
MVA'94 IAPR Workshop on Machine Vision Applications Dec. 13-1 5, 1994, Kawasaki

A FAST BOUNDARY BASED THINNING ALGORITHM

Y. Zhu, L. D. Seneviratne and S. W. E. Earles

Department of Mechanical Engineering, King's College London,
Strand, London, WC2R 2LS, U. K.

Abstract
Thinning algnrithms can be classified into two general types:

sequential and parallel alprithms. Most of them peel off the
object boundaries until the objects have been reduced to thin
lines. The process is performed iteratively and needs a number
of iterations (approximately equal to half of the maximum line
width of the object). Several boundary based algorithms which
belong to the sequential method have been proposed, but they
have limitations. A new boundary based algorithm is presented.
Experimental m l t s are used to compare this new algorithm to
other sequential algorithms and their relative performances are
assessed.

I. INTRODUCTION
Thinning algorithms can be classified into two general

types: sequential [I-51 and parallel [l l-221 algorithms. A
common character of these algorithms is that they are
pixel-based. They check the condition of small local
neighbourhoods around the pixel (usually a 3x3 mask or
larger, 8 neighbours or more) to find out the deletable
boundary pixels of the object, whose removal does not
locally disconnect their neighbourhoods or cause
excessive erosion. The process is performed iteratively.
In each iteration, every image pixel or boundary pixels
(for contour following methods) are inspected and single-
pixel wide boundaries, that are not required to maintain
connectivity or endlines, are erased. The number of
iterations is approximately equal to half of the maximum
line width of the object. O'Gorman [23] enlarged the size
of mask to-kxk (M) and a center core of (k-2)x(k-2)
pixels is erased if the deletion criteria are satisfied.
Because thicker layers are peeled from the boundary of
the object, fewer iterations are required to reach the
thinned result. For a large k, this is often at the cost of an
increase in the coarseness of the result.

Another type of sequential methods are based on
contours to calculate an approximate median line [7-91.
Shapiro et al. [9] exploited the trapezoid formed by two
pairs of boundary points along the two boundary
segments. If the diagonals of the trapezoid are nearly
equal, then the point of intersection of the diagonals
represents a point on the median line. Their algorithm can
deal with ribbon-like or simple tree-like objects. Even for
these types of shapes, there are problems in deciding
what constitutes a legitimate skeleton for the ambiguous
regions. Using the vectorized borders of the objects as
input data, Martinez-Perez et al. [8] tried to find a pair of
"opposite" points by throwing a projecting line &om the

vertex to the facing segment and generate sequentially
the median line, by adding the mid-point between the
vertex and the intersection. Their algorithm is intended
for "elongated" objects, with a clearly defined
longitudinal direction, and an approximate constant
thickness. It is difficult to deal with the shape when a
small hole exists in the middle of a confluence region
joined by multiple branches.

Distance transfoms can be used to generate skeletons
[6, l I, 261. A set of points, whether they are symmetry
points [6] or local maxima plus saddle points [26], are
selected and special paths are designed to connect these
points for topological invariance. These algorithms are
non-iterative and therefore are width-independent, similar
to the method of generating median lines based on
contours. The original object can be reconstructed from
the skeleton exactly or approximately within a specified
error. Choosing an appropriate metric, that provides a
good approximation to the Euclidean distance, makes the
skeleton less sensitive to rotation. The main problem of
these algorithms is that in some pathological cases, when
two connecting paths are "tangent" to each other, false
single-pixel holes can occur in the skeletons and need to
be removed by an additional special check.

The Voronoi diagram is another method for
computing a connected, regenerative, Euclidean skeleton
of an object. However the algorithm to compute the
Voronoi diagram is very complex due to the linked graph
structure and is quite memory-intensive [lo].

A new boundary based thinning algorithm is developed
in this paper, which can deal with objects with a general
shape. The algorithm can be outlined as follows: Given a
proposed shrinking width w,, two scans are made, first
transversely and then vertically, to delete wp/2 pixels of
the object on both sides in one scan. If the connectivity is

broken, reconnection in an 8-connected fashion is made.
The process stops when no h h e r pixels are deleted.

II. BOUNDARY BASED THINNTNG ALGORITHM
It is assumed that multiple limbs intersect each other

either at a point or at a portion of a line in the general
case (Fig. 1) and there is no restraint on the shape of
objects. For example, suppose the line m is shrunk into
one point. If k=2 and j=2, it could be a pair of
intersection lines; if k=O and j=2, it could be a face-down
angle; and if k=2 and j=O, it could be a face-up angle.

Fig.1 Multiple limbs thinning model

Given a proposed width wp, first make a transverse
scan, row by row, from top left to right bottom. If the
width of the object wo at a row is less than wp, its center
point is retained, labelling the shrunk width of both left
and right sides. If wo is odd, the shrunk width of both
sides is the same, equal to (wo-1)/2. If w o is even, the
shrunk width is (wo/2)-1 for the left side and wo/2 for the
right side. If wo=l, no point can be deleted and the
shrunk width is equal to zero. If wo>wp, wp/2 pixels are
deleted on both sides and the new boundary points are
labelled with the shrunk width. During the operation, the
number of deletions on either side is always recorded. In
order to preserve the property of connectivity that the
object possesses, it is necessary to compare the sum of
the shrunk width of the present row (i) at a point on
either side (for example left side) and the shrunk width of
the last row (i-I) at a point on the opposite side (in this
context it is right side), with the difference of the column
numbers of the point in the present row (nL) and the
point in the last row (jLp) within the search scope. If the
latter is less than or equal to the former, i. e. (nL-jLp)l
(L+rp+l) it means that the two lines of the object were

connected before shrinking, and the shrinkage breaks the
original connectivity. The shrunk points should then be
recovered in the 8-connected fashion within both the
shrunk widths and the labelling values modified. The
process only changes object points on the boundary into
background points and never changes background points
into object points. It deletes as many as possible of the
object points on the boundary (within the limitation of
the proposed width), without violating the connectivity in
each row scan. It is actually a three-line support to secure
that points in the middle line (ith row) are connected with
points on both the line above ((i-1)th row) and the line
beneath ((i+l)th row), if they were originally connected.
The process is separated into two steps: First, the
connectivity of the points in the middle line and in the
line above is kept and then the connectivity of the points
in the middle line and in the line beneath is obtained (Fig.
2). From its construction, it is topologically invariant.

Since more than one line is shrunk, the remaining point
may need to keep connectivity with more than one point.
It is therefore necessary to detect in the range which is
equal to the shrunk width on both sides of a point or a
line to keep the connectivity of the object, when multiple
limbs intersect each other at a segment of a line.

The process is the same in the vertical scan, column by
column. The two cycles repeat until no more pixels of the
object can be deleted.

If wo=2, the right side pixel in the transverse scan or
the lower pixel in the vertical scan will be deleted and the
left side pixel or the upper pixel retained. If the deleted
pixel is changed back into the object pixel, because of the
consideration of connectivity, the retained pixel is
checked to find if it is a simple point [24] using
conditions (a) and (b) of [16].

The operation is a shrinking process. It will shrink a
vertical line, or a horizontal line into one point, and also a
vertical line crossing a horizontal line. This is really not
what is wanted. So in the process of checking
connectivity, it is necessary to ensure that if a shrunk
vertical or horizontal line is unit width it should be
restored unless its neighbour line is also shrunk in the
scan.

The algorithm shares the idea of the contour
generating method (CGT) [2] in using the extra buffers
for storing the locations of all boundary points of the
objects in the first scans and skipping the points of the
background in the further scans. The details can be
found in the appendices.

a. Shrink A to the midpoint (68.1-1) and label 242'.

b. Shrink B to the midpoint (70,i) and label 233. In order to preserve
connectivity between A and B. release the point (69.i) and label 241,
which means there is one point deleted to its left.

c. Shrink C to the midpoint (67,i+l) and label 232, release the point
(68.i+l) and label 241, which means there is one point dcleted to its right.

Fig. 2 Shrinking process and how it preserves the original connectivity

*The labelling value between [231.239] means that w,, is e\.en and the left
shrunk width is one less than the right one: the number of dsleted points is
equal to the labelling value minus 230. The labelling value between
[240,249] means that w. is odd and the shrunk w~dth is the same for both
sides; the number of deleted points is equal to the labelling value minus
240.

rn. DISCUSSION AND EXPERIMENTAL RESULT
The evaluation of a thinning algorithm is to see if it is

topological and shape preserving and its sensitivity to
the boundary noise. The algorithm proposed deletes the
maximum possible (wp/2) points on one side and
preserves the connectivity.

It is difficult for a local mask (kxk, kt3) to distinguish
the boundary noise from the boundary points. Using the

new algorithm boundary noise cleaning can be easily
accompanied with the first transverse and vertical scans.
The proposed algorithm does not cause excessive erosion
in dealing with M 5 O slant, horizontal and vertical lines
with two pixel width. It can obtain almost minimally 8-
connected curves except for the situation shown in Fig.
13 of [6], when different branches converge towards a
common position and the deletion of any pixel in the core
will break connectivity. For kxk thinning, the maximum
possible shift increases as k increases. Spurs may occur
for wide lines, large curvatures and large k. The
algorithm proposed tends to contract extensively in the
horizontal direction because of the sequential order (first
transverse then vertical scan). This is so especially when
the width of a block wu is less than rvl?; then the block of
an object will be transformed into a vertical line even
though its thickness is less than its width. Spurs may also
occur for large wp. It is a trade-off between speed and
shape preserving when choosing the proposed width w,.

Suppose the image is an M x M matrix. For WIFT [6],
the total number of inspected pixels is 6 ~ ' + l l K I I , where
K is the set of skeleton pixels of the object. For CGT
[2], the total number of inspected pixels is M2+11Sll,
where S is the set of the objects pixels. For the new
algorithm, the total number of inspected pixels is
2M2 + O(llS1l). Since the algorithm inspects not only the
boundary pixels but also the inner pixels during the check
of the connectivity, the running time is proportional to
(21 wp) xmax wn.

The algorithm significantly reduces the number of
iterations compared to other iterative algorithms. In
existing sequential thinning algorithms, contour
generating methods are faster. Although XW's [2] and
WZ's [3] algorithms are similar in inspecting pixels along
the boundaries rather than all pixels in each iteration;
XW's algorithm is simple in producing a good quality
skeleton. The two algorithms were coded in Borland
CU and run on a PC 386 SX-160.

The results of the timing test for thinning patterns "A",
"leaf", "bull's eye" and Chinese character " " with 1 2 8 ~
128 pixels (Fig. 3) is given in Table 1. The times listed do
not include the time of input and output of files as this
time is the same for all algorithms. The number of
iterations for XW's algorithm may make less sense since
its running time is actually proportional to the total
number of the object pixels. If the width of the object is
small, XW's algorithm may be faster than the new
algorithm, because the basic cost of it is larger than that
of XW's algorithm as mentioned above. The larger the
width of the object to be thinned, the faster the new
algorithm becomes relative to XW's.

IV. CONCLUSION
A new boundary based thinning algorithm is developed.

It has a broader scope, from a local area to a global area.
and si@~cantly reduces the number of iterations
compared with existing algorithm. A thinning operation
model, which is applicable to general shapes of objects, is
introduced. It is topologically invariant from its
construction. It is also less sensitive to boundary noise

and obtain the almost minimally 8-connected skeleton. If
the proposed width is large, the algorithm will cause the
skeleton to contract in one direction and spurs to occur,
but the distortion is limited in range. The computation
complexity is modest and it is shown that with an
increase in the width of the object to be thinned, for
example, with increase of the resolution of digitization,
the proposed algorithm is computationally efficient.

a. English alphabet "A" b. "leal"

c. "bull's eye" d. Chinese character " "

Fig. 3 Thinning patterns

APPENDIX I
List of Symbols :
TBUF: array for storing the coordinates of boundary

points in the transverse scan.
VBUF: array for storing the coordinates of boundary

points in the vertical scan.
W O : the width of the object.
w,: the proposed shrinking width.
nL: the column value of the leftmost point of the

central part remaining after shrinkin? in the ith row.
nr: the column value of the rizhtmost point of the

central part remaining after shrinking in the ith row.
(If w, 5 wp the central part is shrunk into one point and

nL=nr.)
jLp: the column value of the up left point in the (i-1)th

row within the search scope.
jrp: the column value of the up right point in the (i-1)th

row within the search scope.
L: labelling value. which means L points on the left

have been deleted in the ith row from the leftmost point
of the central part.

r: labelling value, which means r points on the right
have been deleted in the ith row from the rightmost point
of the central part.

Lp: labelling value, which means Lp points on the left
have been deleted in the (i-1)th row from the leftmost
point of the ce?tral part.

Table 1. Comparison of run time (in seconds)

rp: labelling value, which means rp points on the right
have been deleted in the (i-1)th row from the rightmost

Algorithm

Newalgorithm
Xu & Wang

point of the central part.
[nL-L-w,R, nL]: the left side search scope.
[nr, m+r+wpR]: the right side search scope.

APPENDIX I1
Algorithm:

1. Initialize.
2. Put the coordinates of the boundary pixels into

TBUF fromtop to bottom in the transverse scan of the

* number of the iteration. The proposed width is 8.

pattern

image.
a) Retain the central part of the line segment, delete

the shrunk points of both sides and label the shrunk width
of both sides at the leftmost point and the rightmost point
of the central part. (If w. 2 w p , wp/2 points are deleted
from both sides. If wo < wp and if wo is odd (WO-1)/2
points are deleted from both sides. If wo is even (won)-1

A

points are deleted from the left side and wo/2 points
deleted from the right side. If w0=1, no point is deleted
from either side.)

b) Check the connectivity of horizontal lines. Within
the left side search scope [nL-L-wp12, d l , check the
connectivity--if (nL-jLp[t])<(L+rp[t]+l) (PO, .-.-.... kt),
restore the connection within both shrunk widths (for the
ith row it is L; for the (i-1)th row it is rpt[t]) and mod@
the label values of the released points. Within the right
side search scope [N, nr+r+wp/2], check the
connectivity--if (jrp[t]-~)<(r+~p[t]+l) (t = ~ , -.. k r)
do the same as for the left side. If w0=2, the right side
point is changed back into the object point, and a check
of a simple point for the remained point is made.

3. In the vertical scan of the image, the coordinates of
the boundary pixels are put into VBUF from left to right.

The next processes are similar to subprocesses a) and
b) in the transverse scan .

4. Update the content of the boundary point buffers
after each scan and repeat the steps 2 and 3.

5. The whole process stops when no hrther point can
be deleted.

no.
4*
9

REFERENCE
1. N. J. Naccache and R. Shinghal, "SPTA: A proposed algorithm
for thinning binary panerns," IEEE Trans. Svst., Man, Cybern.
SMC-14, pp. 409-418, 1984.
2. Wen Xu and Chengwn Wang, "CGT: A fast thinning algorithm
implemented on a sequential computer," IEEE Trans. Syst.. Man,
Qhern. , SMC-17, pp. 847-851. 1987.
3. P. S. P. Wang and Y. Y. Zhang. "A fast and flexible thinning
algorithm." IEEE Trans. Comput. 38, pp. 741-745. 1989.
4. T. Pavlidis, "A hnning algorithm for discrete binary images,"
Comput. Graph~cs Image Processing, 13, pp. 142-157, 1980.
5. . "An asynchronous thinning algorithm," Comput. Graphics
Image Processing. 20, pp. 133-157, 1982.

time
0.384615
0.494505

leaf

6. C. Arcelli and G. Sanniti di Baja, "A width-independent fast
thinning algorithm," IEEE Trans. Pattern Anal. Math. Intelligence
PAMI-7, pp. 463474, 1985.
7. C. Arcelli, "Pattern thinning by contour tracing," Comput.
Graph~cs Image Processing, 17, pp. 130-144, 198 1.
8. M. Pilar Martinez-Perez, Javier Jimenez and Jose L. Navalon,
"A thinning algorithm based contours," Comput. Pision Graphrcs
Image Processing, 39, pp. 186-201, 1987.
9. B. Saphiro, J. Pisa. and J. Sklansky, "Skeleton generation from
x, y boundary sequences," Comput. Graphrcs Image Processing,
15, pp. 136-153. 1981.
10. J. W. Brandt and V. R Algazi, "Continuous skeleton
computation by Voronoi diagram," CVGIP: Image Understanding,
55, pp. 329-338, 1992.
11. C. Arcelli, L.P. Cordella, and S. L.evialdi, "From local maxima
to connected skeleton," IEEE Trans. Pattern Anal. Mach.
Intelligence PAM-3, pp. 134-143, 1981.
12. A. Rosenfeld, "A characterization of parallel thinning
algorithms." Inform. Control, 29, pp. 286-291, 1975.
13. R. Stefanelli and A. Rosenfelci, "Some parallel thinning
algorithms for digital pictures," J. Assoc. Comput. Math. 18, pp.
255-264, 1971.
14. A. Rosehfeld and L. S. Davis, "A note on thinning," IEEE
Trans. Syst.., Man, Cvbern. SMC-6. pp. 226-228, 1976.
IS. H. Tamura. "A comparison of line thinning algorithms from
digital geometry viewpoint," Proc. 4th Int. Conj Pattern
Recognition, pp. 71 5-7 19, 1978.
16. T. Y. Zhang and C. Y. Suen, "A fast parallel algorithm for
thinning digital patterns," Comm. ACM 27, pp. 236-239, 1984.
17. H. E. Lu and P. S. P. Wang, "A comment on 'A fast parallel
algorithm for thinning digital patterns," Comm. ACM 29, pp. 239-
242. 1986.
18. C. M. Holt, A. StewarL, M. Clint, and R. H. Perrott, "An
imprwed parallel thinning algorithm." Comm. ACM 30, pp. 156-
160, 1987.
19. R T. Chin, H. K. Wan, D. L. Stwer and R. D. Iverson, "A one-
pass thinning algorithm and its parallel implementation," Comput.
fision Graphics Image Processing. 40, pp. 30-40, 1987.
20. R. W. Hall. "Fast parallel thinning algorithms: Parallel speed
and connectivity preservation," Comm. ACM 32, pp. 124-13 1,
1989.
21. 2. Guo and R. W. Hall. "Parallel thinning with two-subiteration
algorithms." Cornm. 4Chf 32, pp. 359-373, 1989.
22. Z. Guo and R. H. Hall. "Fan fully parallel thinning
algorithms." Cl GIP: Image L'nderstanding, 55. pp. 3 17-328, 1992.
23. L. O'Gonnan. "kxk thinning." Comput. Ksion Graphics Image
Processing, 51. pp. 195-2 15, 1990.
25. T. Y. Kong and A. Rosenfeld. "Digital topology: Introduction
and survey." Comput. Vrsron Graphics Image Processtng. 48, pp.
357-393, 1989.
25. L. Lam, S-W Lee and C. Y. Suen, "Thinning methodologies --
A comprehensive survey," IEEE Trans. Pattern Anal. hfach.
Intelligence, PAMI-14, 869-885, 1992.
26. C. W. Niblack. P. H. Gibbons and D. W. Capson. "Generating
skeletons and centerlines from the distance transform." C K I P :
Graphical.Lfodels and Image Processing. 54. pp. 420437, 1992.

no.
7
'2

bull's eye
time

0.714286
0.824176

no.
3
6

no.
5
10

time
0.604396
0.934066

time
0.549451
0.769231

