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ABSTRACT 

This paper deals with multifractal theory 
applied to image analysis. Multifractals show 
many interesting peculiarities in the 
characterization of textured surfaces. In the 
paper, a method for the computation of 
multifractal parameters is  proposed, together 
with some application results. Moreover, 
results are  shown that depict the exploitation 
of such features in a data-fusion environment 
for SAR image analysis and recognition. 

INTRODUCTION 

In the field of image processing and 
recognition, texture is  a fundamental but 
difficult to be measured feature. Many 
algorithms have been proposed in the 
literature, based on either statistical or  
syntactical approaches. 

In recent years new prospects have been 
offered by the development of the fractal 
geometry, a new branch of mathematics that 
deals with shapes and phenomena close to the 
natural ones [I]. In particular, i t  is a 
powerful tool with which interesting results 
have been obtained in the characterization of 
natural surfaces. Such surfaces a re  well 
characterized by their fractal dimensions, 
which can be deduced from the degree of 
surface roughness [2]. For example, by using 
fractals one can descriminate among different 
soil conditions in an image acquired by a 
Synthetic Aperture Radar (SAR) system, 
nevertheless the signal is  heavily corrupted 
by speckle noise. I t  has been proved that the 
fractal disparity between two different 
surfaces is not changed by the presence of 
speckle [3]. 

However, even if in analysing remote-sensed 
images of the Earth the roughness parameter is  
very important, i t  is  not exaustive. 

Other characteristics do not appear, such a s  
arrangement, spatial distribution of grey 
levels and so on. There exist many types of 
textures that, even though characterized by 
the same fractal dimension, are  in fact very 
different. 

To avoid such a drawback, multifractal 
theory has been developed. In the following, 
this new kind of approach to texture 
characterization is described more in depth, 
together with some textural analysis results. 

Such results (i.e. the fractal 

characterization of each pixel of the scene) 
are  used a s  a virtual sensor acquiring the 
scene (i t  is  not a physical sensor, of course, 
but a numerical transformation). 

Other kinds of virtual data can be 
collected, and then used to recognise the 
scene by using a data-f usion approach. 

In our case, we have used the fractal sensor 
and the physical one (i.e. the original SAR 
image) in order to extract a region map of the 
scene by following a hybrid clustering region 
growing approach. 

The segmentation process was notably 
improved by the use of multifractal 
information, a s  one can notice in the results 
section. 

INADEQUACY OF SINGLE FRACTAL DIMENSION 

The single fractal dimension is not sufficient 
to fully characterize a line or  a surface. 
Concepts such a s  roughness or  spatial 
frequencies, can be associeted with fractal 
dimension, but i t  cannot, however, ollow one 
to evaluate the organization and distribution 
of pixels. 
Fig.1 shows two surfaces, that look clearly 
different to the human eye, but are  
characterized by the same fractal dimension. 
One is a Takagi fractal surface [4], the other 
is a fractal surface generated by the 
Fractional Brownian Motion (FBM) algorithm 
[5]. The Takagi fractal surface is very 
regular and i ts  texture is  even: i t  could be 
an artificial object; the surface generated by 
the FBM algorithm could be a natural surface. 
A s  they have the same fractal dimension, we 
cannot differentiate them by using the single 
fractal dimension. 

Fig.1: Takagi and FBM surfaces 

Another problem of single fractal dimension is 
the impossibility of distinguishing between 
subsets with different fractal dimensions. For 
example: let us  consider a fractal curve 
generated by the union of two curves with 



different fractal dimension( e.g. two Koch's 
curves). 
The fractal dimension of this set  is: 

log N1(6) + N2(6) 
D = - lim 

&O log 6 

-D 1 -D2 
Knowing that ~ , ( 6 )  =6 and N2(6) = 6 I i t  

results: 
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D = - lim = max { D l  , D 2  } 
S*o log 6 

So the fractal dimension of the curve equals 
the greater of the fractal dimensions of the 
two sets. 
So, we can t r y  to examine not only the whole 
fractal se t  but also i ts  subsets; using a 
mathematical terminology, this means to 
estimate the fractal dimensions of the subsets 
with homogeneous features. To this end, 
multifractal theory will be used. 

MULTIFRACTALS 

The most widely used method for fractal 
analysis of sets i s  the box-counting [6] 
method. According to this method, an observed 
set  is  partitioned into cubes of side 6, and 
one has to count the number N(6) of cubes that 
contain a t  least one point of the set. In this 
way, however, one loses the information about 
the distribution of the set  points. To 
overcome this drawback a solution is to take 
into account the number of points contained in 
each box. 

If PI = ni /  n, where 9 is  the total number 
of points and R i  the number of points inside 
the i t h  box, the set  M={pi, i=O..N} (where N 
is  the number of boxes necessary to cover the 
se t )  contains the whole amount of information 
about the set-points distribution. 

The value D = - lim log N 

& O  log 6 

is the box-dimension of the observed set. 

Fig.2: Typical T(q) curve 

The following formula 

N 6) 

Md(q,6) = ~ y 6 ~  = ~ ( q , 6 ) 6 ~  

i =O 

is a kind of measure that takes into account 
the point distribution by raising the masses 
pi to the q power. Low values of pi prevail 
when q+-m, whereas high values prevail when 
q-r+m. 

The parameter T(q) represents the value for 
which the limit 6+0 of Md(q,6) is finite and 
not equal to zero: 

THE SPECTRUM OF FRACTAL DIMENSIONS D(q) 

The function D(q), introduced by Grassberg, 
Hentschel and Procaccia [7][81[9], can be 
defined in terms of 7(q) but has a peculiar 
characteristic: D(q) is constant for ~ e t s  of 
constant density in the E-dimensional space, 
and i t  equals the fractal dimension of the 
set. 

\ 6 r O  log 6 

I t  can be demonstrated that this function 
decreases and that 

1 im D(q) = l im log "mi  n = a 
q++m q++w log 6 

l im D(q) = l im log "mmx = u 
q+-a, ..X 

q+-a, log 6 

I t  should be pointed out that both T(0) and 
D(0) equal the fractal dimension of the whole 
set. 
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Fig.3: Typical D(q) curve 

Using this function, one can overcome the 
drawback due to the use of the single fractal 
dimension (as mentioned in the second 
section). A s  a matter of fact, in the case of 
the union of two uniform fractal sets (sets 
that have uniform D(q) that equals the fractal 
dimension of the whole set)  as  is well-known 
the D (fractal dimension) of the resulting set  
is equal to the greater of D l  and D 2  (fractal 
dimensions of the two subsets). However, the 
D(q) function is sensitive to the union (if 
Dz>D1): 



i f q < 1  H I  value a s  i t  covers only one region. 
( D 2  

D(q) COMPUTATION 

Let us  consider a digital image 
representation, that is  a discrete se t  of 
points. We propose an approximate D(q) 
computation, a s  i t  is  not possible to reach an 
arbitrarily small 6. The algorithm i s  composed 
of two steps: 

1. The image is divided, without loss of 
generality, into boxes of size 
6=2,418,..,nmexl then we count the 

number Ri(6) of pixels contained in the 
i-th box. 

2. The interpolation of multiple 6 values 
is  required to estimate the right 
D(q) value. 

Starting from 

if 6 is  sufficiently small, we obtain 

~ ( q , 6 )  = k(13) .6 -~~  

and 

- 
So we can estimate D through a linear 

interpolation. 

IMAGE ANALYSIS USING MULTIFRACTALS: 
AN ADAPTIVE APPROACH 

In order to analyze texture, which i s  a 
basic feature of a region made up  of connected 
pixels, we use a multifractal approach. 
Fractal dimensions a re  not related to  pixel 
characteristics, such a s  gray levels, but a re  
particular properties of a region. The goal of 
adaptive methods is to assign to each pixel 
the fractal dimensions of the region i t  
belongs to. 

To this end, we propose a new adaptive 
approach that chooses from a certain number of 
regions that contain the examined pixel, the 
one with the best uniformity in fractal 
dimensions. Using multifractals we have 
another tool for verifying the region 
uniformity: the D(q) curve points out the 
fractal evness of the examined set. The 
parameter H I ,  defined below,has proved very 
useful to obtain this goal. 

= lim - 
&O 21og6 

Fig.4 shows how the H I  value i s  very high 
for the masks covering area with two different 
fractal dimensions. Consequently one chooses 
the mask(containing the pixel) with the loweat 

Fig.4: H i  image of an area with different 
fractal dimension 

Thus, we can retain the details of the 
original image; instead the details a re  
generally lost when using non adaptive methods 
a s  an image should be divided into boxes to 
compute i ts  fractal dimensions. 

RESULTS 

One can sees in fig.5 an original SAR image 
of a ground area of Algeria where two lakes 
are  present. The image is heavily corrupted by 
speckle noise. The segmentation based only on 
the original filtered image (edge preserving 
filter) has a great number of regions. 

Fig.5: SAR image of a ground area of Ageria 

Fig.6 and Fig.7 show the results of 
multifractal analysis (D(0) and D(1)) of 
fig.5. We use masks of size 16x16 pixels in 
different positions and directions. One can 
notice how the details are  retained even if 
the masks have considerable dimensions, while 
different soil conditions are  well 



distinguished through their multifractal In order to achieve the image segmentation 
disparity we use a hybrid approach that  take into 

Fig.8: Segmentation of original image 

account the multifractal d a t a  A s  a matter of 
fact, the segmentation system uses, in order 
to compare the current  pixel with i ts  
neighbour, some local parameter extracted from 
the imput images [lo]. 

Fig.9: Segmentation using fractal data 
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