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Abstract 
An N-dimensional binary image XN is now defined as an 

The aim of this research is to provide insight in the N-dimensional bounded section of I R ~ ,  with the elements 
construction of the topology preserving conditions that are of XN having the values (0,1 See figure ,. 
necessary to constitute skeletons of objects in N 
dimensional binary images. However, if one wants to 
derive these conditions, one of thefirst questions is, which "3 
connectivities between the elements of high dimensional -SI- 

images are possible and what should be chosen for 
foreground and background connectivity. A formula is 
derived as well as a best choice for the connectivity of the 
hack~round. 

1. Introduction. 
Our aim is to obtain insight in the elements that are 
necessary to perform topology preserving thinning or 

I( 

skeletonization in N dimensional binary images suitable for 
massively parallel implementation [I]. 
The motivation for this research was found first of all in 

R2 

skeletons from 3-D images obtained from Confocal 
Microscopes, CT, NMR or ultrasound sensor systems or Figure Binary Image X2 in IR;. 

I 
from range sensors. Solved around 1982 [2, 31 this is 
already an older topic. However, the motivation for The size of the image is indicated by the vector :N: ( s l , . . , ~ ~ )  
extending this to topology preserving thinning in images 
with a dimension higher than three can be found in the 
problem of finding the safest non colliding path of an object 
in an N dimensional space, which can be implemented with 
a background skeleton. These problems are frequently 
encountered in Printed Circuit Board and VLSI mask 
routing (a 3-D problem: x, y, z), planning of mutually 
collision free routes for multiple autonomous vehicles (a 4- 
D problem: x, y, 0, t ), or the planning of a simultaneously 
collision free path for a multi robot system (an N-D 
problem). Robot path finding itself, is a consequence of the 
robot vision problem: If a robot's movement to grasp an 
object, is dictated by the objects in it's field of view, it 
should avoid to collide with the other objects in its field of 
view. 
If one wants to derive topology preserving conditions for 
high dimensional images, one of the first questions is, what 
are the possible connectivities? 

containing the bounds of each coordinate. Let X; be an 
4 + -. 

image of size s' N: (s1+2,..,sN+2) having its origin in 0 - 1, 
then the edge EN of XN is defined as the elements of 

X& XN. The elements of X; and EN also have the values 
( 0 , l ) .  The elements of X2 are referred to as pixels, the 
elements of X3 as voxels. 

2. Basic definitions. I 

First some basic definitions are needed for the foundation Figure Neighbourhood M; of ?. 
of N-D binary processing: 
If I& is a Euclidean space of dimension N with origin 6 Let the position of an element in an N-dimensional image 
then let I R ~  be a Euclidean space of dimension N with XN be denoted as p, then ;+< denotes an element with 
origin 6 equidistantly sampled with unit distance over each position i j  relative to c. See figure 2. 
dimension. 



3. Connectivity between image elements. 
We now make the following definition for the connectivity 
between two image elements, presupposing that each vector 
points to the center of an image element: 

All elements of XN with the same value, on a distance 

d l l < I to Flying within the (hyper-) sphere S; with 
origin F and radius d, are elements connected to F. 

It is not common to define a connectivity as a distance (see 
e.g.[3]), but as soon as we define the connectivity of 
objects, e.g. a curve in a 2-D image, we intuitively use this 
concept. E.g. a 4 connected curve in 2-D has only edge (4) 
connected pixels, whereas an 8 connected curve has both 
point (8) and edge (4) connected neighbours. 
Let M D e  an N-dimensional (hyper-)cubic neighbourhood 
with (odd) size n = 2k+l, having its central element in ;. If 
F is assumed to be the origin of the local coordinate 
system, then k is the maximum value of any component of < within WN. 
Let E be the number of elements on the (hyper-)sphere S$ 
within the neighbourhood WN. As the elements are exactly 
on the grid positions, E will only have non-zero values for 
specific values of d. 
In order to derive an expression for E(N,k,d), let us 
consider only the elements q in the partition with non- 
negative component values, i.e., with 0 I qi I k within the 
neighbourhood Mi. For N=2, this means considering only 
elements in the first quadrant, for N=3 only in the first 
octant, etcetera. Afterwards the number found for such a 
partition can be multiplied by the number of partitions, 2N 
and compensated for the shared partition boundaries. 
The number of different vectors q with the same length lql 
is equal to the number of permutations among its 
component values. So, if all N components of q have 
different values, there will be N! vectors with length l<l in 
the partition. 
Let us denote the number of times that each of the 
components qi of < has the value j by n,, i.e.: 

N 

Then, for each distinct 0 I j  I k, the number of vectors with 
length lql will be reduced by a factor (nj!)-', because 
permutations of equal component values do not produce 
different vectors. Note that if only two component values 
are possible, e.g. 0 and I ,  the result is the binomial: 

The more general case, with more than two different 

component values is called multinomial: 

k 
N!  with C nj = N 

j =O 

The case j = 0 is a special one, because a vector with one or 

more components q, = 0, i.e. with no > 0, is shared by 2"0 
partitions (quadrants, octants, etcetera). So, instead of 
simply multiplying afterwards by the number of partitions 

2N, we must use the factor 2N in order to compensate 
for shared vectors. So, in conclusion E(N,k,d) is given (for 
d I k ) b y :  

By way of example, figure 3 shows a positive quadrant in 
X2, in which there are two (edge-edge connected) elements 
lying on the circle with d = 2: < = (0, 2) and q = (2,O). 
According to ( l c ) ,  their number is indeed 

N! - 2! -2. According to (Id) the number of 
no!.nl!.nz! I!.O!. I! 
elements lying on the complete circle with d = 2 is not four 
(the number of quadrants) times as many, but only twice, 
because both elements in the first quadrant are shared with 
another quadrant. 
Likewise, the number of (point-edge or knight's move 
connected) elements in the first quadrant lying on the circle 
with d = fi is: = 2. Because in this case none of the 

O!. 1 !. I ! 
elements is shared among partitions (quadrants), their 
number on the full circle is 8, simply 2' (the number of 
quadrants) times as many. 
In 3 dimensions the number of (knight's move connected) 
elements on a sphere with d = 3 in the positive octant is: 

N! - 3! - 3 ,  i.e. < = ( l , 2 , 2 ) ,  < =  (2, l , 2 )  and 
no!,nl!,nz! O!. 1!.2! 

q = (2, 2, 1). Because again all the vector components are 
non-zero, the number of elements on the complete sphere 
with d = 3 will be 24, 23 times as large. 

Figure 3 The vectors in the positive quadrant in X2 

for k = 2. 

Table 1 shows E, the number of elements within WN and 
on S$ for some dimensions and neighbourhood sizes, V, 

the number of elements within WN and within sf,, and 
G = V-1, commonly used to indicate the connectivity 
between elements. We will refer to the sphere radius d as 
the connectivity distance d. 
Unfortunately, for larger values of k and N, even within 
one partition more than one set of values n,, j=O ... k (cf. la), 
that results in the same d, and E(N,k,d), may occur. For 
N=2, this occurs with k25, because, e.g., 10.51 = 13.41. 
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5x5 

Table 1 Connectivity as a function of dimension, neighbourhood size and distance. 

edge 

point 

point-point 

lxlxl  

3 x 3 ~ 3  

5 x 5 ~ 5  

Likewise, for N=3, with k23, e.g. 10,0,31 = 11,2,21. For N24, elements will be denoted by ~ 6 .  
it occurs in all neighbourhoods with k22: e.g. 10,0,0,21 = Consequently, we will make the following definition: 
11,1,1,11, 10,0,0,0,21 = 10,1,1,1,11, etc. This ambiguity for d 
does not exist for k=l. because in this c a r  d=\inl, which is . F+ ; .yaid to he G6 -connected to j- 
different for every distinct nl-no-combinatic!~;, and no other 
combinations than these (of vector components with values have the same value* I s d  and max(9i ) = 1. 

of either 0 or 1) are possible. To avoid this ambiguity, we 
will restrict ourselves further to k=l. fi For example the element (1, 1, 1) is said to be G3 -(or 26, 
Note that there is no fundamental objection against the or point-point) connected to (O,O, 0). 
concept of connectivity defined in larger neighbourhoods, 
such as with k = 2, when a knight's move is allowed to 4. Background connectivity. 

Typical 

- 
4 = 

face 

edge 

point 

edge-edge 

point-edge 

point-point 

connect pixels. (E.g. applicable in  the shortest route 0.e. In XN the enclosing background's task is to separate 
skeleton ?) with knight moves on a chessboard from a to objects. Consequently a separating unit layer of background 
b). It is just the description using only N, K and d, that is should be thick enough to prevent the touching of 
no longer unambiguous with N24. foreground objects. This thickness depends on the 
Applying the restriction that k = 1, i.e., allowing only 3N connectivity and the smallest objects to measure this 
neighbourhoods, the connectivity between two image thickness on are N dimensional "tiles"; 2 N  connected 
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objects in a 2N neighbourhood.. Assume we would like to 
perforate one (probed) 2-D tile with another (perforating) 2- 
D tile, see figure 4, then: 

The layer thickness % of a probed tile is the length of 
the center line segment of the perj2vating tile. 

Figure 4 Layer thickness and connectivity distance 
in X2. 

The layer thickness {D$ I (d  >1) ] is always d ,  the 
connectivity distance of the probed tile, due to the fact that 
on any grid position the center line segment of the 
perforating tile and the center of the probed tile are in not in 

line but intersect halfway ( x  = kd )), where the surface-to- 
surface distance is zero I .  

A G$-connected tile can perforate a tile 7 6 N ~  with layer 

thickness &, jf the connectivity distance d of the G$- 

connected tile is 2 the layer thickness Df, of %,R 

This leads to the conclusion that GA-connected objects are 
the only objects that cannot be perforated by, nor can 

perforate any other G$-connected object, and that all other 
{G$ I (d >I)  ]-connected objects can perforate any other 

(G; I (d  >I) ]-connected object. 

Note that GA has this property because the (hyper-square) 
image clement has a layer thickness unequal to zero in all 
dimensions. For all higher connectivities there is at least in 
one of the dimensions a layer thickness zero. Consequently: 

A recisoncible choice for the background connectivity in 
imccge X N  is the lowest possible connectivity in the 
irncige (GL), crs it prevents leakage of foreground via 
background rind it is not able to perforate the 
foreground . 

The latter property is useful in propagation (labeling) 
operations, where propagation from the image edge over 
the background should stop at object borders. 

5. Conclusions. 
We have derived an expression for the connectivity G; in 
an N dimensional image, based on the number of image 
elements within a hypercubic 3N neighbourhood and within 
a hypersphere with radius d .  For low dimensional images 
(N 2 3 )  this leads to the more commonly known notations 
from table 1, e.g. point-connected or 26-connected. 
We concluded that in any dimension the lowest 
connectivity is the best choice for the background of the 
object, as it prevents leaking of foreground and it is not able 
to perforate the foreground. 

6. References. 
[ l ]  P.P. Jonker, "Morphological Image Processing: 

Architecture and VLSI design. : Kluwer Deventer 1 
Dordrecht 1 Boston, 1992, ISBN 90-201-2766-7 

[2] S. Lobregt, P.W. Verbeek and F.C.A. Groen, "Three 
dimensional skeletonization: Principle and algorithm" 
IEEE Trans. Patt. Anal. Machine Intcll. vol. 2, pp. 75- 
77, 1980. 

[3] J. Toriwaki, S. Yokoi, T. Yonekura and F. Fukumura 
"Topological properties and topological-preserving 
transformation of a three dimensional binary picture" 
in Proc. Int. Conf. Patt. Recogn., Munich, 1982, pp. 
414-419. 

[4] R.C. Gonzales, R.E. Woods "Digital Image 
Processing" Addison Wesley Publ. Cie, 1992, ISBN 
0-20 1-50803-6 

' Note that these connectivity problems do not exist in images 
sampled on a hexagonal grid or equivalent in higher dimensions. 
On the intersection point the surface-to-surface distance is minimal 
but never zero. 




