MVA'94 IAPR Workshop on Machine Vision Applications Dec. 13-15, 1994, Kawasaki

Image Complexity Analysis for Self-Tuning Pattern Regeneration
in Open Environment Knowledge Projection

Kohji Kamejima® , Masakazu Efiri"” and Yuriko C. Watanabe

LLl]

* Osaka Institute of Technology
5-16-1 Ohmiya, Asahi, Osaka 536 JAPAN
Tel. +81-6-952-3131, Fax. +81-6-952-6197
** Central Research Laboratory, Hitachl, Ltd.
1-280 Higashikoigakubo, Kokubunji, Tokyo 185JAPAN
Tel. +81-423-(23)-1111, Fax. +81-423-(27)-7718

*** with Mechanical Engineering Research Laboratory, Hitachi, Ltd., until 1987.

ABSTRACT
A non-deterministic Image feature detection scheme is
presented for Interactive scene analysis. The image
feature is identifiled with an atiractor generaled by a
class of self-similar mappings. The mapping paramelter
is estimated through complexity analysis of non-linear
diffusion fleld excited by observed Imagery.

INTRODUCTORY REMARKS

Various decision support systems cooperatively gener-
ate environment description as the basis of schematic
instruction [6], [7], [8]. Following computation model of
cognition process [10], [12]. the instruction schematics
can be represented by a sysiem of propositions defined
on symbols deeply rooted in encountered environment.
As the referents of propositions, the objects should be
coded In terms of generic features. In articulating not-
yet-identified scene, on the other hand, the object
should be coded In terms of observables. For denota-
tively preassigned objects, geomeltric models are avail-
able as feature representations: 3D contours as loca-
tion invariants [4] and 2D grammar as phrase-structure
invatiants [5]. However, morphological variations of
object result In the Godel's trap [7): The geometric model
must be a priori adjusted to not-yet-encountered ob-
Jects by an all-seeing-designer (Fig.1). In this paper, a
non-deterministic scheme Is Iintroduced for object de-
scription. This scheme successively regenerates ob-
served pattern via the coordination of image complexity.
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Fig.1. Godel's Trap

NON-DETERMINISTIC OBJECT MODEL

Mathematically, this Godel's trap Is a paraphrase of the
undecidability theorem [3]: For an arbitrary fixed algo-

rithm n, there exists an observable and indicatable pat-

tern A that is undecidable by n. Despite the Intrinsic
non-determinism, the detection scheme should be pro-
grammable within the framework of the formally closed
systems: For a fixed set of observable-indicatable pat-

terns (A =1,2,3...NJ, there exists an algorithm n for

which arbitrary A 1,2.3,...N, are decidable. To overcome

this undecidability-programmability contradiction, the
detection scheme Invokes a non-deterministic descrip-
tlon as an a priori object model. The basic idea of non-
deterministic modeling is to describe the objects in
terms of the invarlant sets in joint iconic-symbolic fea-
ture space (Fig.2). In this description, the image feature
Is represenied as a fraclal attracltor non-deterministi-
cally generated by a class of self-similar mappings [2].
The Introduction of implicit representation implies that
the contour patterns of not-yet-ldentified objects are
anticipatively visualized prior to the completion of ob-
Ject modeling. In understanding an unstructured envi-
ronment, the attractor model Is combined with the own-
ership description [11] and the attractor of the motion
[1] to generate an Integrated a posteriori object descrip-
tion.
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Fig.2. Non-Deterministic Object Model



PATTERN REGENERATION PROCESS

Let A be an observation of an object contour via a dy-
namic version of the zero-cross scheme formulated by
the following

Edge Extraction Process:

A={AeZ | |Au| =0 and |Vu|> 0}, (1a)

%:au+ alv-u], LeT=[Tp. T}, (1b)

where I and v denote the Image fleld and the gray level
distribution In I, respectively. The response and resolu-
tion of observation A to object Image v are simultane-
ously controlled by the positive parameter a. When ob-
served contour A is smooth, the pattern location, desig-
nated by 8, Is computed by the following

Tracking Scheme:
L)
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(2b)

where 58] and W denote Dirac's delta distribution and a
properly chosen gain matrix [1]. The initial value of the

location estimate 8(=0(Tg) Is chosen as the minimal

point of the diffusion field @. For arbitrary y>0, the detec-
tion scheme (2) subjected to smooth and convex pattern

A yields unique minimal point 8.

Conslder a dissipative struclure ¢ generated on Irre-
versible thermodynamic system (2a) under the excila-

tlon of complicated pattern A. In this system, the energy
flow qv Is evoked between the excitation x[A] and the
heat sink (Fig.3). The control parameter y in detection
scheme (2) Is adjusted so as (o coordinate the complex-
Ity assoclated with fractal attractor o and observable A.

Fig.3. Irreversible Thermodynamic System

Let © be the 2D distribution of the following
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Null Entropy Generation Points:
0={08ex | Vingq,, = 0). (3)

By definition, the distribution © is a finitely extended

version of the location 8 for generalized pattern A. The

discrete distribution © Is specified In terms of the local
minimum points without a priori information concern-
ing not-yet-identified objects. Thus, we have the struc-

tural measure O for a posteriori complexity evaluation of
the observation A.

For regeneraling the observation A, the discrete distri-
bution © is disintegrated via the following

Field Interaction Scheme:
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for t<t<t+1. In Eq. (4b), Z;[A] denotes the following

Equi-Field Set:
ZelAl= { EeZ | 1A0¢1 > 0, |A@q] > 0, 01— =0}. (5)

Noting that Z,[A] converges to a self-similar approxima-
tion of A, define

o= lim Z Al (6)
T—doo
As a dissipative structure in non-linear diffusion system

(4). the invariant pattern o regenerates the observation
A. Define

Jo)as

Ploia) = 25—,

x[A)ds
z

(7

for arbitrary regeneration o and observation A. This
P(olA) salisfies the following

Properties of Conditional Probablilities:

0 < PlojA) < P(AIA) < 1, (8a)
P(Ug |A) = ZP(o|IA), 0,n0 =0, (8b)
(8c)

P(OIUA’} = ZP{UIAll, Ainhlzg..P[a\j}:P{Aj].

Then, we have the measure P(o|A) for a posteriori evalua-
tion of the complexity of patlern regeneration process
(5).

STRUCTURAL COMPLEXITY ANALYSIS

Despite the non-anticipation, the discrete feature 8
yields a cue to consistency evaluation of mapping candi-



dates. Let a class of self similar mappings I={m, I=1.2,...}
be selected as a priori Information. Then, the a posteri-

ori consistency of the mapping ne [l with aliractor A Is
evaluated through self correlation analysis for the range

of the projection n[{7{0]], where D{0]={6© | n(0]c O} de-
notes the domain of the mapping .

First, the consistency of the a priori class IT Is analyzed
through the detection of the following

Invariant Sub-class:
n° = (% | 3%cnte), n¥(2%)=2"). ©

Next, the collage theorem for the Iterated Function
Systems [2] is Invoked to estimale the correlation

between the discrete patterns 8 and ®[0]=n[D{0]]"1{8)],
i.e., the restriction of the range of projection into Itself.

Then, the consistency of the mapping n Is estimated
based on the following

Collage Error Evaluation:

h(1-cle))
h(e.xe) < ML-Cle) 10a
©.10) <= -0 (10a)
clo) = 1€l (10b)
el
__ixiel ligd
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where h(+,¢) and ||| denote the Hausdorfl metric and size
of the discrete pattern. In Eq. (10), C[©] and L|©] denote
the coverage factor and the contractivity factor, respec-
tively. Hence, a best fit mapping n*e n%n is determined
through a correlation computation on a finite pattern ©.

PATTERN COMPLEXITY ANALYSIS

The adjustable parameter y In patlern regeneration pro-
cess (4) I1s controlled so as lo coordinate the complexi-

ties assoclated with the approximation ¢ and the map-

ping n*. This Implles that, for adjusting the regeneration
process (4), explicit specification of the mapping Is not

needed. The dissipative pattern o well approximates the

attractor A based only on the estimate of the "program
length” for mapping description. The complexity associ-
ated with the non-deterministic regeneration process
(4) is evaluated In terms of the probability of the dissi-

pative pattern o conditloned by the observatlon A. By

the estimation of the conditional probability P(ojA)=

Iwch/ J-x[;\]ds and by applying Bayesian calculus to

oL L
the following

Fifty-Fifty Criterion:
PlolA) = P(=Am). (11)

472

we have a guideline for adjusting y In terms of the follow-
ing

Fixed Point Problem:
P(m)
=—|1 - I 12
PlolA) PA) [1 - PloiA)]l (12)

In Eq. (12) the ratio P(n)/P(A). designated by relative
complexity, indicates the description reduction of iconic

pattern A by the constraint of mappings n. The relative
complexity P(n)/P(A) Is evaluated using the computa-
tional complexity p defined by the following

Complexity Coordination Rule:
p= min [logglel-1, loggInl J, (13)

where lel and Inl denote the length of error messages ¢
and mapping n. In Eq. (13), the error message Is coded
for specifying the o-A disparity Independent of the loca-

tion of © [9]. Equation (13) implies that both overfitting
mappings and too random deviations are rejected dur-

ing regeneration. Thus, the computational complexity p
provides the consistency evaluation of reasonable map-

pings © on the Initial condition oy =8. Hence, the condl-
tional probability P(o]A) computed as the fixed point as-
soclated with the computational complexity p, ylelds the
target for the diffused pattern @. In other words, the
control parameler y is adjusted to reduce the error

A
Blola)-a, (14a)
[
i (14b)
[xinias
L

where ?’{clhl denotes the solution to the fixed point

problem (12) for a fixed relative complexity P(r)/P(A).
This implicit control process is formulated in terms of
the following

Search Scheme:
(15a)

i‘— X", (15b)

Equation (14) successlvely updates the process parame-
ter y and associated conditional probability estimate
A=P(o|A) simultaneously.

SIMULATION STUDIES

The pattern regeneration process Is verifled through a
series of simulation studies. An example of simulation
results Is shown In Fig.4. In this simulation, a fractal
pattern, "FERN", Is generated by Monte Carlo simulation



and Is regenerated through the proposed scheme. The

observed fractal patiern A Is well-approximated by the References
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(b) Mapping Selection
Fig.4 Simulation Resulls

CONCLUDING REMARKS

A non-deterministic detection scheme was presented
for Image features with sell-simllarity. In this scheme,
the pattern to be detected Is regenerated as the dissipa-
tive structure on non-linear diffusion fleld. The self-
similar mapping Is identified through the computational
analysis of the null entropy generation points.
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