
MVA '92 IAPR Workshop on Machine Vision Applications Dec. 7-9,1992, Tokyo

EXTRACTION OF COLOR REGION BOUNDARIES

Stephen M. Blackburn
Department of Computer Science

Australian National University

GPO Box 4 Canberra ACT 2601
Australia

The literature on region analysis is dominated by al-
gorithms and applications for binary images. In con-
trast, region analysis of color images is a relatively un-
explored field. This paper presents some new research
that strengthens the notational support for boundary
encoding of color image regions, offers a sequential algo-
rithm for extracting color region boundaries and outlines
a VLSI architecture for the extraction of color region
boundaries in real-time.

A. Binary Images

The literature describes a number of notations for rep-
resenting boundaries in binary images. Most rely on the
fact that since only two colors are present, one may be
considered background. Only the boundaries of the fore-
ground regions need be defined; the background regions
are defined by implication. The notations may describe
either the location of the pixels on the perimeter of each
region, or alternatively the cracks between the boundary
pixels.

B. Color Images

In contrast, the notations for color regions are not so
well developed. The most common notation is a simple
extension of the most basic binary image notation. Each
region in the image is described in terms of the pixels
lying on its perimeter. However, this notation has dis-
advantages. It introduces a redundancy factor of two
into the description. Each boundary is shared by two
regions, which separately describe the same boundary.

This description also does not adequately represent
the physical properties of a boundary. For example,
if one wanted to simplify a complex boundary [I], the
boundary descriptions of both bounding regions would
need to be simplified. Moreover, the boundaries would
need to be simplified consistently otherwise aliasing
could arise between the regions.

Alternatively, each boundary may be described in
terms of the cracks between two regions. Thus adja-
cent regions may use that common description, thereby
avoiding the redundancy of describing each boundary
twice. Also, if the boundary were simplified, the changes

'Work done while the author was at the VLSI nnd Systems Tech-
nolow Laboratory, University of New South Wales.

to the boundary would by default be reflected in the
shapes of both regions. Such a notation has already
been proposed [2], but not in the context of raster scan
analysis.

The price of this notation is additional complexity
in the data structures. Instead of each region being de-
scribed in terms of a single boundary, it is now described
by n sub-boundaries, where n is the effective number of
neighbours that region has. Each sub-boundary sepa-
rates exactly two regions, and is linked to exactly two
other sub-boundaries at each end - one for each of the
two regions the sub-boundary bounds. The exception is
in the case where a region's boundary consists of pre-
cisely one sub-boundary.

As boundary approximation and image compression
are two of the key objectives of this project, the crack
notation has been developed.

A. Background

The only algorithm described in the literature for the
extraction of color region boundaries is a simple bound-
ary tracing algorithm [3]. This requires the entire image
to be in RAM, and its completion time is dependent on
image complexity.

Many binary image boundary extraction algorithms
use a sliding window to analyse pixel relationships. T y p
ically a 2x2 pixel window is slid over the image in
a raster-scan fashion. As the raster-scan progresses
boundaries of regions are propagated down the image
via the application of three basic rules: initiation, p rop
agation and joining.

Since only a limited number of pixel relationships may
occur in such a window, a look-up table may be used to
establish which of the rules are to be applied in any in-
stance. The propagation and joining of the boundaries
can be implemented dynamically through the use of reg-
ular data structures.

It is the sequential nature of such binary image algo-
rithms that allows real-time hardware implementations
[4]. However, in order to perform boundary extraction
for color images in real-time, a sequential algorithm suit-
able for color images must be developed.

B. Analysis of a 2x2 pixel, n-color window

A 2x2 pixel, n-color window may contain some part
of either one, two, three or four different regions. For

Figure 1: Possible arrangements of regions in a 2x2 pixel, n-color
window.

each of these cases, there exist one or more possible ar-
rangements of the regions (see Figure 1).

In total, there are seven equivalence classes, each ap-
pearing as a row in Figure 1. Each class has one, two
or four members depending on its behaviour subject to
rotation and reflection. Evidently there are only fifteen
possible arrangements of regions in a 2x2 window.

The fact that only fifteen different situations can arise
allows for the construction of a relatively simple sequen-
tial algorithm based on a small look-up table. Note that
binary algorithms such as [5] rely on a total of sixteen
arrangements; windows 8-15 in Figure 1 and their eight
inverses.

The arrangements in Figure 1 are the basis for a
raster-scan algorithm suitable for color images. All that
remains is to establish a set of propagation rules for each
of the fifteen cases. These rules may reflect either of the
common notations used to describe the boundaries of
color regions. In this paper, the crack-based notation
will be used because of its generality.

C. Propagation rules

In addition to the three rules used in binary image al-
gorithms (initiation, propagation and joining), a fourth
rule, termination is added. Such a rule is not necessary

Table 1 : Rules for boundary propagation for each of the states
depicted in Figure 1.

State
1
2
3
4
5
6

9

11
12
13
14
15

in the binary context as there is no concept of bound-
aries terminating.

Table 1 illustrates how the rules may be applied to the
fifteen possible states depicted in Figure 1. Such a table
will be used as the basis for a hardware implementation
of the algorithm.

Boundary
North South East West

T I I T
T I I
T I T
T I T

I I T
J I I J

7 P P P P
8 P P

P P
1 0 P P P P

P P
J J

P P
I I

111. A SUITABLE VLSI ARCHITECTURE

A. Motivation for a Real- Time System

The idea of boundary encoding images for image
transmission is not new [6]. Boundary encoding may
also be used as a tool for image analysis [7]. In either sit-
uation, there are applications where real-time boundary
encodine: is essential. This mav be achieved in one of two -
ways: applying a standard algorithm to an appropriately
powerful computer or building specialised hardware for
the purpose. Given the magnitude of the problem at
hand, the latter approach has been taken.

B. System Requirements

30 frames per second.
Filtered and classified, 16 bit color image input.
512x512 pixel image.
Continuous output of region boundaries.
A latency of not more than 80msec.

C. Allocating space for growing data structures

The greatest difficulty with building real-time bound-
ary extraction hardware is allocating space for bound-
aries as they grow. The length of a boundary may vary
from a few bits to a few Kbits. This and the need to
store partially built boundaries ensures that such hard-
ware is not easy to design. Furthermore, boundaries are
curves composed of one or more max-points and min-
points, which means that when a raster-scan of an image
is taken, various monotonically increasing or decreasing
portions of curves (referred to as queues in [4]) that were
previously assumed to be unassociated will eventually
join.

If the resultant boundary is to be represented by a
single contiguous list of bit sequences, as is normally

the practice, then a problem arises as to where bit se-
quences for a particular queue will be situated in the
complete boundary. Since queues are typically numer-
ous and small, linking them with pointers is likely to be
exceedingly expensive.

One solution to the problem is to take two passes of
the image [4]. In the first raster scan, data is collected on
the length of each of the boundaries and its constituent
queues. Before the next pass is made the data gath-
ered in the first pass is analysed and used to produce
a table indicating where each boundary and each queue
is to be written in memory. When the second pass is
made, boundary codes are generated and placed in the
appropriate memory locations.

The two-pass approach underlies the architecture de-
veloped here. The problems posed by the relative com-
plexity of color image boundary descriptions have meant
the architecture presented here is in most other aspects
quite different from that proposed in [4].

D. A pipelined architecture

A four-stage pipelined architecture is proposed. Stage
one will take a raster scan of the image (see Figure 2)
and produce a queue length table (Table 2). Stage two
will analyse the queue length table and produce a mem-
ory segmentation table (Table 3). Stage three will take
a second raster-scan and produce boundary codes, us-
ing the memory segmentation table to place them con-
tiguously in memory. The fourth stage will output the
boundary codes sequentially.

Such an architecture relies on an input image having
no more than N queues. Given that the input images
have been filtered and classified, choosing N as 64K is
reasonable for a 512x512 pixel image [4].

D.l Stage One

This stage establishes the memory requirements of
each queue and the relationships between connected
queues, writing the information to a large table imple-
mented in RAM.

Table 2 indicates the data content of the table. For
each queue, there are entries for queue length, the queue
to which it is connected at its lower end, the sub-
boundary to which it is connected associated with the
region on its lower side, the sub-boundary to which it is
connected associated with the region on its upper side,
the color on its lower side and its apparent region num-
ber, as noted during the first raster scan. Note that
there is an implicit connection between left and right
queue pairs, hence the need for only one Next Q field.

The depth of the table is dictated by the maximum
allowable number of queues (64K). Such a table would
be implemented with 3 x 32 x 64Kbit static RAM. At the
initiation and termination of each queue, the proces-
sor must write data to the queue length table. In the
worst case (windows 1 and 6 in Figure 1) this involves 4
writes in one pixel-time. Given the 127nsec pixel time,
a memory cycle time less than 3lnsec is required. This
is well within the limits of current static memory tech-
nology. The necessary speed is achieved by use of four

I/O buffers and a degree of internal pipelining.
The processor for this stage will consist primarily

of microcode controlled by the fifteen possible window
states. The microcode will be responsible for the writ-
ing of data to the table. A line-store will hold pixel and
queue data for the current image line.

D.2 Stage Two

During this stage, the queue length table is traversed
and memory segmentation data produced. The goal is
to traverse every sub-boundary from end to end, al-
locating memory so that the boundary codes for each
sub-boundary may be written contiguously during stage
three.

The procedure only involves translating region num-
ber and queue length data, so one physical table may be
used by both stages one and two.

The approach taken to translating the data is to start
at the &st queue in the table and then follow the bound-
ary of the region on its lower side (the region with color
equal to Color A) until returning to the original queue.
All sub-boundaries in the region boundary are traversed
from end to end, except the sub-boundary to which the
original queue belongs.

Whenever a queue is encountered with Color A equal
to the color of the region being traversed (Color A of
the original queue), the region number for that queue
is updated and the queue is flagged as having had a
Color A traversal. The region number for every such
queue on a particular region boundary will thus be made
consistent.

As the raster scan progresses, consistent region num-
bers can be propagated to all pixels in each region. The
effect of this is a solution to another image processing
problem, connected-components labelling.

The procedure is continued until every region bound-
ary has been traversed once (all sub-boundaries are tra-
versed exactly twice).

This algorithm may be implemented in hardware as
a f i t e state machine. Two read and one write buffers
are used to achieve the speeds required. The second read
b d e r is used to pre-fetch the next queue data. In the
wont case the table traversal will take 8N clock cycles
for N queues. With N=64K, this means 512K clock
cycles, exactly one half-frame delay.

D.3 Stage Three

The hardware requirements for stage three are very
similar to those for stage one. A second raster-scan of
the image is made, during which boundary codes are
generated. Data is read from the memory segmenta-
tion table and used to write boundary codes to their
appropriate locations in memory. Note that the bound-
ary codes are written in near-random order. If it were
desirable, region labelled pixels could be output as well
as the region boundary codes. Microcoded control logic
very similar to that used for stage one reads queue data
from the memory segmentation table.

D.4 Stage Four I 1

Stage four outputs the boundary codes in sequential
order. If the boundary code memory is implemented as
an odd and even pair of fast static RAM chips, boundary
codes can be output in pain, effectively doubling output
speed. Under such a scheme, existing technology will
allow a worst case 1M boundary codes to be output in
under 14msec, a .4 frame delay.

Figure 2: Three regions showing boundaries, sub-boundaries and

D.5 Integration max-points numbered in raster-scan order.

The similarity of the first and third stages, along with
the simplicity of the state machines required for the sec-
ond and fourth stages, can be exploited to produce one
single-chip multi-function processor. Such a processor
can be built with a lmicron CMOS process. The volume
of data to be passed from stage to stage suggests that
the pixel stream should be interleaved between three
processors frame-by-frame, each processor processing a
single frame through each of the four stages (Figure 4).

A guaranteed latency of less than two frames allows
the use of just three processors to complete the four-
stage pipeline.

IV. CONCLUSION

The extraction of region boundaries in real-time has
a number of potential applications. This paper has out-
lined a notation for representing color region bound-
aries, a raster scan algorithm for boundary extraction
and an architecture suitable for implementing in a VLSI
pipelined processor.

[I] K. Wall and P. E. Danielsson, ''A fast sequen-
tial method for polygonal approximation of digi-
tized curves," Computer Vision, Graphics, and Im-
age Processing, vol. 28, pp. 220-227, 1984.

[2] A. R. Hanson and E. M. Riseman, "Segmentation of
natural scenes," in Computer Vision Systems (A. R.
Hanson and E. M. Riseman, eds.), pp. 129-163, Aca-
demic Press, 1978.

[3] A. K. Jain, findamentals of Digital Image Process-
ing. Prentice-Hall, 1989.

[4] J. M. Apffel, K. W. Current, J. L. C. Sanz, and
A. K. Jain, "An architecture for region boundary
extraction in raster scan images suitable for VLSI
implementation," Machine Vision and Applications,
vol. 2, pp. 193-214, 1989.

[5] P. E. Danielsson, "Encoding of binary images by
raster-chain-coding of cracks," in 6th International
Conference on Pattern Recognition, pp. 335-338,
IEEE, 1982.

[6] D. N. Graham, "Image transmission by two di-
mensional contour coding," Procedings of the IEEE,
vol. 55, pp. 336-346, 1967.

[7] S. Suzuki and K. Abe, "Topological structural anal-
ysis of digitized binary images by border following,"
Computer Vision, Graphics, and Image Processing,
vol. 30, pp. 32-46, 1985.

Table 2: Queue data for Figure 2 after the table building phage.

Figure 3: Segmentation of memory resulting from application of
the segmentation algorithm to regions in Figure 2.

Q

1L
1R
2L
2R
3L
3R
4L
4R
5L
5R
6L
6R
7L
7R

Nezt
a - b A

7L

6L

6L

7L
3L
-

5R
-

Table 3: Queue data for Figure 2 after memory segmentation and
region labelling phase.

Len.

5
7
7
10
4
9
1
7
5
6
4
-
12
-

%-
Sub-boundarys Out Region Labelled Pizela Out

Nezt
Q

3R
.

4L

1L
2R

.

7L
-
6L
-

Nezt
a - b B

5R

4R

3L

2L
4R
-

2L
-

Reg.
Num

1
1
2
2
1
1
2
2
1
1
1 -
2
-

' Q

1L

2L
2R
3L
3R
4L
4R
5L
5R
6L
6R
7L
7R

Figure 4: Pipelined boundary extraction architecture.

Color
A

Blue
Blue

Green
Green
Blue
Blue

Green
Green
Blue
Blue
Blue
-

Green
-

Q
Start

7
1 R 6 e .

74
73
22
21
62
61
48
47
26
-

41
-

Reg.
Num

1
1
2
2
3
3
4
4
5
5
6
-
7 -

Dir.

+

-+
e
-+
e
+
e
+
t
-+
-
t
-

Nezt
Q

3R

4L

1L
2R

.

7L -
6L -

Nezt
a - b A

7L

6R

6R

7L
3L
-

5R
-

Nezt
a - b B

5R

4R

3L

2L
4R
-

2L
-

Color
A

Blue
Blue

Green
Green
Blue
Blue

Green
Green
Blue
Blue
Blue
-

Green
-

