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Abstract

Deep reinforcement learning (RL) algorithms
have achieved great success on a wide variety
of sequential decision-making tasks. However,
many of these algorithms suffer from high
sample complexity when learning from scratch
using environmental rewards, due to issues
such as credit-assignment and high-variance
gradients, among others. Transfer learning, in
which knowledge gained on a source task is
applied to more efficiently learn a different but
related target task, is a promising approach to
improve the sample complexity in RL. Prior
work has considered using pre-trained teacher
policies to enhance the learning of the stu-
dent policy, albeit with the constraint that the
teacher and the student MDPs share the state-
space or the action-space. In this paper, we
propose a new framework for transfer learn-
ing where the teacher and the student can have
arbitrarily different state- and action-spaces.
To handle this mismatch, we produce embed-
dings which can systematically extract knowl-
edge from the teacher policy and value net-
works, and blend it into the student networks.
To train the embeddings, we use a task-aligned
loss and show that the representations could
be enriched further by adding a mutual in-
formation loss. Using a set of challenging
simulated robotic locomotion tasks involving
many-legged centipedes, we demonstrate suc-
cessful transfer learning in situations when the
teacher and student have different state- and
action-spaces.
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1 INTRODUCTION

Deep reinforcement learning (RL), which combines the
rigor of RL algorithms with the flexibility of universal
function approximators such as deep neural networks,
has demonstrated a plethora of success stories in recent
times. These include computer and board games (Mnih
et al., 2015; Silver et al., 2016), continuous control (Lilli-
crap et al., 2015), and robotics (Rajeswaran et al., 2017),
to name a few. Crucially though, these methods have
been shown to be performant in the regime where an
agent can accumulate vast amounts of experience in the
environment, usually modeled with a simulator. For real-
world environments such as autonomous navigation and
industrial processes, data generation is an expensive (and
sometimes risky) procedure. To make deep RL algo-
rithms more sample-efficient, there is great interest in
designing techniques for knowledge transfer, which en-
ables accelerating agent learning by leveraging either ex-
isting trained policies (referred to as teachers), or using
task demonstrations for imitation learning (Abbeel & Ng,
2004). One promising idea for knowledge transfer in RL
is policy distillation (Rusu et al., 2015; Parisotto et al.,
2015; Hinton et al., 2015), where information from the
teacher policy network is transferred to a student policy
network to improve the learning process.

Prior work has incorporated policy distillation in a va-
riety of settings (Czarnecki et al., 2019). Some ex-
amples include the transfer of knowledge from simple
to complex agents while following a curriculum over
agents (Czarnecki et al., 2018), learning a centralized
policy that captures shared behavior across tasks for
multi-task RL (Teh et al., 2017), distilling information
from parent policies into a child policy for a genetically-
inspired RL algorithm (Gangwani & Peng, 2017), and
speeding-up large-scale population-based training using
multiple teachers (Schmitt et al., 2018). A common mo-
tif in these approaches is the use of Kullback-Leibler
(KL) divergence between the state-conditional action



distributions of the teacher and student networks, as the
minimization objective for knowledge transfer. While
simple and intuitive, this restricts learning from teach-
ers that have the same output (action) space as the stu-
dent, since KL divergence is only defined for distribution
over a common space. An alternative to knowledge shar-
ing in the action-space is information transfer through
the embedding-space formed via the different layers of a
deep neural network. (Liu et al., 2019) provides an ex-
ample of this; it utilizes learned lateral connections be-
tween intermediate layers of the teacher and student net-
works. Although the action-spaces can now be different,
the state-space is still required to be identical between the
teacher and the student, since the same input observation
is fed to both the networks (Liu et al., 2019).

In our work, we present a transfer learning approach to
accelerate the training of the student policy, by leverag-
ing teacher policies trained in an environment with differ-
ent state- and action-space. Arguably, there is a huge po-
tential for data-efficient student learning by tapping into
teachers trained on dissimilar, but related tasks. For in-
stance, consider an available teacher policy for locomo-
tion of a quadruped robot, where the (97-dimensional)
state-space is the set of joint-angles and joint-velocities
and the (10-dimensional) action-space is the torques to
the joints. If we wish to learn locomotion for a hexa-
pod robot (state-dimension 139, action-dimension 16),
we conjecture that the learning could be kick-started by
harnessing the information stored in the trained neural
network for the quadruped, since both the tasks are lo-
comotion for legged robots and therefore share an inher-
ent structure. However, the dissimilar state- and action-
space preclude the use of the knowledge transfer mecha-
nisms proposed in prior work.

Our approach deals with the mismatch in the state- and
action-space of the teacher and student in the following
manner. To handle disparate actions, rather than using
divergence minimization in the action-space, we transfer
knowledge by augmenting representations in the layers
of the student network with representations from the lay-
ers of the teacher network. This is similar to the knowl-
edge flow in (Liu et al., 2019) using lateral connections,
but with the important difference that we do not employ
learnable matrices to transform the teacher representa-
tion. The mismatch in the observation- or state-space
has not been considered in prior literature, to the best
of our knowledge. We manage this by learning an em-
bedding space which can be used to extract the neces-
sary information from the available teacher policy net-
work. These embeddings are trained to adhere to two
properties. Firstly, they must be task-aligned. Our RL
objective is the maximization of cumulative discounted
rewards in the student environment, and therefore, the

embeddings must be aligned to serve that goal. Secondly,
we would like the embeddings to be correlated with the
states encountered by the student policy. The embed-
dings are used to deterministically draw out knowledge
from the teacher network. Therefore, a high correlation
ensures that the most suitable teacher guidance is derived
for each student state. We achieve this by maximizing
the mutual information between the embeddings and stu-
dent states. We evaluate our method on a set of challeng-
ing robotic locomotion tasks modeled using the MuJoCo
simulator. We demonstrate the successful transfer of
knowledge from trained teachers to students, in the sce-
nario of mismatched state- and action-space. This leads
to appreciable gains in sample-efficiency, compared to
RL from scratch using only the environmental rewards.

2 BACKGROUND

We consider the RL setting where the environment is
modeled as an infinite-horizon discrete-time Markov De-
cision Process (MDP). The MDP is characterized by the
tuple (S, A, R, T , γ, p0), where S and A are the con-
tinuous state- and action-space, respectively, γ ∈ [0, 1)
is the discount factor, and p0 is the initial state distri-
bution. Given an action at ∈ A, the next state is sam-
pled from the transition dynamics distribution, st+1 ∼
T (st+1|st, at), and the agent receives a scalar reward
r(st, at) determined by the reward functionR. A policy
πθ(at|st) defines the state-conditioned distribution over
actions. The RL objective is to learn the policy parame-
ters (θ) to maximize the expected discounted sum of re-
wards, η(πθ) = Ep0,T ,π

[∑∞
t=0 γ

tr(st, at)
]
.

Policy-gradient algorithms (Sutton et al., 2000) are
widely used to estimate the gradient of the RL objec-
tive. Proximal policy optimization (PPO, Schulman et al.
(2017)) is a model-free policy-gradient algorithm that
serves as an efficient approximation to trust-region meth-
ods (Schulman et al., 2015a). In each iteration of PPO,
the rollout policy (πθold ) is used to collect sample trajec-
tories τ and the following surrogate loss is minimized
over multiple epochs:

LθPPO = −Eτ
[
min

(
rt (θ) Ât, clip (rt (θ) , 1− ε, 1 + ε) Ât

) ]
where rt(θ) =

πθ(at|st)
πθold (at|st)

is the ratio of the action prob-
abilities under the current policy and rollout policy, and
Ât is the estimated advantage. Variance in the policy-
gradient estimates is reduced by employing the state-
value function as a control variate (Mnih et al., 2016).
This is usually modeled as a neural network Vψ and up-
dated using temporal difference learning:

LψPPO = −Eτ
[ (
Vψ (st)− V targ

t

)2 ]



where V targ
t is the bootstrapped target value obtained with

TD(λ). To further reduce variance, Generalized Advan-
tage Estimation (GAE, Schulman et al. (2015b)) is used
when estimating advantage. The overall PPO minimiza-
tion objective then is:

LPPO(θ, ψ) = LθPPO + LψPPO (1)

Although we use the PPO objective for our experiments,
our method can be readily combined with any on-policy
or off-policy actor-critic RL algorithm.

3 METHOD

In this section, we outline our method for distilling
knowledge from a pre-trained teacher policy to a stu-
dent policy, in the hope that such knowledge sharing im-
proves the sample-efficiency of the student learning pro-
cess. Our problem setting is as follows. We assume that
the teacher and the student policies operate in two differ-
ent MDPs. All the MDP properties (S, A, R, T , γ, p0)
could be different, provided that some high-level struc-
tural commonality exists between the MDPs, such as the
example of transfer from a quadruped robot to hexapod
robot introduced in Section 1. Henceforth, for notational
convenience, we refer to the MDP of the teacher as the
source MDP, and that of the student as the target MDP.
We assume the availability of a teacher policy network
pre-trained in the source MDP. Crucially though, we do
not assume access to the source MDP for any further ex-
ploration, or for obtaining demonstration trajectories that
could be used for training in the target MDP using cross-
domain imitation-learning techniques. We instead focus
on extracting representations from the teacher policy net-
work which are useful for learning in the target MDP.

In this work, we address knowledge transfer when Ssrc 6=
Starg, where Ssrc and Starg denote the state-space of the
source and target MDPs, respectively. To handle the
mismatch, we introduce a learned embedding-space pa-
rameterized by an encoder function φ(·), and defined as
Semb := {φ(s) | s ∈ Starg}. Data points from this embed-
ding space are used to extract useful information from
the teacher policy network. Therefore, we further en-
force that the dimension of the embedding space matches
the dimension of the state-space in the source MDP, i.e.,
|Semb| = |Ssrc|. Note that this does not necessitate that
any embedding vector s ∈ Semb be a feasible input state
in the source MDP. To learn the encoder function φ(·),
we consider the following two desiderata. Firstly, the
embeddings must be learned to facilitate our objective of
maximizing the cumulative discount rewards in the tar-
get MDP. In subsection 3.1, we show how to achieve this
by utilizing the policy gradient to update embedding pa-
rameters. Secondly, we wish for a high correlation be-

tween the input states of the target MDP and the embed-
ding vectors produced from them. The embeddings are
used to deterministically derive representations from the
teacher network, and hence a high correlation helps to
obtain the most appropriate teacher guidance for each of
the states encountered by the target policy. To this end,
we propose a mutual information maximization objec-
tive; this is detailed in subsection 3.2.

3.1 TASK-ALIGNED EMBEDDING SPACE

This section describes our approach for training the en-
coder parameters (φ) such that the generated embeddings
are aligned with the RL objective. We begin by detail-
ing the architecture that we use for transfer of knowledge
from a teacher, pre-trained in source MDP, to a student
policy in the target MDP with different state- and action-
space. Inspired by the concept of knowledge-flow used
in (Liu et al., 2019), we employ lateral connections be-
tween the student and teacher networks, which augment
the representations in the layers of the student with useful
representations from the layers of the teacher. A crucial
benefit of this approach is that since information sharing
happens through the hidden layers, the output (action)
space of the source and target MDPs can be disparate,
as is the scenario in our experiments. It is also quite
straightforward to include multiple teachers in this ar-
chitecture to distill diverse knowledge into a student; we
leave this to future work.

We draw out knowledge from both the teacher policy and
state-value networks. We denote the teacher policy and
value network with πθ′ and Vψ′ , respectively, where the
parameters (θ′, ψ′) are held fixed throughout the train-
ing. Analogously, (θ, ψ) are the trainable parameters for
the student policy and value networks. Let Nπ denote
the number of hidden layers in the teacher (and student)
policy network, and NV be the number of hidden layers
in the teacher (and student) value network. In general,
the teacher and student networks could have a different
number of layers, but we assume them to be the same for
ease of exposition.

In the target MDP, the student policy observes a state
starg ∈ Starg, which is fed to the encoder to produce
the embedding φ(starg) ∈ Semb. Since |Semb| = |Ssrc|,
this embedding can be readily passed through the teacher
networks to extract {zjθ′ , 1 ≤ j ≤ Nπ}, representing
the pre-activation outputs of the Nπ hidden layers of the
teacher policy network, and {zjψ′ , 1 ≤ j ≤ NV }, rep-
resenting the pre-activation outputs of the NV hidden
layers of the teacher value function network. To ob-
tain the pre-activation representations in the student net-
works, we feed in the state starg and perform a weighted
linear combination of the appropriate outputs with the



corresponding pre-activations from the teacher networks.
Concretely, to obtain the hidden layer outputs hjπθ and
hjVψ at layer j in the student networks, we have the fol-
lowing:

hjπθ = σ
(
pjθz

j
θ + (1− pjθ)z

j

θ′

)
hjVψ = σ

(
pjψz

j
ψ + (1− pjψ)z

j

ψ′

) (2)

where σ is the activation function, and pjθ, p
j
ψ ∈ [0, 1]

are layer-specific learnable parameters denoting the mix-
ing weights. In the target MDP, the student network is
optimized for the RL objective LPPO(θ, ψ), mentioned in
Equation 1. The outputs of the student policy and value
networks, and hence LPPO, depend on the encoder pa-
rameters (φ) through the representation sharing (Equa-
tion 2) enabled by the lateral connections stemming from
the pre-trained teacher network. Therefore, an intuitive
objective for shaping the embeddings such that they be-
come task-aligned is to optimize them using the original
RL loss gradient: φ ← φ − α∇φLPPO(θ, ψ, φ, θ

′, ψ′).
Note that LPPO(·) now also depends on the fixed teacher
parameters (θ′, ψ′).

The learnable mixing weights pjθ, p
j
ψ ∈ [0, 1] control the

influence of the teacher’s representation on the student
outputs – higher the value, lesser the impact. We ar-
gue that a low value for these coefficients helps in the
early phases of the training process by providing nec-
essary information to kick-start learning. At the end of
the training, however, we desire that the student becomes
completely independent of the teacher, since this helps
in faster test-time deployment of the agent. To encour-
age this, we introduce additional coupling-loss terms that
drive pjθ, p

j
ψ towards 1 as the training progresses:

Lcoupling = − 1

Nπ

Nπ∑
j=1

log
(
pjθ

)
− 1

NV

NV∑
j=1

log
(
pjψ

)
(3)

Experimentally, we observe that although the student be-
comes independent in the final stages of training, it is
able to achieve the same level of performance that it
would if it could still rely on the teacher.

3.2 ENRICHED EMBEDDINGS WITH MUTUAL
INFORMATION MAXIMIZATION

As outlined in the previous section, at each timestep of
the discrete-time target MDP, the representation distilled
from the teacher networks is a fixed function f of the
embedding vector generated from the current input state:
f(θ′, ψ′, φ(starg)), where (θ′, ψ′) are fixed. It is desirable
to have a high degree of correlation between starg and
f(θ′, ψ′, φ(starg)) because, intuitively, the teacher repre-
sentation that is the most useful for the student should

be different at different input states. To aid with this,
we utilize a surrogate objective that instead maximizes
the correlation between starg and the embeddings φ(starg),
defined using the principle of mutual information (MI).
If we view starg as a stochastic input s, the encoder output
is then also a random variable e, and the mutual informa-
tion between the two is defined as:

I(s; e) = H(s)−H(s|e)

where H denotes the differential entropy. Direct maxi-
mizing of the MI is intractable due to the unknown condi-
tional densities. However, it is possible to obtain a lower
bound to the MI using a variational distribution qω(s|e)
that approximates the true conditional distribution p(s|e)
as follows:

I(s; e) = H(s)−H(s|e)
= H(s) + Es,e[log p(s|e)]
= H(s) + Es,e[log qω(s|e)]

+ Ee

[
DKL(p(s|e)||qω(s|e))

]
≥ H(s) + Es,e[log qω(s|e)]

where the last inequality is due to the non-negativity of
the KL divergence. This is known as the variational in-
formation maximization algorithm (Agakov & Barber,
2004). Re-writing in terms of target-MDP states and the
encoder parameters, the surrogate objective jointly opti-
mizes over the variational and encoder parameters:

max
ω,φ

Estarg [log qω(starg|φ(starg))]

whereH(s) is omitted since it is a constant w.r.t the con-
cerned parameters. In terms of the loss function to mini-
mize, we can succinctly write:

LMI(φ, ω) = −Es∼ρπθ [log qω(s|φ(s))] (4)

where ρπθ is the state-visitation distribution of the stu-
dent policy in the target MDP. In our experiments, we use
a multivariate Gaussian distribution (with a learned diag-
onal covariance matrix) to model the variational distribu-
tion qω . Although this simple model yields good perfor-
mance, more expressive model classes, such as mixture
density networks and flow-based models (Rezende &
Mohamed, 2015) could be readily incorporated as well,
to learn complex and multi-modal distributions.

3.3 OVERALL ALGORITHM

Figure 1 shows the schematic diagram of our complete
architecture and gradient flows, along with a description
of the implemented neural networks. We refer to our al-
gorithm as MIKT, for Mutual Information based Knowl-
edge Transfer. Algorithm 1 outlines the main steps of the
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Figure 1: Schematic diagram of our complete architecture (best viewed in color). The encoder parameters φ (blue)
receive gradients from three sources: the policy-gradient loss LθPPO, the value function loss LψPPO, and the mutual
information lossLMI. The teacher networks (yellow) remain fixed throughout training and do not receive any gradients.
In the student networks (green), the pre-activation representations are linearly combined (using learnt mixing weights)
with the corresponding representations from the teacher (Equation 2). Note that this knowledge-flow occurs at all
layers, although we show it only once for clarity of exposition.

Algorithm 1: Mutual Information based Knowledge
Transfer (MIKT)
Input : θ′, ψ′ fixed teacher policy and value

networks
θ, ψ: student policy and value networks
{p}: set of coupling parameters for policy and value
networks
φ: encoder parameters
ω: variational distribution parameters

for each iteration do
1 Run πθ in target MDP and collect few

trajectories τ

2 for each minibatch m ∈ τ do
3 Update θ, ψ with∇θ,ψLPPO(θ, ψ, φ, θ

′, ψ′)
4 Update φ with

∇φ
[
LMI(φ, ω) + LPPO(θ, ψ, φ, θ

′, ψ′)
]

5 Update ω with∇ωLMI(φ, ω)
6 Update {p} using [Lcoupling + LPPO]

7 end
8 end

training procedure. In each iteration, we run the policy
in the target MDP and collect a batch of trajectories. This
experience is then used to compute the RL loss (Equa-
tion 1) and the mutual information loss (Equation 4), en-
abling the calculation of gradients for the different pa-
rameters (Lines 3–6). Using both the losses to update
the encoder (φ) helps us to satisfy the desiderata on the
embeddings – that they should be task-aligned and corre-
lated with the states in the target MDP. The coupling pa-
rameters {pj}, used for the weighted combination of the
representations in the teacher and student networks, are
updated with the coupling-loss (Equation 3) along with
the RL loss. In each iteration of the algorithm, the PPO
update ensures that the state-action visitation distribution
of the policy πθ is modified by only a small amount. This
is because of the clipping on the importance-sampling ra-
tio (Section 2) when obtaining the PPO gradient. In ad-
dition to this, we experimentally found that enforcing an
explicit KL-regularization on the policy further stabilizes
learning. Let πθ, πθold denote the current and the rollout
policy, respectively. The loss is then formalized as:

LKL(θ, θold) = Es∼ρπθold

[
DKL(πθ(·|s)||πθold(·|s))

]



(a) CentipedeFour (b) CentipedeSix (c) CentipedeEight (d) CpCentipedeSix (e) CpCentipedeEight (f) Ant

Figure 2: Our MuJoCo locomotion environments. The centipede agents are configured using the details in (Wang et al., 2018),
while Ant-v2 is a popular OpenAI Gym task.

4 RELATED WORK

The concepts of knowledge transfer and information
sharing between deep neural networks have been ex-
tensively researched for a wide variety of tasks in ma-
chine learning. In the context of reinforcement learning,
the popular paradigms for knowledge transfer include
imitation-learning, meta-RL, and policy distillation; each
of these being applicable under different settings and
assumptions. Imitation learning algorithms (Ng et al.,
2000; Ziebart et al., 2008) utilize teacher demonstrations
to extract useful information (such as the teacher reward
function in inverse-RL methods) and use that to acceler-
ate student learning. In meta-RL approaches (Duan et al.,
2016; Finn et al., 2017), we are generally provided with a
distribution of tasks that share some structural similarity,
and the objective is to discover this generalizable knowl-
edge for accelerating the process of learning on a new
task. Our work is most closely related to policy distil-
lation methods (Rusu et al., 2015; Parisotto et al., 2015;
Czarnecki et al., 2019), where pre-trained teacher net-
works are available and can expedite learning in dissim-
ilar (but related) student tasks.

Prior work has considered teachers in various capac-
ities. Rusu et al. (2016) and Liu et al. (2019) utilize
learned cross-connections between intermediate layers
of teacher networks—that have been pre-trained on var-
ious source tasks—and a student network to effectively
transfer knowledge and enable more efficient learning on
a target task. Ahn et al. (2019) use an objective based on
the mutual information between the corresponding lay-
ers of teacher and student networks, and show gains in
image classification tasks. In Hinton et al. (2015), in-
formation from a large model (teacher) is compressed
into a smaller model (student) using a distillation process
that uses the temperature-regulated softmax outputs from
the teacher as targets to train the student. Schmitt et al.
(2018) propose a large-scale population-based training
pipeline that allows a student policy to leverage multiple
teachers specialized in different tasks. All these afore-
mentioned methods work in the setting where the teacher
and student share the input state (observation) space.

Different from these, our approach handles the mismatch
in the state-space by training an embedding space which
is utilized for efficient knowledge transfer. Rozantsev
et al. (2018) employ layer-wise weight regularization and
evaluate on (un-)supervised tasks where the input dis-
tributions for source and target domains have semantic
similarity and are static. For RL tasks, the input distribu-
tions change dynamically as the student policy updates;
it is unclear if enforcing similarity between the networks
for all inputs by coupling the weights is ideal. Gamrian
& Goldberg (2018) use GANs to learn a mapping from
target states to source states. In addition to requiring that
the source and the target domains have the same action-
space, their method also relies on the exploratory sam-
ples collected in the source MDP for training the GAN.
In contrast, we handle the action-space mismatch and do
not assume access to the source MDP for exploration.

Our work also has connections to policy distillation
methods that use implicit teachers, rather than external
pre-trained models. In Czarnecki et al. (2018), the au-
thors recommend a curriculum over agents, rather than
the usual curriculum over tasks. Such a curriculum
trains simple agents first, the knowledge of which is then
distilled into more complex agents over time. Akkaya
et al. (2019) iterate on policy architectures by utiliz-
ing behavior-cloning with DAgger; the new architecture
(student) is trained using the old architecture (teacher).
Distillation has been used in multi-task RL (Teh et al.,
2017) to learn a centralized policy that captures gen-
eralizable information from policies trained on individ-
ual tasks. (Gangwani & Peng, 2017) combine ideas from
the genetic-algorithms literature and distillation to train
offspring policies that inherit the best traits of both
the parent policies. Since all these approaches trans-
fer information in the action-space by minimizing the
KL-divergence between state-conditional action distribu-
tions, they share the limitation that the student can only
leverage a teacher with the same output (action) space.
Our approach avoids this by using the representations in
the different layers of the neural network for knowledge
sharing, enabling transfer-learning in many diverse sce-
narios as shown in our experiments.
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Figure 3: Performance of our transfer learning algorithm (MIKT) and the baselines (VPG, MLPP) on the MuJoCo
locomotion tasks. Each plot is titled “x to y”, where x is the source (teacher) MDP and y is the target (student) MDP.
(a) CentipedeFour to CentipedeEight, (b) CentipedeSix to CentipedeEight, (c) CentipedeFour to CpCentipedeSix, (d)
CentipedeSix to CpCentipedeEight, (e) CentipedeFour to Ant, (f) CentipedeSix to Ant.

5 EXPERIMENTS

In this section, we perform experiments to quantify the
efficacy of our algorithm, MIKT, for transfer learning in
RL, and also do some qualitative analysis. We address
the following questions: a) Can we do successful knowl-
edge transfer between a teacher and a student with dif-
ferent state- and action-space? b) Are both the losses
{LPPO, LMI} important for learning useful embeddings
φ? c) How does task-similarity affect the benefits that
can be reaped from MIKT?

Table 1: MuJoCo locomotion environments.

Environment State Dimension Action Dimension
CentipedeFour 97 10
CentipedeSix 139 16

CentipedeEight 181 22
CpCentipedeSix 139 12

CpCentipedeEight 181 18
Ant 111 8

Environments: We evaluate using locomotion tasks
for legged robots, modeled in OpenAI Gym (Brock-
man et al., 2016) using the MuJoCo physics simulator.
Specifically, we use the environments provided by Wang
et al. (2018), where the agent structure resembles that of

a centipede – it consists of repetitive torso bodies, each
having two legs. Figure 2 shows an illustration of the dif-
ferent centipede agents. Please see (Wang et al., 2018)
for a detailed description of the environment generation
process. The agent is rewarded for running fast in a par-
ticular direction. Table 1 includes the state and action
dimensions of all the agents. Centipede-x refers to a
centipede with x legs; we use x ∈ {4, 6, 8}. We use
additional environments where the centipede is crippled
(some legs disabled) and denote this by Cp-Centipede-
x. Finally, we include the standard Ant-v2 task from the
MuJoCo suite. Note that all robots have separate state
and action dimensions. Intuitively though, these loco-
motion tasks share an inherent structure that could be ex-
ploited for transfer learning between the centipedes of
various types. We now demonstrate that our algorithm
achieves this successfully.

Baselines: We compare MIKT with two baselines: a)
Vanilla Policy Gradient (VPG), which learns the task in
the target MDP from scratch using only the environmen-
tal rewards. Any transfer learning algorithm which ef-
fectively leverages the available teacher networks should
be able to outperform this baseline that does not receive
any prior knowledge it can use. We use the standard
PPO (Schulman et al., 2017) algorithm for this baseline.
b) MLP Pre-trained (MLPP) In our setting, the teacher
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Figure 4: Ablation on the importance of each of {LPPO, LMI} for training the encoder φ. MIKT (blue) is compared
with two variants: MIKT w/o MI (LMI not used) and MIKT w/o RL gradients (LPPO not used).

and the student networks have dissimilar input and out-
put dimensions (because the MDPs have different state-
and action-spaces). A natural transfer learning strategy
is to remove the input and output layers from the pre-
trained teacher and replace them with new learnable lay-
ers that match the dimensions required of the student pol-
icy (analogously value) network. The middle stack of the
deep neural network is then fine-tuned with the RL loss.
Prior work has shown that such a transfer is effective in
certain computer vision tasks.

5.1 EXPERIMENTAL RESULTS

Figure 3 plots the learning curves for MIKT and our two
baselines in different transfer learning experiments. Each
plot is titled “x to y”, where x is the source (teacher)
MDP and y is the target (student) MDP. We run each
experiment with 5 different random seeds and plot the
average episodic returns (mean and standard deviation)
on the y-axis, against the number of timesteps of envi-
ronment interaction (2 million total) on the x-axis. VPG
does not use utilize the pre-trained teachers. We ob-
serve that its performance improves with the training it-
erations, albeit at a sluggish pace. MLPP uses the mid-
dle stack of the pre-trained teacher network as an ini-
tialization and trains the input and output layers from
scratch. It only performs on par with VPG, potentially
due to the non-constructive interaction between the pre-

trained and randomly initialized parameters of the stu-
dent networks. This indicates that the MLPP strategy is
not productive for transfer learning across the RL loco-
motion tasks considered. Finally, we note that our al-
gorithm (MIKT) vastly outperforms the two baselines,
both achieving higher returns in earlier stages of train-
ing and reaching much higher final performance. This
proves that firstly, these tasks do have a structural com-
monality such that a teacher policy trained in one task
could be used advantageously to accelerate learning in a
different task; and secondly, that MIKT is a successful
approach for achieving such a knowledge transfer. This
works even when the teacher and student MDPs have dif-
ferent state- and action-spaces, and is realized by learn-
ing embeddings that are task-aligned and are optimized
with a mutual information loss (Algorithm 1).

5.2 ABLATION STUDIES

Are gradients from both {LPPO, LMI} to the encoder
beneficial? To quantify this, we experiment with two
variants of our algorithm, each of which removes one
of the components: MIKT w/o MI, which does not up-
date φ with the mutual information loss proposed in Sec-
tion 3.2, and MIKT w/o RL gradients, which omits using
the policy-gradient and the value function TD-error gra-
dient for the encoder. Figure 4 plots the performance of
these variants and compares it to MIKT (which includes



both the losses). We note that MIKT w/o MI generally
struggles to learn in the early stages of training; see for
instance Figure 4 (c), (d). MIKT w/o RL gradients does
comparatively better early on in training, but it is evi-
dent that MIKT is the most performant, both in terms of
early training efficiency and the average episodic returns
of the final policy. This supports our design choice of
using both {LPPO, LMI} to update the encoder φ.

How sensitive is MIKT to the task-similarity? It is
reasonable to assume that the benefits of transfer learning
depend on the task-similarity between the teacher and the
student. To better understand this in the context of our al-
gorithm, we consider learning in the CentipedeEight en-
vironment using different types of teachers – Centipede-
Four, CentipedeSix, Hopper. In Figure 5a, we notice
that the influence of the Centipede-{Four,Six} teachers
is much more significant than the Hopper teacher. This is
likely because the motion of the centipedes shares sim-
ilarity, whereas the Hopper (which is trained to hop) is
a dissimilar task and therefore less useful for transfer
learning. In Figure 5b we plot the value of the weight
on the student representation, when doing a weighed lin-
ear combination with the teacher (Section 3.1). We ob-
serve with the Hopper teacher that, very early in training,
the student learns to trust its own learned representations
rather than incorporate knowledge from the dissimilar
teacher.
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Figure 5: Training on CentipedeEight with different
teachers. (a) Transfer from a dissimilar teacher (Hop-
per) is less effective compared to using Centipede teach-
ers. (b) Value of the weight on the student representa-
tion in the weighed linear combination. With the Hopper
teacher, the value rises sharply in the early stages, indi-
cating a low teacher contribution.

6 CONCLUSION

In this paper, we proposed an algorithm for transfer
learning in RL where the teacher (source) and the stu-
dent (task) agents can have arbitrarily different state- and

action-spaces. We achieve this by learning an encoder to
produce embeddings that draw out useful representations
from the teacher networks. We argue that training the en-
coder with both the RL-loss and the mutual information-
loss yields rich representations; we provide empirical
validation for this as well. Our experiments on a set
of challenging locomotion tasks involving many-legged
centipedes show that MIKT is a successful approach for
achieving knowledge transfer when the teacher and stu-
dent MDPs have mismatched state- and action-space.
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APPENDIX

A Hyper-parameters
Table 2: Hyper-parameters used for all experiments.

Hyperparameter Value
Hidden Layers 2
Hidden Units 64

Activation tanh
Optimizer Adam

Learning Rate 3 x 10−4

Epochs per Iteration 10
Minibatch Size 64
Discount (γ) 0.99

GAE parameter (λ) 0.95
Clip range (ε) 0.2

B Normalized Student Weights
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Figure 6: Plots of the normalized student weight throughout the course of training. Lower values indicate heavier
dependence on teacher representations. A value of 1 indicates the student is completely independent of the teacher.



C KL-Regularization Ablation
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Figure 7: MIKT with KL-regularization (blue) vs. MIKT without KL-regularization (green). MIKT still works well
without the KL-regularization.
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