∥gt∥∞ ≥ xb

)
dx

≤
∫ ∞

x=ℓ

e–xdx = e–ℓ ≤ ε , (7)



where the first inequality follows from the formula E(Y) =
∫∞

x=0 Pr(Y > x)–
∫ –∞

x=0 Pr(Y < x) (which is derived
from the more familiar formula E(Y) =

∫∞
x=0 Pr(Y > x) for a nonnegative variable Y). The second inequality

follows since w ∈ ∆k and the last equality follows by the definition of ℓ. By applying Azuma’s inequality to
the sequence Ēt we get that

Pr
(∣∣∣∣∣ 1

T

T∑
t=1

Ēt

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
– Tε2

8(ℓb)2

)
.

Our choice of T guarantees that

2 exp
(

– Tε2

8(ℓb)2

)
≤ δ .

So we also have that within the subspace F

Pr
F

(∣∣∣∣∣ 1
T

T∑
t=1

Ēt

∣∣∣∣∣ ≥ ε

)
≤ δ

1 – δ
. (8)

But in F , ḡt = gt and therefore Ēt = Et – E[w(t) · gt | g1, ..., gt–1] + E[w(t) · ḡt | g1, ..., gt–1]. So by Eq. (7)),

|Et – Ēt| ≤ ε . (9)

It follows from Equations (8) and (9) that within F :

Pr
F

(∣∣∣∣∣ 1
T

T∑
t=1

Et

∣∣∣∣∣ ≥ 2ε

)
≤ δ

1 – δ
. (10)

Let w̄ = 1
T
∑T

t=1 w(t), and recall that ψ̄ is the mixed policy that assigns probability 1
T to π(t) for all

t ∈ {1, . . . , T}. We have that

v⋆ = max
ψ∈Ψ

min
w∈∆k

[
w · Φ(ψ) – w · ΦE

]
= min

w∈∆k
max
ψ∈Ψ

[
w · Φ(ψ) – w · ΦE

]
von Neumann’s minimax theorem

≤ max
ψ∈Ψ

[
w̄ · Φ(ψ) – w̄ · ΦE

]
= max

ψ∈Ψ

1
T

T∑
t=1

[
w(t) · Φ(ψ) – w(t) · ΦE

]
Definition of w̄

≤ 1
T

T∑
t=1

max
ψ∈Ψ

[
w(t) · Φ(ψ) – w(t) · ΦE

]
= 1

T

T∑
t=1

[
w(t) · Φ(π(t)) – w(t) · ΦE

]
π(t) is optimal w.r.t the reward w(t) (11)

Now we continue our derivation assuming that the run of the algorithm is in F . We use Equation (10) and
say that with probability 1 – δ

1–δ the expression in (11) is bounded by

1
T

T∑
t=1

w(t) · gt + 2ε . (12)

Our choice of T also guarantees that

4ℓb
√

log k
T ≤ ε .



and therefore for a run in F , the bound on the regret of Hedge in Corollary 17 implies that expression in
(12) is bounded by

1
T min

w∈∆k

T∑
t=1

w · gt + 3ε (13)

Let wmin ∈ ∆k be the vector achieving the minimum in Equation (13). To finish the proof we need to bound
Equation (13) with

1
T

T∑
t=1

wmin ·
(

gt – (Φ(π(t)) – ΦE)
)

. (14)

For this we would like to apply Azuma’s inequality to each of the k martingale differences sequences Xt(i) =
gt(i) – E[gt(i) | g1, . . . , gt–1] = gt(i) – (Φ(π(t)[i] – ΦE[i]). As before, since the gt(i)’s are unbounded we look
instead at the martingale sequence X̄t(i) = ḡt(i) – E[ḡt(i) | g1, . . . , gt–1].

Unfortunately, as before, E[ḡt(i) | g1, . . . , gt–1] does not equal to E[gt(i) | g1, . . . , gt–1]. But we can bound the
difference as follows.

|E[gt(i) – ḡt(i) | g1, ..., gt–1]| ≤
∫ ∞

x=ℓb
Pr
(
gt(i) > x

)
dx –

∫ ∞

x=–ℓb
Pr
(
gt(i) < x

)
dx

≤
∫ ∞

x=ℓb
Pr
(
∥gt∥∞ ≥ x

)
dx =

∫ ∞

x=ℓ

Pr
(
∥gt∥∞ ≥ xb

)
dx

≤
∫ ∞

x=ℓ

e–xdx = e–ℓ ≤ ε , (15)

where the inequalities follow from the same reasons as in Eq. (7).

By applying Azuma’s inequality to the sequence X̄t(i) we get that Pr
(∣∣∣ 1

T
∑T

t=1 X̄t(i)
∣∣∣ ≥ ε

)
≤ 2 exp

(
– Tε2

8(ℓb)2

)
,

and our choice of T guarantees that 2 exp
(

– Tε2

8(ℓb)2

)
≤ δ

k . So we also have that within the subspace F

Pr
F

(∣∣∣∣∣ 1
T

T∑
t=1

X̄t(i)
∣∣∣∣∣ ≥ ε

)
≤ δ

k(1 – δ) . (16)

But in F , ḡt(i) = gt(i) and therefore X̄t(i) = Xt(i)–E[gt(i) | g1, ..., gt–1]+E[ḡt(i) | g1, ..., gt–1]. So by Eq. (15)),

|Xt(i) – X̄t(i)| ≤ ε . (17)

It follows from Equations (16) and (17) that within F :

Pr
F

(∣∣∣∣∣ 1
T

T∑
t=1

Xt(i)
∣∣∣∣∣ ≥ 2ε

)
≤ δ

k(1 – δ) . (18)

By applying the union bound over the features we get that

Pr
F

(
∃i ∈ [1, .., k], s.t.,

∣∣∣∣∣ 1
T

T∑
t=1

Xt(i)
∣∣∣∣∣ ≥ 2ε

)
≤ δ

1 – δ
.

This is equivalent to

Pr
F

(
∀i ∈ [1, .., k]

∣∣∣∣∣ 1
T

T∑
t=1

Xt(i)
∣∣∣∣∣ ≤ 2ε

)
≥ 1 – δ

1 – δ
. (19)



Equation (19) implies that with probability 1 – δ
1–δ in F , for any w ∈ ∆k it holds that:

1
T

T∑
t=1

w ·
(

gt – (Φ(π(t)) – ΦE)
)
≤ 2ε .

Since it is true for any w, we get that that we can upper bound Equation (13) by

1
T min

w∈∆k

T∑
t=1

[
w · Φ(π(t)) – w · ΦE

]
+ 5ε . (20)

The theorem now follows4 since the expression in the last equation is smaller than ρ(ψ̄) – ρ(πE) + 5ε where
ρ is the average reward of the form r(s) = wϕ(s) for any w ∈ ∆k.

4We have to scale down ε by 5. We also have to scale down δ by 3 since our bound fails to hold with probability
3δ. Indeed, with probabilty ≤ δ our run is not in F , and with probability 1 – δ it is in F , and either of the bounds in
Equation (12) and (20) fails – which happens with probability ≤ 2δ

1–δ .


