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Abstract 
Thinning algnrithms can be classified into two general types: 

sequential and parallel alprithms. Most of them peel off the 
object boundaries until the objects have been reduced to thin 
lines. The process is performed iteratively and needs a number 
of iterations (approximately equal to half of the maximum line 
width of the object). Several boundary based algorithms which 
belong to the sequential method have been proposed, but they 
have limitations. A new boundary based algorithm is presented. 
Experimental m l t s  are used to compare this new algorithm to 
other sequential algorithms and their relative performances are 
assessed. 

I. INTRODUCTION 
Thinning algorithms can be classified into two general 

types: sequential [I-51 and parallel [l l-221 algorithms. A 
common character of these algorithms is that they are 
pixel-based. They check the condition of small local 
neighbourhoods around the pixel (usually a 3x3 mask or 
larger, 8 neighbours or more) to find out the deletable 
boundary pixels of the object, whose removal does not 
locally disconnect their neighbourhoods or cause 
excessive erosion. The process is performed iteratively. 
In each iteration, every image pixel or boundary pixels 
(for contour following methods) are inspected and single- 
pixel wide boundaries, that are not required to maintain 
connectivity or endlines, are erased. The number of 
iterations is approximately equal to half of the maximum 
line width of the object. O'Gorman [23] enlarged the size 
of mask to-kxk (M) and a center core of (k-2)x(k-2) 
pixels is erased if the deletion criteria are satisfied. 
Because thicker layers are peeled from the boundary of 
the object, fewer iterations are required to reach the 
thinned result. For a large k, this is often at the cost of an 
increase in the coarseness of the result. 

Another type of sequential methods are based on 
contours to calculate an approximate median line [7-91. 
Shapiro et al. [9] exploited the trapezoid formed by two 
pairs of boundary points along the two boundary 
segments. If the diagonals of the trapezoid are nearly 
equal, then the point of intersection of the diagonals 
represents a point on the median line. Their algorithm can 
deal with ribbon-like or simple tree-like objects. Even for 
these types of shapes, there are problems in deciding 
what constitutes a legitimate skeleton for the ambiguous 
regions. Using the vectorized borders of the objects as 
input data, Martinez-Perez et al. [8] tried to find a pair of 
"opposite" points by throwing a projecting line &om the 

vertex to the facing segment and generate sequentially 
the median line, by adding the mid-point between the 
vertex and the intersection. Their algorithm is intended 
for "elongated" objects, with a clearly defined 
longitudinal direction, and an approximate constant 
thickness. It is difficult to deal with the shape when a 
small hole exists in the middle of a confluence region 
joined by multiple branches. 

Distance transfoms can be used to generate skeletons 
[6, l I, 261. A set of points, whether they are symmetry 
points [6] or local maxima plus saddle points [26], are 
selected and special paths are designed to connect these 
points for topological invariance. These algorithms are 
non-iterative and therefore are width-independent, similar 
to the method of generating median lines based on 
contours. The original object can be reconstructed from 
the skeleton exactly or approximately within a specified 
error. Choosing an appropriate metric, that provides a 
good approximation to the Euclidean distance, makes the 
skeleton less sensitive to rotation. The main problem of 
these algorithms is that in some pathological cases, when 
two connecting paths are "tangent" to each other, false 
single-pixel holes can occur in the skeletons and need to 
be removed by an additional special check. 

The Voronoi diagram is another method for 
computing a connected, regenerative, Euclidean skeleton 
of an object. However the algorithm to compute the 
Voronoi diagram is very complex due to the linked graph 
structure and is quite memory-intensive [lo]. 

A new boundary based thinning algorithm is developed 
in this paper, which can deal with objects with a general 
shape. The algorithm can be outlined as follows: Given a 
proposed shrinking width w,, two scans are made, first 
transversely and then vertically, to delete wp/2 pixels of 
the object on both sides in one scan. If the connectivity is 

broken, reconnection in an 8-connected fashion is made. 
The process stops when no h h e r  pixels are deleted. 

II. BOUNDARY BASED THINNTNG ALGORITHM 
It is assumed that multiple limbs intersect each other 

either at a point or at a portion of a line in the general 
case (Fig. 1) and there is no restraint on the shape of 
objects. For example, suppose the line m is shrunk into 
one point. If k=2 and j=2, it could be a pair of 
intersection lines; if k=O and j=2, it could be a face-down 
angle; and if k=2 and j=O, it could be a face-up angle. 



Fig.1 Multiple limbs thinning model 

Given a proposed width wp, first make a transverse 
scan, row by row, from top left to right bottom. If the 
width of the object wo at a row is less than wp, its center 
point is retained, labelling the shrunk width of both left 
and right sides. If wo is odd, the shrunk width of both 
sides is the same, equal to (wo-1)/2. If w o  is even, the 
shrunk width is (wo/2)-1 for the left side and wo/2 for the 
right side. If wo=l, no point can be deleted and the 
shrunk width is equal to zero. If wo>wp, wp/2 pixels are 
deleted on both sides and the new boundary points are 
labelled with the shrunk width. During the operation, the 
number of deletions on either side is always recorded. In 
order to preserve the property of connectivity that the 
object possesses, it is necessary to compare the sum of 
the shrunk width of the present row (i) at a point on 
either side (for example left side) and the shrunk width of 
the last row (i-I) at a point on the opposite side (in this 
context it is right side), with the difference of the column 
numbers of the point in the present row (nL) and the 
point in the last row (jLp) within the search scope. If the 
latter is less than or equal to the former, i. e. (nL-jLp)l 
(L+rp+l) it means that the two lines of the object were 

connected before shrinking, and the shrinkage breaks the 
original connectivity. The shrunk points should then be 
recovered in the 8-connected fashion within both the 
shrunk widths and the labelling values modified. The 
process only changes object points on the boundary into 
background points and never changes background points 
into object points. It deletes as many as possible of the 
object points on the boundary (within the limitation of 
the proposed width), without violating the connectivity in 
each row scan. It is actually a three-line support to secure 
that points in the middle line (ith row) are connected with 
points on both the line above ((i-1)th row) and the line 
beneath ((i+l)th row), if they were originally connected. 
The process is separated into two steps: First, the 
connectivity of the points in the middle line and in the 
line above is kept and then the connectivity of the points 
in the middle line and in the line beneath is obtained (Fig. 
2). From its construction, it is topologically invariant. 

Since more than one line is shrunk, the remaining point 
may need to keep connectivity with more than one point. 
It is therefore necessary to detect in the range which is 
equal to the shrunk width on both sides of a point or a 
line to keep the connectivity of the object, when multiple 
limbs intersect each other at a segment of a line. 

The process is the same in the vertical scan, column by 
column. The two cycles repeat until no more pixels of the 
object can be deleted. 

If wo=2, the right side pixel in the transverse scan or 
the lower pixel in the vertical scan will be deleted and the 
left side pixel or the upper pixel retained. If the deleted 
pixel is changed back into the object pixel, because of the 
consideration of connectivity, the retained pixel is 
checked to find if it is a simple point [24] using 
conditions (a) and (b) of [16]. 

The operation is a shrinking process. It will shrink a 
vertical line, or a horizontal line into one point, and also a 
vertical line crossing a horizontal line. This is really not 
what is wanted. So in the process of checking 
connectivity, it is necessary to ensure that if a shrunk 
vertical or horizontal line is unit width it should be 
restored unless its neighbour line is also shrunk in the 
scan. 

The algorithm shares the idea of the contour 
generating method (CGT) [2] in using the extra buffers 
for storing the locations of all boundary points of the 
objects in the first scans and skipping the points of the 
background in the further scans. The details can be 
found in the appendices. 

a. Shrink A to the midpoint (68.1-1) and label 242'. 

b. Shrink B to the midpoint (70,i) and label 233. In order to preserve 
connectivity between A and B. release the point (69.i) and label 241, 
which means there is one point deleted to its left. 

c. Shrink C to the midpoint (67,i+l) and label 232, release the point 
(68.i+l) and label 241, which means there is one point dcleted to its right. 

Fig. 2 Shrinking process and how it preserves the original connectivity 

*The  labelling value between [231.239] means that w,, is e\.en and the left 
shrunk width is one less than the right one: the number of dsleted points is 
equal to the labelling value minus 230. The labelling value between 
[240,249] means that w. is odd and the shrunk w~dth is the same for both 
sides; the number of deleted points is equal to the labelling value minus 
240. 

rn. DISCUSSION AND EXPERIMENTAL RESULT 
The evaluation of a thinning algorithm is to see if it is 

topological and shape preserving and its sensitivity to 
the boundary noise. The algorithm proposed deletes the 
maximum possible (wp/2) points on one side and 
preserves the connectivity. 

It is difficult for a local mask (kxk, kt3) to distinguish 
the boundary noise from the boundary points. Using the 



new algorithm boundary noise cleaning can be easily 
accompanied with the first transverse and vertical scans. 
The proposed algorithm does not cause excessive erosion 
in dealing with M 5 O  slant, horizontal and vertical lines 
with two pixel width. It can obtain almost minimally 8- 
connected curves except for the situation shown in Fig. 
13 of [6], when different branches converge towards a 
common position and the deletion of any pixel in the core 
will break connectivity. For kxk thinning, the maximum 
possible shift increases as k increases. Spurs may occur 
for wide lines, large curvatures and large k. The 
algorithm proposed tends to contract extensively in the 
horizontal direction because of the sequential order (first 
transverse then vertical scan). This is so especially when 
the width of a block wu is less than rvl?; then the block of 
an object will be transformed into a vertical line even 
though its thickness is less than its width. Spurs may also 
occur for large wp. It is a trade-off between speed and 
shape preserving when choosing the proposed width w,. 

Suppose the image is an M x M matrix. For WIFT [6], 
the total number of inspected pixels is 6 ~ ' + l l  K I I ,  where 
K is the set of skeleton pixels of the object. For CGT 
[2], the total number of inspected pixels is M2+11Sll, 
where S is the set of the objects pixels. For the new 
algorithm, the total number of inspected pixels is 
2M2 + O(llS1l). Since the algorithm inspects not only the 
boundary pixels but also the inner pixels during the check 
of the connectivity, the running time is proportional to 
(21 wp) xmax wn. 

The algorithm significantly reduces the number of 
iterations compared to other iterative algorithms. In 
existing sequential thinning algorithms, contour 
generating methods are faster. Although XW's [2] and 
WZ's [3] algorithms are similar in inspecting pixels along 
the boundaries rather than all pixels in each iteration; 
XW's algorithm is simple in producing a good quality 
skeleton. The two algorithms were coded in Borland 
CU and run on a PC 386 SX-160. 

The results of the timing test for thinning patterns "A", 
"leaf", "bull's eye" and Chinese character " " with 1 2 8 ~  
128 pixels (Fig. 3) is given in Table 1. The times listed do 
not include the time of input and output of files as this 
time is the same for all algorithms. The number of 
iterations for XW's algorithm may make less sense since 
its running time is actually proportional to the total 
number of the object pixels. If the width of the object is 
small, XW's algorithm may be faster than the new 
algorithm, because the basic cost of it is larger than that 
of XW's algorithm as mentioned above. The larger the 
width of the object to be thinned, the faster the new 
algorithm becomes relative to XW's. 

IV. CONCLUSION 
A new boundary based thinning algorithm is developed. 

It has a broader scope, from a local area to a global area. 
and si@~cantly reduces the number of iterations 
compared with existing algorithm. A thinning operation 
model, which is applicable to general shapes of objects, is 
introduced. It is topologically invariant from its 
construction. It is also less sensitive to boundary noise 

and obtain the almost minimally 8-connected skeleton. If 
the proposed width is large, the algorithm will cause the 
skeleton to contract in one direction and spurs to occur, 
but the distortion is limited in range. The computation 
complexity is modest and it is shown that with an 
increase in the width of the object to be thinned, for 
example, with increase of the resolution of digitization, 
the proposed algorithm is computationally efficient. 

a. English alphabet "A" b. "leal" 

c. "bull's eye" d. Chinese character " " 

Fig. 3 Thinning patterns 

APPENDIX I 
List of Symbols : 
TBUF: array for storing the coordinates of boundary 

points in the transverse scan. 
VBUF: array for storing the coordinates of boundary 

points in the vertical scan. 
W O :  the width of the object. 
w,: the proposed shrinking width. 
nL: the column value of the leftmost point of the 

central part remaining after shrinkin? in the ith row. 
nr: the column value of the rizhtmost point of the 

central part remaining after shrinking in the ith row. 
(If w, 5 wp the central part is shrunk into one point and 

nL=nr.) 
jLp: the column value of the up left point in the (i-1)th 

row within the search scope. 
jrp: the column value of the up right point in the (i-1)th 

row within the search scope. 
L: labelling value. which means L points on the left 

have been deleted in the ith row from the leftmost point 
of the central part. 

r: labelling value, which means r points on the right 
have been deleted in the ith row from the rightmost point 
of the central part. 

Lp: labelling value, which means Lp points on the left 
have been deleted in the (i-1)th row from the leftmost 
point of the ce?tral part. 



Table 1. Comparison of run time (in seconds) 

rp: labelling value, which means rp points on the right 
have been deleted in the (i-1)th row from the rightmost 

Algorithm 

Newalgorithm 
Xu & Wang 

point of the central part. 
[nL-L-w,R, nL]: the left side search scope. 
[nr, m+r+wpR]: the right side search scope. 

APPENDIX I1 
Algorithm: 

1. Initialize. 
2. Put the coordinates of the boundary pixels into 

TBUF fromtop to bottom in the transverse scan of the 

* number of the iteration. The proposed width is 8. 

pattern 

image. 
a) Retain the central part of the line segment, delete 

the shrunk points of both sides and label the shrunk width 
of both sides at the leftmost point and the rightmost point 
of the central part. (If w. 2 w p ,  wp/2 points are deleted 
from both sides. If wo < wp and if wo is odd (WO-1)/2 
points are deleted from both sides. If wo is even (won)-1 

A 

points are deleted from the left side and wo/2 points 
deleted from the right side. If w0=1, no point is deleted 
from either side.) 

b) Check the connectivity of horizontal lines. Within 
the left side search scope [nL-L-wp12, d l ,  check the 
connectivity--if (nL-jLp[t])<(L+rp[t]+l) (PO, .-.-.... kt ), 
restore the connection within both shrunk widths (for the 
ith row it is L; for the (i-1 )th row it is rpt[t]) and mod@ 
the label values of the released points. Within the right 
side search scope [N, nr+r+wp/2], check the 
connectivity--if (jrp[t]-~)<(r+~p[t]+l) ( t = ~ ,  .....-.. k r )  
do the same as for the left side. If w0=2, the right side 
point is changed back into the object point, and a check 
of a simple point for the remained point is made. 

3. In the vertical scan of the image, the coordinates of 
the boundary pixels are put into VBUF from left to right. 

The next processes are similar to subprocesses a) and 
b) in the transverse scan . 

4. Update the content of the boundary point buffers 
after each scan and repeat the steps 2 and 3. 

5. The whole process stops when no hrther point can 
be deleted. 

no. 
4* 
9 
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