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ABSTRACT 
Octree Splitting 

We extend the irregular pyramid segmentation 
scheme to three dimensional (3D) digital space and 
we call it hyper-irregular pyramid segmentation. 
Based on this segmentation scheme, a 3D texture 
image is split into partitions recursively based on 
octree structure. The testure features are calculated 
based on 3D gray level spatial dependency 
measurement. The octree is subsequently converted 
into a 3D region adjacency graph (RAG). Each vertex 
of the graph consists of a texture feature vector of the 
corresponding partition and each edge represents the 
neighborhood relationship between two partitions. The 
hyper-irregular pyramid process is then applied to the 
graph and finally a segmentation of the three 
dimensional image is obtained. 

INTRODUCTION 

Three dimensional segmentation techniques are 
generally based on extending 2D techniques into 3D 
digital space and can be broadly classified into two 
categories. They are volume based and edge bascd 
approaches. The edge based approach detects 3D 
discontinuity to delineate a three dimensional volume 
while volume based approach extracts volume as a 
whole. Texture feature extraction has been attempted 
in numerous ways. Surveys can be found in [lo]. In 
this research, we extract three dimensional texture 
features based on some easily computable gray level 
spatial dependencies [ 5 ] .  Traditionally, pyramid 
architecture construction is based on rigid local 
subsampling scheme [2][3][4]. Recently, adaptive or 
irregular pyramid has been proposed for image 
segmentation [6][7]. Under this new framework, the 
clustering of pixels are treated as a graph contraction 
problem. In this paper, we extend the irregular 
pyramid to 3D space for segmenting 3D testure 
image. 

REGION ADJACENCY GRAPH 
CONSTRUCTION 

As stated in [ l l ] ,  a region adjacency graph (RAG) 
is a description of the homogenous regions of an 
image and their neighboring relationships. In this 
section, we present the details of forming RAG for 3D 
texture images. 

During this stage, the image volume is split up into 
eight partitions recursively based on an octree 
structure. The root of the octree corresponds to the 
whole image volume and each node of the octree 
represents a partition of the image volume. We define 

the initial image volume to be composed of 2 " x 2 " ~ 2 ~  
vosels where tti < n. In each level except level 0, the 
volume of the partition of the corresponding node is 
1/8 of that of its father. That is, in level L, the 

partitions are of dimension 2nZx2n-Lx2m-L. 

Let xP={ XNWF, XNEF, XSWF. XSEF. XNWB, 
X N ~ B ,  XsWB and XSEB ) denotes the set of 

partitions of a volume X and XV be the texture feature 
vector of a partition X. The following pseudo code 
describes the recursive splitting process. 

Initially, x represents the whole image 
volume. 

Splitting-test( x ) 
{ 

if ( 3 x i  exP I 8(X7, xV) > H )  

{ 
s is split up into eight partitions; 
Vxi exP, do Splitting-test( xi ); 

1 
else return; 

1 

where F denotes the Euclidean distance function 
and H is a threshold value. The calculation of the 
testure feature vector is shown in the nest section. 

Through this process, the three dimensional image 
is split into eight partitions recursively until no more 
heterogeneous texture partition is detected. The 
calculation of testure features is described in the 
following section. 

Texture Featrire Extraction 

Co-occurrence m;ltrices Ivhich describc the gray 
lcvel spatial dcpendcncy in two di~~lcnsion;~l  ittl:lgc 



has been presented in 151. In this research, we extend 
it to represent 3D gray level spatial dependency. 
Suppose the image partition to be analyzed is of 

dimension 2 " x 2 " ~ 2 ~  and the gray level appearing in 
each voxel is quantized to Ng levels. Let Lx = (0, 

1 ,..., 2"-1) and L.,, = (0, 1 ,..., 2"-1) be the horizontal 

spatial domains, L, = (0, 1,...,2m-1) be the vertical 

spatial domain, and G = (0, 1, ..., Ng-I) be the set of 

Ng quantized gray levels. The three dimensional 

image I can be represented as  a function which 
assigns some gray level in G to each voxel or 
coordinates in LxxLyxL,; I:LxxL.,,xLz->G. 

Similar to 151, in order to extract such spatial 
relationship, we construct gray level co-occurrence 

matrices which record the relative frequencies Po(i j )  
with which two neighboring voxels in the image 
volume, one with gray level i and the other with gray 
level j in direction o where o=0,1,..,8. There are nine 
co-occurrence matrices and each matrix measures the 
spatial dependency of one direction. The definition of 
the co-occurrence matrices in nine directions are 
shown in the following: 
Given ((k,l, p),(m,n,q)) E(LX x Ly x Lz) x (LX x Ly x Lz) , 

I(k, I ,  p) = i and I(m, n, q) = j . 
~~(i,j)=#(((k,~,~),(m,n,~))(l- n =o,p-q = o,lli-ml= d 

p'(i,j) =# (((k. 1, p),(m, n,q)) k - m = 0, p - q = O$ - nl = d} 

1 

where d = 1 and # denotes the number of element 
in the set. 

The above nine co-occurrence matrices are 
constructed for each partition. For each co-occurrence 
matrix, we compute three measures and they are: f'' 

(second angular moment)(ASM), fy(contrast) and 

fr(corre1ation) which are calculated by the following 
equations: 

f; = 
UY 

where px,%,ax,ay are the means and 

standard deviation of p, and p,, and 
Ns-I 

~ ( j )  = pm(i,.i) 
1=0 

and pW(i j )  = Po(i j)/R 

where R is the number of voxel pairs used in 
calculating a particular gray level co-occurrence 
matrix. The feature vector describing a partition is 
calculated by taking the average of the spatial 
depcndency measurement of all the sampling 
directions. That is, a feature vector [fl, f2, f3], with 

each feature fi defined by 
II 

f,="O-- 
9 

where i=1,2,3 

Each f, represents the texture characteristic of a 
partition 

Tree to graph conversion 

From the octree, we already have leaf nodes 
indicating the locations of various partitions with 
homogenous texture and their corresponding feature 
vectors. So, we have enough information to construct 
the node set of a RAG. To compute the edge set, we 
need to know the neighboring relationship among 
these partitions. In [ll], the neighboring relationship 
among the partitions are found by first defining the 
following functions: 

a). ADJ(0,s) is true if octant On, denoting the octant 

node n fills in his father, is adjacent to side s, the 
direction in which we search for neighbors, 

b). REFLECT(0,s) indicates which octant on the 
same level borders to side s of octant 0 .  

c). DIRECT(s) supplies the octants that are not 
adjacent to side s. 



Using these functions it is easy to find every 
adjacent neighbor in any of the six directions. For 
detail description of applying the three functions for 
neighbor finding, please consult [ l l ] .  After this 
conversion process, the neighbor relationship among 
the leaf nodes are known. A RAG can then be 
constructed with each vertex of it describing the 
texture characteristics of a partition and each edge 
represents the neighbor relationship between two 
adjacent partitions. 

HYPER-IRREGULAR PYRAMID 
CONSTRUCTION 

Sequential region growing algorithms have 
been proposed for grouping regions based on RAG 
[1][8][9]. Here we present a hyper-irregular pyramid 
construction process. This process groups regions 
together parallelly using RAG. 

Following the convention stated in [ l l ] ,  each 
layer of the pyramid is a graph G[I]=(V[d, Ell]) where 
V[fl is the set of vertices and E[I] is the set of edges at 
level I. G[O] is the RAG representing the texture 
volume. The vertex set at layer I (i.e. V[l] ) is the set 
{vi[lj i=O..n-1) where n is the number of vertex at 

layer I. The basic component of each vertex, as we 
have mentioned before, is a feature vector f .  We now 
associate each vertex a variable x.  x is a random 
variable uniformly distributed between [0,1]. In the 
following, we adopt the convention of "a.bM, where a 
represents a vertex and b an attribute of the verlex. 
For instance, vi[lj.x represents the variable s 

associated with vertex i at level I. Furthermore, 
{nk(vilfl) Vk = O..u-1) is the set of the neighboring 

vertices of vi[fl where u is the number of neighboring 

vertex of vi[q and nO(vi[q) = vi[o. The neighborhood 

relation is defined between two vertices if they share a 
common edge. 

The decimation process from layer I to layer 
1+1 is presented as follows: 

Initially, I = 0, 

1) Generate random number x for all vertices. 
2) A vertex is selected as a survivor if 
a) vi[lj.x = max( {nk(vi[d).x Vk=O..u-1) ) or 

b) min( 6( nk(vi[lj) J, vi[l] f ) Vk=l..u-1 ) > T 
3) if a non-survivor cannot find a neighboring 
survivor, goto 1. 
4) Duplicate all the survivors and put them to layer 
1+1. 

In general, a vertex is selected as a survivor if 
its random variable x is local maximum among its 

neighbors or its feature vector differs a lot from its 
neighbors. After the decimation process, we now 
consider the formation of the edge set. An edge set at 
level 1+1 is related to the neighborhood relationship of 
the tessellation volumes at level I. As stated in [S], the 
edge formation scheme is a survivor expanding 
process which includes the following two steps: 

Assume vertes i has been selected as a 
survivor: 

1. All the vertices of the graph sharing an edge with 
vertes i are analyzed. If a nonsurvivor is not claimed 
by any of the other survivors it is incorporated into the 
vertex i. If a set of survivors S competes for a non- 
survivor, the non-survivor allocates itself to a survivor 
n given that difference of their shape feature vectors is 
minimum for all the survivors in S. 

2. The vertes i tries to expand from the vertices 
already incorporated into it. The expansion is stopped 
whenever a survivor or an already-allocated 
nonsun~ivor is met. 

For convenience, we name the set of vertices 
occupied by a survivor including the survivor itself as 
territo~v. The edges of the pyramid at layer 1+1 can 
now be defined based on the adjacency of the 
territories at layer I. If two territories are neighbors at 
layer I, the two vertices at layer I + 1 corresponding to 
the territories' center vertices ( i. e. the two expanding 
survivors at layer I ) are linked together by an edge. 
After this edge formation process, the son to father 
linkages can also be defined. As survivors at layer 1 
are duplicated to layer 1+1, they are simply linked to 
their corresponding vertices at layer 1+1. For those 
non-survivors, they are linked to the vertices 
corresponding to the survivors which they are 
incorporated to during the survivor expanding process 
carried out at layer I. 

Finally, the shape feature vectors of the 
vertices at layer 1+1 is calculated by taking the average 
of the shape feature vectors of its sons at layer I. That 
is, 

vi[I+I] f := ave( M ) where M = { vjld f I 
vj[o is a son of vi[l+l]) 

The pyramid construction process stops at layer L 
when G[L] = G[L-11. 

EXPERIMENTAL RESULTS 

One testure image sequence is used for testing our 
hyper-irregular pyramid segmentation scheme. The 



texture image sequence used for the esperiment is 
composed of 64 128x128 images with 16 gray levels. 
The image sequence consists of two distinct texture 
volumes. For this example, an octree is formed down 
to level 2. Figure 1 shows the image data and the 
segmentation results. 

CONCLUSION 

Our approach provides a general framework for 
three dimensional image segmentation. The feature 
extraction technique is not restricted to gray level 
dependency measurement. Other texture feature 
extraction techniques can also be used with this 
scheme. Although the segmentation scheme presented 
in this paper is developed for segmenting 3D 
disordered texture, the hyper-irregular pyramid can be 
used to segment structural texture image volume. This 
can be done by changing each vertex into feature 
vector representing the shape of a texture token. The 
same hyper-irregular pyramid construction process 
can be applied to segment the image volume. 
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