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Abstract 
The factorization method for recovering 3D informa- 
tion from image sequences assumes that all feature 
points selected on the first £rame can be tracked 
throughout. This assumption is violated, however, if 
some features disappear or new ones are introduced 
later. In this paper, based on the factorization method 
with the paraperspective projection model, we pre- 
sent a method for estimating image coordinates of 
occluded feature points in order for the estimated 
locations .to approximate closely their perspective 
projections. The estimation accuracy is evaluated 
with synthetic data and some results are presented for 
3D information extraction fiom real image se- 
quences. 

1 Introduction 
Many handy devices for acquiring digital images 

and videos such as digital stilllvideo cameras have 
recently appeared in markets. These digital media 
have significant advantages of being easily edited, 
modified, and manipulated, over traditional analog 
media. Therefore, technical needs have been in- 
creasing for the reuse of digital media and the extrac- 
tion of useful information fiom them. In particular, 
the recovery of 3D object shapes from an image se- 
quence has been an important research subject in 
computer vision, as well as in such application areas 
as robot vision, autonomous vehicles, 3D shape input 
through video cameras, model-based imagelvideo 
coding, and 3D modeling. 

Tomasi and Kanade proposed a factorization 
method [4] for the robust and efficient estimation of 
shape and motion from image sequences. Based on 
the orthographic projection model, this method for- 
malizes the problem as solving a set of linear equa- 
tions in terms of the shape and motion parameters. 
The solution obtained by this method is quite stable 
and accurate compared with other methods. Further- 
more, Poelman and Kanade [3] developed a factori- 
zation method based on the paraperspective projec- 
tion model, which approximates the perspective pro- 
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jection more closely, keeping the formalization linear 
in terms of the parameters for estimation. 

The factorization method assumes that all feature 
points selected on the first frame of the image se- 
quence can be tracked throughout. This ;~ssumption is 
violated if some features disappear or new ones are 
introduced later. Such situations can often happen in 
a long image sequence taken from the camera moving 
around the object. Tomasi and Kanade [4] cope with 
the problem of feature occlusion by reconstructing 
the projection of the feature point onto the image 
plane, as if the object were transparent. This approach 
is based on a partial estimation of shape and motion 
with the factorization method applied to a subset of 
frames and features. The projection of the occluded 
feature point is estimated from the partial estimation 
by the least-square criteria. The drawback of this 
approach is that the estimation is computed in terms 
of the projection model employed by the factorization 
method, i.e., the orthographic or paraperspective 
model. Therefore, the estimated location can be bi- 
ased considerably from the perspective projection, 
which is the real camera model, and therefore, the 
accuracy of recovery of the whole object shape and 
camera motion can be degraded if such inaccurate 
local estimations are incorporated into the recovery 
process. 

In this paper, based on the factorization method 
with the paraperspective projection model [3], we 
present a method for reconstructing the projection of 
occluded feature points onto the image plane in order 
for the estimated locations to approximate closely 
their perspective projections. The proposed method 
virtually enables the accurate tracking of locations of 
all the feature points throughout the image sequence, 
even when a large motion is allowed for the camera, 
some feature points disappear due to occlusion, and 
new feature points are introduced. Consequently, 
based on the feature correspondences among image 
frames, the object shape and the camera motion can 
be recovered accurately from a long image sequence. 

This paper is organized as follows: In Section 2, 
the paraperspective projection model is outlined 
along with the factorization method. In Section 3, we 
develop algorithms for estimating image coordinates 
of occluded feature points. In Section 4, some ex- 
perimental results are presented for recovering shape 
and motion from video image sequences and sets of 
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Fig.1 Paraperspective projection model. 

still images. Section 5 is the conclusion. 

2 Paraperspective Projection Model 
and Factorization Method 

We outline the parapersepective projection model 
[2], which is a linear projection model taking into 
account the scaling effect and the position effect. As 
shown in Fig. 1, the world origin is placed at the 
object's center of mass C. Let s, be the 3D coordi- 

nates of the feature point p, t be the location of the 

camera's focal point in the frame f, if, j E R~ be 

the orthonormal vectors spanning the image planef, 
and k = if x j be the direction of the optical axis. 

In the paraperspective projection model, a point p 
whose location is s, is observed in the frame f at 

image coordinates (u* , v*), where 

Here, if we assume unit focal length for the camera, 

xf = (-tfl.jf 
zf 

Zf =(-tf)-kf ,  
The perspective projection of point p onto the frame f 
is given by (U/,, Vfi), where 

~ f p  + k f . s p  

From the Taylor expansion of (3) about the point 
z* = z / ,  (4) 

we can show that the paraperspective projection 
model is an first order approximation of the perspec- 
tive projection under the condition that 

Now, we consider a matrix W whose element wfi 

is the image coordinates of the feature point f i n  the 
image frame p: 

rull  -.. ulpi 

LVFI v m j  
This matrix is constructed by automatically tracking 
each feature point over the frames of video image 
sequences [I] or finding point correspondences 
among sets of still images. We define the measure- 
ment matrix W* as 

w*=w-[u1 . . . u fv , . . . v f~ [ i  ... 11, (7) 

where . P . P 

It can be shown that the rank of W* is at most 3 re- 
gardless of F and P [4], and therefore, we can factor- 
ize it into motion M and shape S: 

W*(~FXP)  = R ( ~ F ~ ~ ) S ( ~ ~ P )  . (9 )  

3 Estimating Image Coordinates of 
Occluded Feature Points 

The assumption that all elements of the measure- 
ment matrix are known is violated anyway in real 
image sequences because of the occlusion of feature 
points or the tracking ability limitation of the feature 
tracker. To estimate the image coordinates of these 
occluded feature points, a sub-matrix is constructed 
for each occluded feature point from the measure- 
ment matrix [4]. All the elements in the sub-matrix 
are known except for the two corresponding to coor- 
dinates of the occluded feature point. The sub-matrix 
is then factorized in the row-wise extension manner 
or in the column-wise manner [4] to get partial 3D 
information. Under the projection model assumed, 
the missing elements then can be found by projecting 
the 3D information onto the frame image. Note that 
the projection model used in estimating the coordi- 
nates of occluded points is a linear approximation of 
the real perspective projection model, and the sub- 
matrix is rather smaller than the measurement matrix. 
The condition of approximation may no longer be 
satisfied and the redundancy may not be enough in a 
small sub-matrix. Though constructing a larger sub- 
matrix is possible, it is costly to estimate a lot of 
unknown elements. 

Another method described in [3] to cope with the 
problems of feature points' occlusion is using 
weighted factorization by assigning a confidence 
value to each element of the measurement matrix, say 
zero for occluded points. It becomes to solve a non- 
linear weighted least squares problem, and the itera- 



tions required for solving the system increase rapidly 3) Construct the sub-matrix by using columns in- 
when the proportion of zero elements is large in the cluding elements found in 2) with the same 
measurement matrix. number of rows as R. 

We note here that the expansion of (3) about the 4) Factorize the sub-matrix in the row-wise exten- 
point of (4) must also satis@ the following. sion or in the column-wise extension [4] to get 

kf .sP ~0 (10) partial 3D information about the occluded 
. . 

It means that the projection components of feature 
points along an optical axis must be small enough. 
Furthermore, if feature points lie on hypothetical 
image plane that is parallel to the image plane (Fig. 
l), the paraperspective projections of these points 
coincide with their perspective projections. This 
gives us a hint for constructing a good sub-matrix to 
estimate the occluded feature point more precisely. 

It is impossible anyway to find out the points di- 
rectly from the measurement matrix that satis@ (lo) 
since no 3D information is available at that time. 
However, if all the elements in the sub-matrix are 
concentrated in a small area within a frame, the dot 
product in (10) can be assumed reasonably to be 
small enough. Under the assumption that motion of 
feature points between frames is small, the projection 
of the occluded point at the previous frame will be 
used for constructing a sub-matrix. To guarantee that 
those known elements have almost the same depth, 
the image velocities of these points are also checked. 
If the sub-matrix constructed is unable to estimate the 
occluded projection, the size of sub-matrix will be 
increased and the estimation is done again. 

1 2  3 4 .................. p ....................... P-IP 
'@@@@@@@@@@@@@@@@ 
2 @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @  

Measurement 
matrix 

Fig. 2 Constructing a sub-matrix for estimating the occluded 
point projection from the measurement matrix. 

The algorithm of constructing a sub-matrix for 
each occluded feature point is summarized as below 
and illustrated in Fig. 2 (only one half of measure- 
ment matrix is drawn for simplification). 

Before estimating the occluded feature points, the 
measurement matrix is sorted so that known elements 
are concentrated at the upper-left part of the matrix. 
For each column including occluded point in the 
measurement matrix: 

1) Find the first occluded point and register its 
projection coordinates A on previous h e .  

2) Find out the elements in the row C whose pro- 
jection coordinates are close to A,  and permute 
them according to their distances from A. 

point. 
5) If the factorization succeeds, go to 7). Other- 

wise check whether the size of the sub-matrix 
can be increased or not. If it can, increase the 
size and go to 4). If it can not be increased any 
more, leave this column unsolved. 

6) Swap this column with the next column in- 
cluding occluded points. Go to 1). 

7) Find out the projection coordinates of the oc- 
cluded point using results of 4) 

8) Find the next occluded point in this column, 
then go to 2). If this column is totally estimated, 
swap this column with the next column in- 
cluding the occluded points. 

4 Experimental Results 
We validated our proposed estimation method 

quantitatively with synthetic data, and some results of 
3D recovery from a real image sequence will be 
shown. 

4.1 Analysis with Synthetic Data 
To evaluate the estimation of occluded feature 

points, a synthetic measurement matrix was generat- 
ed and the fill fraction (fraction of known elements) 
was varied from 1.0 to 0.65. The coordinates in the 
measurement matrix were perturbed with additive 
noise for modeling the imprecision of feature track- 
ing. The elements of the measurement matrix were 
generated by using given 468 3D points and project- 
ing them onto 60 frames with the given camera mo- 
tion at a distance of 60 times the maximum length of 
3D points under the perspective projection model. 
Each result represents the average error over 5 runs, 
using a different seed for each random noise level. 

In Figs. 3, 4 and 5, the errors at fill fraction of 1 
correspond to the tracking errors in the measurement 
matrix. Fig.3 shows that under lower level of noise (cr 
5 0. I),  the errors of the measurement matrix increase 
slightly when fill fraction decreases. However, under 
higher level of noise (0 2 0.5), the errors decrease 
conversely when fill fraction decreases. This implies 
that the constructed sub-matrix works fine even 
though its elements include higher level of noise. 
There is a little rebound of error when fill fraction is 
down to 0.65, since it becomes hard to keep the den- 
sity of feature points in the sub-matrix high under 
lower fill fraction in the measurement matrix. 

In Figs. 4 and 5, the average errors of shape and 
rotation, which are results of factorization applied to 
the measurement matrix in Fig. 3 as a fkction of fill 
fraction, are shown respectively. The same trends of 
error decreasing at lower fill fraction can also be 
observed. 
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Fig.3 The estimation error of  occluded points in 
measurement mamx. 
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Fig. 4 Recovered shape error. 
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Fig. 5 Recovered rotation error. 

4.2 Shape Recovered from Real Image 
Sequences 

A MOAI model (180x70~50 mm) placed on a 
turntable was imaged by a commercial digital video 
camera (Sony DCR-VX9000) at a distance of about 3 

meters. The first frame of the image sequence is 
shown at Fig. 6(a), and the result of selecting 3000 
feature points using [l] is shown at Fig. 6(b). The fill 
fraction is 0.94 after the feature points were tracked 
throughout 60 frames. Two different views of recov- 
ered shape are shown at Fig. 6(c), (d). 

Fig. 6 First frame of the image sequence (a), feature selection 
results (b). and two views of recovered s h a ~ e  (c. dl. 

5 Conclusions 
Based on the factorization method with the parap- 

erspective projection model, we have presented a 
method for estimating image coordinates of occluded 
feature points in order for the estimated locations to 
approximate closely their perspective projections. 
The proposed method virtually enables the accurate 
tracking of locations of all the feature points throug- 
hout the image sequence, even when a large motion is 
allowed for the camera. Consequently, based on the 
feature correspondences among image frames, the 
object shape and the camera motion can be recovered 
accurately fiom a long image sequence. Through the 
evaluation of estimation accuracy with synthetic data, 
a significant improvement has been observed by 
incorporating the proposed method. Some results 
have also been presented for 3D information extrac- 
tion fiom real image sequences. 
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