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Abstract 

A novel algorithm is presented for robust and fast 
edge detection and description in range images. In 
contrast to many other known methods, our algo- 
rithm provides a rich description of edge structures 
including detailed edge types and local surface char- 
acteristics. The proposed algorithm has been tested 
on a large number of real range images acquired by 
three scanners with quite different noise character- 
istics, and demonstrated good results. The compu- 
tation time for one image lies between 1.5 and 10 
seconds on a Sun Sparcstation 5, dependent on the 
image resolution. The highly parallel nature and 
the simple control structure of our algorithm makes 
a further significant speedup on a parallel architec- 
ture possible. 

no quantitative characterization of edge 
strengths [ l l ] ,  

no straightforward geometric interpretation 
of the quantitative characterization of edge 
strengths [I,  51, 

no support of the classification in detailed edge 
types [I ,  3, 51. 

Based on the same scan line grouping technique as 
in [8,9] we propose an edge detection algorithm that 
enables us to quantitatively investigate both detailed 
edge types and local surface characteristics. This 
way we are able to achieve a robust and fast edge 
detection and description method for range images. 

2 Scan line grouping technique 
1 Introduction 

Today range scanners are able to acquire high- 
resolution and high-quality range images in (quasi-) 
real-time 121. However, range image analysis and in- 
terpretation in a robust and fast way is still an open 
research topic. In particular, there is considerable 
room for improvement in range image segmentation 
with respect to both quality and speed 16, 71. In the 
past we have developed two very fast region-based 
segmentation algorithms based on a scan line group- 
ing technique: a method for segmenting a range 
image into planar surfaces [8] and its extension to 
curved surfaces 191. In a recent experimental com- 
parison of segmentation algorithms using two large 
range image sets acquired by two different scanners, 
this scan line grouping technique has demonstrated 
good results a t  high speed [6, 71. It is our intention 
to further improve the robustness of our segmenta- 
tion algorithm by incorporating edge information, 

- - 

and this has motivated us to develop a robust and 
fast edge detection method. 

The central task of edge detection is to reliably 
detect and locate edge points. But a rich descrip- 
tion of edge points including edge strengths, detailed 
edge types (see [ l l ] ) ,  and local surface characteris- 
tics is highly desirable, too. A number of edge de- 
tection algorithms for range images exist in the lit- 
erature, see 1101 for a review. However, they suffer 
from several drawbacks, for instance, 
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For description clarity we assume a dense range 
image z(x, y) regularly sampled in both coordinate 
directions. Our algorithm can easily be extended to 
other scanner geometries, see [lo] for details. Let 
z = f (x ,  y) be the 3-D surface of an object to 
be segmented. Then, an image row z(x,yo) with 
a constant yo is simply a two-dimensional curve 
z = f (x, yo) in the x - z plane. A planar 3-D surface 
z = ax+by+c, A .. for example, results in a straight line 
z = ax+ b, b = byo +c, on the image row. Generally, 
curve segments z = f (x, yo) corresponding to differ- 
ent surfaces have different function parameters. So, 
we can partition an image row into a set of curve 
segments. In the ideal case all partitioning points 
lie on the boundary between two surfaces and are 
therefore edge points. 

In this work we assume the quadratic surface 
model z = Ci+j52 aiJx2yJ that leads to curve seg- 
ments z = ax2 + bx + c in image rows with constant 
y = yo. The classical splitting algorithm described 
by Duda and Hart [4] has been used to partition an 
image row into curve segments under a preselected 
threshold 6 .  A quadratic approximation function is 
first determined for a whole image row based on the 
midpoint and the two endpoints. Then, whenever 
the largest error e,,lax between the approximation 
function and the image row is greater than e, the im- 
age row is split into two parts at the location where 
emax occurs. The splitting algorithm proceeds re- 
cursively until the approximation error enlax doesn't 
exceed the threshold c. 



Figure 1: Definition of discontinuity strength at the 
bonndary of two curve segments. 

3 Edge detection and description 

We only consider the end points of a curve seg- 
ment as potential edge points. All other pixels are 
on a smooth surface and are thus excluded from fur- 
ther investigation. For each edge candidate xl (see 
Figure 1) a discontinuity strength is defined in the 
following way. Let x2 be the end point of the curve 
segment adjacent to XI  and z = f1,2(x) be the func- 
tion of the two curve segments cl and c2. The usual 
definition of jump edge strength is the difference of 
depth values of adjacent pixels, i.e., I f l ( x l )  - f2(x2)1 
in our case. This definition, however, is not adequate 
since a t  a constant sampling density for the whole 
scene two adjacent pixels on a highly sloped surface 
may have quitc different depth values. Instead, we 
consider the midpoint ?f = (xl + x2)/2. Its expected 
depth value on cl and c2 are fl,n(T), or alternatively 
z1 + f i  (x l ) (F  - 51) and 22 - f i (x2)(x2 - F), respec- 
tively, where zl,2 is the z-value of 51.2. Then, a suit- 
able discontinuity strength for jump edges is given 
by 

lfl(T) - f2(T)Il 

The expected normal vectors at 5 on cl and c2 are 
(- f i , 2 ( ~ ) ,  I ) ,  respectively. In this case the angle dif- 
ference between the two normal vectors 

cos- ' (-fi(T), 1 ) .  ( - f m I  1) 

ll(-fi(F)1l)Il . l l ( -f ; (~)l l ) l l  

provides a good definition of discontinuity strength 
for crease edges. Alternatively, we may also express 
the crease edge strength by 

using the normal vectors a t  x1,2. 
The image row partition is controlled by the 

threshold 6 .  It should be set small enough so that 
we will not miss any edge point. On the other hand, 

a too conservative strategy may result in an over- 
partitioning of image rows and report too many non- 
edge points as edge point candidates. However, this 
doesn't cause any serious problem since then both 
discontinuity strength values defined above will have 
very small values compared to true edge points. 

Dependent on the configuration of surfaces in the 
scene, the maximal value of the discontinuity mea- 
surements may not be observed in the horizontal di- 
rection. To capture the information available in the 
scene to a larger extent we carry out the operations 
described above also in the vertical (image columns) 
and the two diagonal (45O and 135O) directions. A 
pixel thus has at most four different discontinuity 
measurements of each type. We combine them by 
simply taking the maximum. 

In our experiments we found out that for noisy 
range images the position of edge points as deter- 
mined by the simple splitting algorithm is not very 
precise. To solve this problem we have developed an 
edge position adaptation method with subpixel ac- 
curacy. We use the functions z = f1,2(x) of two ad- 
jacent curve segments and compute the intersection 
point. Then, the intersection point is backprojected 
into the image plane to get its pixel coordinate. This 
pixel is considered as tlie improved edge position if 
it is within a distance of a preset number of pixels 
from the original boundary position of the two curve 
segments. Instead of the functions z = fl,2(x) pro- 
vided by the splitting algorithm, we can also make 
use of another function z = 71,2(x) compllted by the 
least square method for each curve segment. As a 
matter of fact, this latter approach gives us the best 
edge position adaptation results. 

After edge detection it becomes trivial to build a 
rich description of edge maps. Detailed edge types as 
suggested in [l 11 (positive and negative crease edges, 
positive and negative roof edges, a.s.o), for example, 
can be easily determined using the functions of the 
two segments adjacent to an edge point (see Fig- 
ure 1). For further discussions and examples, see 
[lo]. Furthermore, the local surface characteristics 
are described by the neighboring curve segments in 
four different directions. 

4 Accuracy considerations 

In the ideal case the strength of a crease edge 
point can be quantitatively characterized in the fol- 
lowing way. Two surfaces meet at a boundary con- 
taining the edge point under consideration. If the 
two surfaces are assumed to be locally planar and 
modeled by the surface functions z = a1 x + bl  y + c~ 
and z = a2x + b2y + c2, respectively, then the ideal 
edge strength is defined by the angle between the 
normals of the two planes: 

that is independent of the position and orientation 
of the scene relative to the range scanner. An edge 



Figure 2: Edge detection for two Michigan images. 

Figure 3: Edge detection for an ABW image (left). The edge position adaptation method significantly 
improves the accuracy of edge localization (right). 

detector that provides this edge strength is regarded 5 Experimental results and discus- 
as optimal. sions 

On the other hand, our edge detection algorithm - 
considers only directional sec'iions of a scene. Even 
though totally four directional sections are taken 
into account, the computed crease edge strength is 
still different from the optimal values defined above. 
We are interested in the amount of this deviation 
and thus the question to which extent our edge de- 
tector is an optimal one. 

For this purpose we have carried out simulation 
tests. Since the terms al,2 and bl,2 represent the 
slope with respect to the x- and y-axis, respec- 
tively, we consider for each term 29 different val- 
ues which correspond to the value of the angle to 
the coordinate axis, ranging from -70" to 70" a t  
a step size of 5", and determine for each combina- 
tion (a l ,  bl, az, bz) the difference between the edge 
strength computed by our edge detection algorithm 
and the optimal value. For all combinations this dif- 
ference value has an average of 3.8" and a standard 
deviation of 4.2". Importantly, the largest differ- 
ence values are observed if one of the two surfaces 
is highly sloped with respect to at least one coordi- 
nate axis. For more details of the simulation tests, 
see [lo]. These simulation results demonstrate the 
accuracy of our method compared to the optimal 
edge detector. 

The proposed algorithm has been implemented 
in C on a Sun Sparcstation 5 and tested on a large 
number of range images (about 280) taken by three 
range scanners with quite different noise character- 
istics. The first image source is the popular image 
set from the PRIP Lab of Michigan State University 
and another 38 images from the same Lab [12], both 
acquired by a ~ech i i ca l  Arts Scanner. We have also 
used 80 range images containing only polyhedral ob- 
jects. These images were acquired by a structured 
light ABW scanner [14] and a Perceptron time-of- 
flight scanner [13]. They constitute the test data 
in a recent experimental comparison of range image 
segmentation algorithms [6,7]. Note that the images 
from Michigan are approximately regularly sampled 
in both coordinate directions, while this property is 
not given in neither ABW nor Perceptron images. 
For all test images of each scanner, the same thresh- 
old 6 was used. Figure 2 shows the results for two im- 
ages from the Michigan set where the grey levels are 
proportional to the discontinuity strength. The two 
images contain mainly curved surfaces (left) and pla- 
nar surfaces (right), respectively, and illustrate that 
our algorithm is able to handle both types of surfaces 
in a unified framework. The edge strength map for 



Figure 4: Edge detection for two Perceptron images. 

an ABW image is presented in Figure 3 (left). The 
images acquired by this scanner are more noisy than 
thc Michigan images. This makes the precise local- 
ization of edge points difficult. Our edge position 
adaptation method works vcry well on these images, 
as  illustrated in the right part of Figure 3. In Fig. 4 
the results for two Perceptron images are shown. 

The computation t imr for the Michigan images 
of a typical resolution of 200 x 200 pixels is about 
1.5 second. All ABW and Prrceptron images have a 
resolution of 512 x 512 pixels and require thus more 
computation (about 10 seconds). The speed of our 
cdge detection and description method surely lies 
in the scan line grouping technique. Compared to  
the number of pixels, a very small number of curve 
segments result from the scan line partitioning. We 
only consider the end points of the curve segments 
as edge candidates. In our method the discontinuity 
measurements have straightforward geometric inter- 
pretation and low computational expense. More- 
over, our algorithm is of highly parallel nature. The 
processing of each image row, column and diagonal 
can be done independently and a further significant 
speedup can be achieved on a parallel architecture. 
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