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ABSTRACT 

This paper presents a system which demonstrates a 
biologically motivated approach to artificial vision. As 
a typical application 2-D shape recognition is chosen. 
Traditionally recognition problem is divided into two 
phases: sophisticated preprocessing of the whole image 
so that regions with similar features can be grouped to- 
gether and then the recovery of shape parameters of each 
region using one among the plethora of existing meth- 
ods. In contrast an approach based on selective atten- 
tion makes use of simple methods to  guide visual pro- 
cessors to  the interesting regions of the image. Previous 
work on selective attention has focused on pre-attentive 
and attentive stages while almost no work has been done 
on the final stage - cognition. This paper presents the 
beginnings of how to complete the pre-attention, at- 
tention, cognition sequel of selective attention. An ap- 
proach to shape recognition based on probabilistic mod- 
els of attentional sequences is described and the capa- 
bilities of the system are investigated. Experiments per- 
formed on rotated shapes demonstrate the performance 
of the algorithm. 

1. INTRODUCTION 

Studies on the vertebrate visual system provide us 
with many clues about how recognition can be so fast 
when the neurons - the major processing elements - are 
rather slow [I,  2, 3, 4, 51. It has been determined that 
in addition to  being massively parallel, biological vision 
systems also selectively process the incoming data in or- 
der to reduce the amount of processing. In particular, 
selective attention, defined as the intelligent use of lim- 
ited resources, has been advocated to be a biologically 
verified means of alleviating the computational require- 
ments of visual processing [3, 4, 51. In this perspective, 
visual processing consists of three stages: pre-attention, 
attention and cognition. Previous work on eye move- 
ments has motivated the representation of an object as 
a feature ring - a temporally ordered sequence of fixa- 
tions with their corresponding features and spatial re- 
lations. It is concluded that recognition involves tem- 
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poral matching of a feature ring elicited from the scene 
to those stored in memory [3, 4, 51. However, most of 
the studies in selective attention have primarily focused 
on the first two stages while recognition based on at- 
tentional sequences has remained relatively unexamined 
[8, 6, 7, 91. In this paper,we examine the performance 
of an approach based on probabilistic models of atten- 
tional sequences, within the context of shape identifica- 
tion. In this work, recognition is achieved by modelling 
the attentional sequences generated on library of shapes 
using hidden Markov models (HMMs), and then finding 
the observation probabilities of a generated sequence by 
these models. The sequence is classified to be the library 
shape whose HMM generates the maximum observation 
probability (MOP). 

The organization of this paper is as follows: Section 
2 presents the generation of attentional sequences. The 
modelling of these sequences using HMMs are explained 
in the next section including a brief overview of hidden 
Markov models. In Section 4 shape identification using 
attentional sequences is explained. The performance of 
the system on real images is evaluated in the Experi- 
ments section. We conclude with a brief summary. 

2. SEQUENCE GENERATION: 
PRE-ATTENTION & ATTENTION 

An emergent attentional sequence consists of a set of 
ordered foveas which trace, via attention and fixation, 
the most informative parts of a scene. The visual ele- 
ment which is a part of selective attention hardware is 
modelled as a spatially variant sensor like the vertebrate 
retina [I]. The visual acuity of the sensor is determined 
by a 2-D gaussian centered at  the optical axis or the fix- 
ation point. For simplicity we approximate the gaussian 
by a square function. During each fixation, the attentive 
stage consists of detailed processing of the fovea to find 
features which will be added to the attentional sequence. 
In the pre-attentive stage simpler analysis is performed 
on the candidate foveas in the visual field, to find the 
next fixation point. Candidate foveas are allowed to 
overlap by a certain amount so that, salient image points 
can be traced with controllable accuracy. In order not to  
examine the same area twice, an region of pre-defined 
size around the fixation point is inhibited during pre- 



attentive processing. As a result pre-attentive vision is 
performed on a region around the fovea, which is called 
the periphery. Note that fovea and periphery together 
make up the visual field. 

Let us suppose that a moving camera starts with 
an arbitrary orientation and consequently an arbitrary 
optical axis. The fovea is a small region around the 
fixation point, and the visual field contains the fovea 
at  its center. The camera then fixates to the center of 
the most salient of overlapping foveal regions inthe pe- 
riphery. This fixation is done by moving the camera's 
optical axis to the new fixation point which determines 
the new fovea and the new periphery. Saliency is a mea- 
sure of interest based on presence of simple features and 
should be computationally very cheap. For example if 
the fovea image is represented by I l (z ,y )  and the in- 
tensity gradient is VI l  = [Il, 11,], then saliency may be 
computed as the sum of linearly weighted combination 
of the responses cl I 11, I + cz I 11, I of each point in the 
fovea. The sequence of fixations with the given measure 
of saliency and corresponding visual fields are shown in 
fig. 1. Using different measures of saliency the fixation 

Fig. 2. Left: Fixations on tools and two object image. 

can be prevented by using a saliency threshold forse- 
quence termination. Alternatively, by keeping track of 
foveas from previous peripheries, fixations can be made 
on unexamined regions. Example fixations on relatively 
complex scenes using such memory and saliency thresh- 
old are shown in fig. 2. 

Fig. 1. Top: Image and fixations; Bottom: Feature se- 
quence. 

sequence can be biased to exhibit desired properties de- 
pending on the task or type of image. 

In the attentive stage, the fixation fovea is further 
processed to extract features which characterize this fovea. 
The feature vector obtained in this way is assigned a 
state number and thenadded to the attentional state 
sequence. Thus, each feature vector corresponds to  a 
state. Using the measure of saliency presented above 
and defining edgetype as a feature, the state sequence 
consisting of 1-D vectors is obtained as in fig. 1. This 
sequence comprises of four different types of states rep- 
resenting four directional edges. 

The pre-attention and attention process recursively 
continues tracing all the interesting points in the image. 
The termination of fixations may or may not be consid- 
ered, since recognition can be simultaneously occuring 
during sequence generation. However, when no salient 
fovea can be found in the current periphery, the system 
starts fixating on arbitrary points in the periphery. This 

3. ATTENTIONAL SEQUENCE MODELS 

In order to  model an attentional sequence probabilis- 
tically so that it can be recalled at  a later time, a hidden 
Markov model is used [lo, 11, 61. In the next part, we 
will briefly review HMMs. 

If k is an index to the 2d shape, its HMM is charac- 
terized by the 3-tuple (Ak, Bk, 7rk) as: 

1. N ,  the number of states in the model. Individual 
states are denoted by S = {Sl, Sz, ....., SN), and 
the state at  time t by qt. 

2. M ,  the number of distinct observation symbols per 
state, corresponding to the observed physical out- 
put of the process at  each state. Output symbols 
are denoted by 0 = {01,Oz, ........, OM) and the 
observed output a t  time t by of. 

3. State transition probability matrix Ak = {ah) where 

k 
'ij = = Sjlqt = S,, k), 1 <= i , j  <= N 

4. The observation symbol probability distribution in 
state j ,  

Bk = {b,k(l)), where 



5. The initial state distribution .rrk = {a:) where 

.rr; = P(q1 = Si), 

In our approach, letting NF be the number of foveas in 
an attentional sequence, each fovea in the sequence cor- Fig. 5. Exueriment set: rec3.t3.e13. 

of each observation corresponds to the extracted features 
Oi, i = 1,. . . , M. Each observation has a corresponding 
state st ,  where the value of the state is Sj, j = 1,. . . , N 
also corresponds to  the extracted feature. I 

4. CLASSIFICATION USING HMMs Fig. 6. Experiment set: rec4,t4,e14. 
In order to use HMMs in the recognition of 2-D 

shapes, a library model is obtained for the attentional 
sequence generated on each library shape. These mod- 
els are calculated by considering the number of tran- 
sitions between states during fixations on the library 
shape. Thus, L library objects are represented by the ~ i o  7. Ex~eriment set: rec5,tS,e15. 
transition probability matrices A!, (I = 1,. . . , L). 

During classification, an emergent attentional sequence 
0 = {o,,. . . ,ON)  is generated on the object to  be clas- 
sified. The observation probability of this sequence by 
the model 1 is given by, 

To find the maximum observation probability, P(OI1) is 
maximized over all library models, 

M O P  = max P ( 0 ) l )  
I=1, ..., L 

The output class is the one whose library model gives 
the MOP for the input sequence. 

5. EXPERIMENTS 

The above approach is used in a system implemented 
for recognition of 2-D shapes. Experiments are per- 
formed on 640x480 pixels 8 bit gray scale images of var- 
ious shapes. Library models are generated from images 
of shapes without any rotation and rotated shapes are 
used to test the performance of the system. These im- 
ages are shown in fig. 3 through fig. 8. 

Fig. 8. Experiment set: rec6,t6,e16. 

Experimental configuration consists of a 60x60 visual 
field and 10x10 fovea. Note that, in hardware implemen- 
tation the size of the visual field is physically defined by 
the focal length of the camera lens. Even with a small 
angle lens, the visual field is too big for many appli- 
cations. Therefore, we propose using a subset of the 
image seen by the camera. In this simulation, the cam- 
era is assumed to see only the 60x60 region of the world 
which is 640x480. Saliency measure is a simple gradi- 
ent which returns the edge contents of the overlapping 
foveas in the periphery. The amount of overlap is 50%. 
The size of the attentional sequence is limited to  20 fix- 
ations, which is a reasonable value for these images. In 
the attentive stage each fovea is processed to obtain its 
features and find its corresponding states. We experi- 
mented with different features and feature vectors like 
edge strength, edge type, corner type and average in- 
tensity. Among these the best results are obtained by 
using only the edge type as the state determining fea- 
ture. Therefore we had four different types of states in 
attentional sequences. 

these HMMs are shown in fig.9, where So through Sl 
represent four edgetypes. 

Using these models and the above parameters, ro- - 

Fie. 3. Librarv images: recl.tl.el1. tated shapes are classified correctly with satisfactory 

1 
values except for t6, where a fixation size of 20 resulted 
in more than few empty fixations. Observations proba- 
bilities for these experiments are tabulated below. Here 
Lo, L1, and L2 represent three library models and im- 
age suffixes indicate different amounts of rotation. Val- 

Fig. 4. Experiment set: rec2,t2,e12. ues of observation probabilities are scaled by 10" for 
convenience. 
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Fig. 9. Transition probability matrices Ao, A1 and A2 for 
library objects recl,tl, and ell. 

Fig. 10. OP values for various objects. 

From these results we conclude the following: The - 
measure of saliency determines the fixation sequence. 
This property can be used to guide the camera or robot 
to the desired points of the world like edges in our ex- 
periments. The features used in formulating the states 
are another key component in the algorithm. These fea- - 
tures must have the necessary discrimination power for 
the given task. For example, when we perform the above 
experiments using edge strength as our state determin- 
ing feature, the results are not as satisfactory due to  the 
almost equal values of edge strength in fixation foveas. 

Other parameters aftectlng the system performance 
are the sizes of visual field and fovea, the amount of over- 
lap, and inhibition area around fixation point. These 
all primarily determine the resolution and accuracy of 
fixations, and need to be adjusted appropriately for a 
good sequence with minumum redundancy. For exam- 
ple, a small fovea in the above experiments may lead to 
fixations concentrating on a corner and finally locking 

themselves among already fixated foveas. Unless we use 
some kind of memory to remember saliencies in previous 
peripheries, this situation is unrecoverable. 

6. CONCLUSION 

We presented preliminary results on the use of se- 
lective attention in shape identification. In this work, 
recognition is achieved by modelling the attentional se- 
quences generated on library shapes using HMMs, and 

then finding the observation probabilities of a generated 
sequence by these models. Considering the experimental 
results and the strong biological evidence behind it, we 
find this approach promising. The contribution of our 
work has been the investigation of the use of selective 
attention in visual recognition. Our future work in this 
field, will concentrate on different models and recogni- 
tion schemes of attentional sequences, as well as fixation 
control and feature selection. A hardware implementa- 
tion is also being set up to  make use of this approach in 
mobile robot guidance. 
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