MVA '92

IAPR Workshop on Machine Vision Applications

Dec. 7-9,1992, Tokyo

HYBRID STRUCTURED DICTIONARY FOR IMPROVING
TEXT RECOGNITION

Rainer Hoch
German Research Center for Artificial Intelligence (DFKI)

P. O. Box 20 80, D-6750 Kaiserslautern, Germany
Phone: (++49) 631-205-3584, Fax: (++49) 631-205-3210, e-mail: hoch@dfki.uni-kl.de

ABSTRACT

This paper presents an approach for structuring large dic-
tionaries and proposes respectlive access techniques. The
dictionary is used as a post-processing tool to verify
recognized word candidates dealing with different types of
incomplete input.

Structuring a dictionary is attractive because search space
is pruned enormously, especially when recognized words are
rather noisy. For instance, in the context of addresses only
a relative small set of words is relevant. Furthermore, the
so-defined partitions can easily be exchanged when proceed-
ing analysis from one part ol a document to another (e.g.,
from address to body). Moreover, there are dictionaries
including high-frequency words, common abbreviations,
domain-specific words and a base dictionary for German.

Two complementary dictionary data structures, namely
hash tables and tries, are used combining their inherent ad-
vantages lo organize respeclive subdictionaries. Both ap-
proaches can deal with different types of word incomplete-
ness. While hashing is most appropriate for fast look-up of
well-recognized input or simple distortions, tries in combi-
nation with a special access matrix are able to handle very
fragmentary input words, in particular when large prefixes
or suffixes are iissing. *

1 INTRODUCTION

Today, many researchers argue that traditional OCR has
reached its frontiers. In contrast to classification of isolated
characters, a new generation of OCR systems will apply
contextual knowledge (e.g., lexicon, syntax, and seman-
tics) for improving recognition accuracy [9].

In this paper we describe how lexical knowledge can be ef-
ficiently used to support document analysis resulting in a
hybrid architecture of a structured dictionary. The intention
of our document analysis system is to bridge the gap be-
tween (raditional print products and the computer.
Exemplarily, the structure and (partial) semantics of German
business lelters are analyzed. The system is model-driven
based on the ODA platform (Office Document Architecture
[6]), i.e., an international standard for the representation
and exchange of documents is supported. The entire system
includes several interlocked phases of analysis, including
layout extraction, logical labeling, text recognition, and
(partial) text analysis. Further details and experimental re-
sults of the system are given in [1].

The dictionary is a central component for our analysis
system supporting and improving results of character
recognition as well as enabling a partial document under-
standing. In the remainder of this paper, we will use terms
dictionary and lexicon synonymously. Both designate a
collection of words of a language or a special domain,
possibly provided with simple statistic, morphologic and

This work has been supported by the German Ministry
for Research and Technology BMFT under contract ITW
9003 0 (Project ALV).

291

syntactic information.

In literature, there is a lack of smart approaches for de-
signing large dictionaries that will improve character recog-
nition. In Seino et al. [14] a knowledge processing (KP) me-
thod is shown. This KP method is applied by Toshiba OCR
systems and comprises—among other knowledge sources—
many word dictionaries being hierarchically structured, e.g.,
an address dictionary for hand-printed Japanese characters.
Word occurrence probabilities stored in the dictionaries are
also used 1o eliminate irrelevant word alternatives.

Richy et al. [12] describe the spelling checking compo-
nent of the Grif system. Beside a general base dictionary
(English, French), some special dictionaries for technical
words, acronyms, proper nouns, elc. are provided. By ex-
changing respective subdictionaries, Gril can support the
editing of multi-lingual documents. However a global archi-
tecture of the dictionaries exploiting the logical structure of
documents does not exist.

Other former models are either restricted to specific appli-
cation domains (e.g., spelling checking [11]) or apply con-
ventional (i.e., relational) database technologies to orga-
nize dictionaries [5].

In contrast, we propose a partitioning of the dictionary
based on word [requencies, the logical structure of docu-
ments as well as application domains involving distinct
data structures and access mechanisms. The latter is hidden
for character recognition.

The paper is organized as follows: Chapter 2 describes
general dictionary requirements for document recognition
and understanding. These requirements are considered in the
next chapter which exhibits the design of an appropriate
dictionary architecture. Chapter 4 is more technical, point-
ing to our dictionary data structures and corresponding ac-
cess techniques which are primarily based on hash tables
and tries. In the last chapter, we summarize the current state
of implementation and ongoing research activities.

2 DICTIONARY REQUIREMENTS

Applying contextual knowledge for the verification of
optical character recognition (OCR) results [15] can gener-
ally be classified into three main approaches [3] [15]: dic-
tionary look-up methods, probabilistic methods (Markov
models, Viterbi Algorithm, Bayes) and combined methods.
While Markov methods use a-priori (i.e., statistical) knowl-
edge about transition probabilities of characters (often by
bigrams or trigrams), dictionary look-up techniques verily
the actual input string against a legal set of words being col-
lected in a dictionary,

We use a dictionary-based approach for two reasons: First,
while Markov methods are very fast and efficient, they are
extremely sensitive in case of misspelled or incomplete in-
put words. Second, storing dictionary entries and corre-
sponding lexical information explicitly will enable a sub-
sequent partial understanding of documents which is a main
goal of our project. A complete text understanding and full

semantic analysis, however, is not intended (see also [1]).
Text recognition (character recognition) is primarily con-
cerned with the spelling of a word form. Storing lexical in-
formation apart from orthography is not necessary. Conse-
quently, requirements for the dictionary include:
1) if input is complete: fast access of entries for word
verification, or rejection, respectively;
2) if input is incomplete: efficient pattern matching for the
selection of appropriate word candidates;
3) tolerance and robustness towards different kinds of
recognition errors;
4) compact storage allocation for loading large parts of
dictionary into main memory and therefore minimizing
access time;
5) dynamics: the set of words represented in the dictionary
are periodically updated and enlarged in course of time;
6) flexibility: exchange of special dictionaries at run time,
e.g., dictionaries reserved for technical words, domain-spe-
cific words, or multi-lingual documents [12];
7) views: definition of (virtual) subdictionaries, e.g., ac-
cording to document model; these views reflect a structural
restriction of context to improve recognition (e.g. possible
addressees, cilies and zip codes of a recipient [1]);
8) openness: an open and extendible interface allowing the
integration of other knowledge sources or intermediate re-
sults of recognition, e.g., simple image features (word en-
velopes), length of word, cryptographical attributes, etc.
For text analysis, the dictionary could then provide a lex-
ical knowledge base involving:
1) rich morphologic and syntactic information such as
parts-of-speech, stems, inflections, synonyms, elc.;
2) internal (semantic) links for the association of
dictionary entries, e.g. synonyms and typical phrases;
3) external links to specialized dictionaries, thesaurus or
encyclopedia;
4) a coherent and homogeneous representation (lexical
structure) which [acilitates the acquisition and modification
of lexical entries.
In fact, we take into account requirements of character
recognition for the design of an appropriate dictionary ar-
chitecture, This design will be described in the next chapter.

3 DICTIONARY ARCHITECTURE

After having briefly described our document analysis sys-
tem and having molivated respective requirements, we will
now propose an architecture of a structured dictionary which
is adequate for document analysis. Peterson [11] has also
suggested a similar dictionary concept which is exclusively
designed to assist spelling checking and does not intend a
representation of lexical knowledge.

Partitioning (i.e., structuring) the dictionary into several
distinct parts or subdictionaries (word clusters) is beneficial
for several reasons. First, by applying contextual knowl-
edge, search space will be pruned enormously, in particular
when input is rather incomplete. For example, in the con-
text of letter addresses only a relative small set of words is
significant (names, countries, cities, zip codes, etc.). This
agrees with the second of above requirements improving ac-
cess lime. Second, partitions can easily be exchanged when
proceeding analysis from one logical object of a document
to another with respect to the document structure (cf. ODA).
For instance, an address reader only needs a restricted vo-
cabulary (names, cities, zip codes, etc.) in contrast to a gen-
eral purpose recognition system.

A first strategy to partition the dictionary is based on the
frequency of words. Language-specific statistics reveal that
usually a small number of words is used most frequently in
documents. In German, the most frequent 500 words cover

292

63% of common text [10]. Because text recognition is more
robust in finding short words (articles, conjunctions, adjec-
lives, etc.) and corresponding errors only refer to one or two
characters, we compiled and stored them in a separate high-
frequency dictionary as full forms. The high-frequency dic-
tionary is organized by hash tables allowing fast access of
complete words and simple error elimination which will be
explained later (see Chapter 4.2). This matches requirements
1 to 3 of text recognition presented above.

Additionally, we have also compiled other 8.500 German
full forms which most often appear in our lext corpora.
These words cover another 25% of text and are stored in a
so-called base dictionary of German. In contrast to former
dictionary, the base dictionary has been implemented em-
ploying a trie data structure. Here, we use a trie representa-
tion since our search heuristics can efficiently handle frag-
mentary words of character recognition (see Chapter 4.1).

In parallel, there are several domain-specific dictionaries.
They include specific words or phrases which are significant
for a particular application domain. For the analysis of busi-
ness letters, these dictionaries comprise typical words, salu-
tations, closing forms, references, and courtesies (e.g.,
“Dear Dr.”, “sincerely”, “enclosed you find", “look forward
to", ...). Note that these dictionaries should be pluggable:
on demand they can be added or taken away for efficiency.

Furthermore, we provide logical dictionaries according to
logical objects of our document model (cf. [1], [6]). Logical
objects divide the contents of a letter into enlities associ-
ated with a sender’s intellectual meaning such as subject, ad-
dress or date. Each logical dictionary represents a restriction
of context accompanied by a special vocabulary and phrases
complying with the seventh requirement of text recogni-
tion. In Fig. 1 several logical dictionaries such as employee
names, countries, cities, months, elc, are illustrated.

Figure 1: Hybrid architecture of structured dictionary.

Moreover, a large set of special dictionaries contain typi-
cal German abbreviations, acronyms, proper nouns, etc. as
well as word stems and affixes. Latter two are relevant for
our morphologic tool for German (Morphix [1]) which eval-
uates simple lexical information (e.g., parts-of-speech).

So far, we represent domain-specific dictionaries, logical
dictionaries and special dictionaries as word lists. These
lists are stored in separate files which neither include any
lexical information nor frequency counts,

Fig. 1 schemes the architecture of our protolypic struc-
tured dictionary. The dictionary controller supervises and
schedules access of ail subdictionaries dealing with different

types of fragmentary word input and context information.
For instance, it determines in which order input words are
searched for. Right now, the simple scheduler implemented
consults all subdictionaries sequentially. More complex and
intelligent strategies have to be developed as the system
evolves,

The following sections explain which dictionary organi-
zations and access methods we support for the development
of a hybrid structured dictionary for document analysis.

4 DICTIONARY ORGANIZATION AND
ACCESS TECHNIQUES

A review of literature shows that a multitude of dictionary
organizations and corresponding access lechniques have
been developed. Knuth [7] and Elliman [3] give a good sur-
vey of adequate data structures for the representation of dic-
tionaries. Also Harris [d] compares different dictionary
structures (binary search, indexing, trie search, hashing).

In our system, two compelitive dictionary data struc-
tures—hash tables and tries—are used combining the
advantages of both. The next two sections describe these
data structures and access methods carefully weighing their
advantages and disadvantages and indicaling when they are
best used 1o implement respective subdictionaries.

4.1 HYBRID TRIE

One well-known technique for dictionary organization is
that of a trie data structure [7] [15]. Tries are attractive be-
cause of their simple and compact storage allocation. In a
trie, word entrics are stored character by character beginning
from left to right. A trie is represented in principle by an n-
ary tree where each node holds one character of correspond-
ing words and points to maximal n successors (n, number of
characters of the underlying alphabet). By this way, com-
mon prefixes of words are stored exactly once.

Search in a trie-based dictionary is straightforward start-
ing at the root and comparing the keys of all successor
nodes successively until the right character is found which
is then chosen for the next comparison. On the other hand,
if search [ails, the largest prefix match corresponding to the
input pattern, however, is found.

Because key information (word form), lexical data and ac-
cess pointers are closely interwoven, partitioning a large
trie dictionary is a serious problem. This matter is of great
importance since practice reveals that trie dictionaries allo-
cate huge parts of memory, in particular for additional link
information. A second problem of search arises when input
words are incomplele, in particular if the beginning of the
word is misspelled or unknown. An exhaustive depth-first
search, for instance, will then degrade recognition perfor-
mance dramatically.

To encounter and to alleviate some of these drawbacks we
have implemented several heuristics which minimize stor-
age demand and speed up search. For a compact representa-
tion, i.e., complying with requirement 4) of character
recognition, three different types of tric nodes are em-
ployed: bit-array nodes, char-pointer nodes, and string
compaction. During initialization of the dictionary, the
most efficient node representation is chosen automatically.
For more details on the different node types see [2] and [18].

To deal with incomplete input words, especially il the be-
ginning of a word was not recognized, prefix oriented search
of tries fails. For that purpose, we have developed a so-
called selective-access-matrix (SAM) allowing fast access of
fragmentary input words. The SAM is a (c#n)-matrix, where
c is the cardinality of the alphabet ¥, and n a positive integer
indicating the position within a word. Each element of the
matrix corresponds to a pointer array whose elements refer
to trie nodes at level n containing character ¢ [2].

Look-up in the trie dictionary is organized as [lollows.

293

Complete input words are checked character by character,
from left to right, as usual. Simple misrecognized words in-
cluding alternatives of characters (e.g. "Ble,olispiel”, where
brackets surround alternative characters) or single rejected
characters (e.g. “Beispi?l"™) are handled by a depth-first
search,

For words including unknown substrings we employ the
SAM. When multiple rejections in a word are directly at the
beginning of the word, search starts with a look-up in the
access matrix, which gives a number of nodes, where the
search can proceed. If a match is found, the missing prefix
can easily be reconstructed by backward chaining. For ex-
ample, let “77?inning” be the search word. The look-up in
SAM]i,4] gives all nodes at level 4 containing an "i"" which
are the starting points for further search. When multiple re-
jections in a word occur in the middle or the end, the SAM is
used analogously filling all gaps.

Our trie dictionary employing different node types and a
selective access matrix has been completely implemented
and actually contains 8500 most frequent German words
(= base dictionary). Results show that additional memory
nceded for the SAM can be compensated by skillfully using
different node types. Furthermore, search can be reduced by
10-75%, especially in case of large misrecognized prefixes.
The interested reader is referred to [2] for more details.

4.2 THREE-FOLD HASHING

A major shortcoming of most dictionary access tech-
niques is their relative slowness. For this reason, we use in
parallel a hashing-based approach for document analysis.
While general hash table methods have extensively been
developed over the last two decades and were well explored,
there is a pressing need for sophisticated hashing which is
tailored and specialized to improve character recognition.
Here, only a few papers can be found, e.g., [8] [13] [16].

Since input words often are incomplete, it is neither pos-
sible to consider all kinds of a potential word destruction in
advance nor to use the entire word form for computation of
the respective hash address when storing dictionary entries.
Rather, only a few word characteristics are used. These char-
acleristics are called word features and typically comprise
significant groups of consecutive letters (e.g., digrams, tri-
grams), first/last letters, less [requent letters (e.g., j, x, y),
etc, One problem, however, appears. Because features of dic-
tionary entries generally are not unique, i.e., words usually
maintain several distinct [eatures, the same hash address of a
word is assigned to feature groups [8] [16], i.e., a word can
be reached via multiple features. This is designated as redun-
dant hash addressing.

Our approach is similar to the one published in [13]. We
also use several hash functions in paralle]l according to word
incompleteness. These hash functions do not compute hash
addresses directly, but rather yield an index of correspond-
ing hash tables each referring to word entries in our dictio-
nary. This concept is called indirect hashing.

Indirect hashing has many advantages in comparison with
direct storing techniques:

1) Dictionary entrics may be stored in arbitrary order, e.g.,
alphabetically, retrograde alphabetically, or by [requency.
Hence, different access techniques might run in parallel such
as binary search and hashing.

2) Other features can be used for accessing the same word
(redundant hashing). These features may change, i.e,, new
hash functions can easily be included enhancing the dictio-
nary’s flexibility. For instance, we are now developing a
hash function coping with cryptographic hash information.
3) Indirect hashing allows the compression of word en-
tries. This becomes important if the length of words greatly
dilfers. In contrast, bucket size for direct hashing is ascer-
tained by the largest word length often resulting in a waste

of storage (empty buckets!).

Even the last characteristic compensates the major draw-
back of indirect hashing being stated in the additional stor-
age which is needed for the hash index tables.

Tndexi 1 o
] 2
g 3
L.
o
; -

i
nJ

Iindex2

[Teasieg]

dictionary

Figure 2: Three-fold hash-code access in principle.

As shown in Fig. 2, we use three distinct hash functions
(h1, h2, h3) for indirect hashing. Consequently, three re-
spective hash tables are provided. While hash function h/
primarily deals with complete input, A2 applies the left-half
of the input word for dictionary access, or h3 applies the
right-half, respectively. All functions compute their hash-
ing index by means of the division method [7] in combina-
tion with length of input word. The main dictionary includ-
ing lexical information is stored in a separale storage area.
Because collisions of keys may occur, collision is solved
by linear chaining of word entries. Also note that each entry
of the dictionary holds three collision pointers belonging
to the dilferent hash functions.

If the hash information of an input word contains wild-
cards or character alternatives, appropriate character se-
quences are generated (hypothesize & test). In advance, the
number of possible word hypotheses are computed for each
hash function to select the appropriate one which has min-
imal cost [15]. Additionally, we provide a parameter to
specily the maximal length of a half of a word. The value of
this parameter strongly depends on the number of word
entries (hash table size) and distribution of word keys.
While a small length typically results in many a-priori
collisions, i.e., equal prefixes or suffixes are used for
hashing, longer halves may lead to a variety of word
hypotheses when input words are fragmentary. Thus, the
parameter has to be selected carefully for each dictionary.

We have compared and statistically tested several hash
functions, index table sizes, collision handling, and strate-
gies for the selection of hash functions with respect to our
high-frequency dictionary, the base dictionary containing
the most frequent 8.500 German words as well as a third one
which consists of about 50.000 German words. Results
show that the average number of base dictionary accesses is
1,39 (resp. 1,57 accesses to the largest dictionary) for com-
plete input words which agrees with the requirement of fast
access time. For the left half of the input word 2,57 (2,96)
and for the right half 2,79 (3,26) accesses are needed. (Max-
imal length of half of word is: 4 (base dictionary), 5 (largest

dictionary)). For more information and statistics see [17].

5 STATE OF IMPLEMENTATION

A first prototype of our structured dictionary has been im-
plemented on Sun SPARCstations in Common Lisp/CLOS.
At the moment, the dictionary comprises a basis of 500
high-frequency German word forms that are stored separately
in a specialized hash table allowing fast access of words and
rudimentary error elimination by three-fold hashing. Right
now, our base dictionary contains further 8.500 words

294

which are collected in a trie-based dictionary extended by a
selective access matrix for incomplete input providing effi-
cient search heuristics. The storage needed is 330 KB (trie
200 KB, SAM 130 KB) [2]. All other subdictionaries such as
logical dictionaries and domain-specific dictionaries are
collected in simple word lists, However, the lexical data
base will be increased successively.

All dictionary entries were enhanced by frequency counts
of different text corpora and simple morphosyntactic infor-
mation computed from a morphologic tool for German. Fre-
quency counts and word statistics are used for a pre-classili-
cation of business letters applying traditional techniques of
information retrieval.

Our current research activities concentrate on the imple-
mentation of a more intelligent dictionary controller which
takes advantage of different types of subdictionaries and
logical views. Also a generator (lexicon manager) is being
developed for building special dictionaries according to the
requirements of distinct character recognition modules.

ACKNOWLEDGEMENTS

1 would like to thank my colleagues Michael Malburg, Rainer Bleisinger, and
Andreas Dengel for detailed reading and helpful comments. Special thanks to
our students Andreas Wagner and Adolf Pleyer who have implemented main
parts of the dictionary prototype.

REFERENCES

(1] A. Dengel, R. Bleisinger, R. Hoch, F. Fein, F, Hines. From Paper to an
Office Document Standard Rey ion. [EEE Comp ial issve on
document image analysis, vol. 25, no. 7, July 1992, pp. 63-67.

P) A Dengel, A. Pleyer, R. Hoch. Frag y String Matching by Selec-
tive Access to Hybrid Tries. Proc. of /1th International Conference on Pat-
tern Recognition, The Hague, Aug./Sept., 1992, vol. 11, pp. 149-153.

(3] D.G. Elliman, I. T. Lancaster. A Review of Seg jon and Contextusl
Analysis Techniques for Text Recognition. Partern Recognition, vol. 23, no.
3/4, 1990, pp. 337-346.

M) M. D. Harris, Introduction to Natural Language Processing. Reston
Publishing Company Inc., Reston, Virginia, 1985,

I5] N. M. lde, 1. Veronis, J. Le Maitre. Outline of a Datsbase Model for
Electronic Dictionaries. Proc.of RIAQ 91 Intelligent Text and Image Han-
dling, Barcelona, April 2-5, 1991, vol, |, pp. 375-393,

[6] 15O 8613 Information Processing, Text and Office Systems. Office Docu-
ment Architectire and Interchange Format (ODA/ODIF), paris | -8, 1988,
M D. E. Knuth. The Art of Computer Programming, vol. Ill, Sorting and

Searching. Addison-Wesley, Reading, Mass., 1973,

] T. Kohonen, E. Reuhkals. A very fast intive method lor the gni
tion and correction of misspelt words, based on redundant hash sddressing,
Proc. of the Fourth Intl. Joint Conference on Patiern Recognition, Kyoto,
Japan, Nov. 7-10, 1978, pp. 807-809.

P] G. Nagy. Teaching s Computer to Read. Proc. of //th International
Conference on Pattern Recognition, The Hague, The Netherlands, August 30
- September 3, 1992, vol. II, pp. 149-153.

[10) 1. Meier, Deutsche Sprachstatistik, Georg Olms Verlag, Hildesheim, 2.
erweiterte und verbesserte Aullage, Band 31, 1978 (in German).

[11]). L. Peterson. Computer Programs for D ing and C ing
Spelling Errors. Communications of the ACM, vol. 23, no. 12, December
1980, pp. 676-687.

[12] H. Richy, P. Frison, E. Picheral. Muliilingual String-to-Siring Correction
in Grif, a Structured Editor. Proc. of Electronic Publithing 92, Lausanne,
Cambridge University Press, 1992, pp. 183-198,

[13]). Scho Multifont Word Recog
on Computers, vol. c-27, no. 8, August 1978,

[14) K. Seino, Y. Tanabe, K. Sakai. A linguistic post processing based on
word occurrence probability. In: From Pixels to Features Ill: Frontiers in
Handwriting Recognition, S, Impedovo, J. C. Simon (eds.), Elsevier Science
Publications B, V., 1992

[15] R. M. K. Sinha, B. Prasads. Visual Text Recognition Through Contextual
Processing. Pattern Recognition, vol. 21, no. 5, 1988, pp. 463.479,

[16) H. Takshashi, N. ltoh, T. Amano, A. Yamashita. A Spelling Correction
Method and its Application to an OCR System. Pattern Recognition, vol. 23,
no. 34, 1990, pp. 363377,

[17) A. Wagner. Organisation und Zugriffsstrukturen eines Lexikons zur
Dokumentanalyse. Diploma Thesis, CS Department, University of Kaiser-
slavtemn, 1992 (in German).

[18] C.J. Wells et al. Fast Dictionary Look-Up For Contextusl Word Recogni-
tion, Pattern Recognition, vol. 23, no. 5, 1990, pp. 501-508.

System. |EEE Transactions

